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DOMAIN OPTIMIZATION PROBLEM
FOR STATIONARY HEAT EQUATION

ANTOINE HENROT*, WERNER HORN**
JAN SOKOLOWSKI***

In the paper, the support of a Radon measure is selected in an optimal way.
The solution of the second-order elliptic equation depends on the mesure via
the mixed-type boundary conditions. The existence of a solution for a class of
domain optimization problems is shown. A relaxed formulation of the optimiza-
tion problems is proposed. The first-order necessary optimality conditions are
derived.

1. Introduction

In this paper, we shall consider a problem related to the following question. Given a
flat piece of material, e.g. a pane of glass in a window, we attach a heating wire to
one surface of this material. This wire is modelled as a continuous curve connected
to fixed points A and B. We want to investigate which curve would optimize the
temperature distribution on the opposite surface at a given time?

To cope with the problem, we use the following mathematical model. Let € be
a region in the two-dimensional Euclidean space. Define

L=0x(0,d), d>0
and

Qo =0x{0}, & =0x{d}
as well as

I'=900x(0,d)

the “vertical” boundary of X. Let uo and u; be positive functions on Qg and Q,
A = (z0,%0) and B = (z1,31) two distinct points in g, and v : [0,1] — Qp a
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continuous curve of finite length in Q. Let U be the solution to the stationary heat
equation

-AU =0
on X, with boundary values
Ul =0
OUlg, =U —u
and
OnUlg, =U ~uo - f

where f, is a positive function concentrated along the curve . One could think of
f+ to be an approximation of a delta-function at . The problem can now be stated
as follows: Given a target function U* on €, find v such that

2

” Ulﬂl -Ur X

becomes minimal in a suitable Banach space X.

The crux of the matter is to find a suitable admissible set for the curves v, as
well as a convenient metric on this set of curves. First of all, it would be tempting to
replace any curve by its parametrization in order to have a Banach structure on the
set of curves. However, it is obvious that this point of view is not convenient, since a
parametrization is not “intrinsic” enough to measure distances of two curves, as the
following example illustrates. Let

. {w(t) = ¢4
y(t) =0
and
. {x(t) =t
y(t)=0

Both of these parametrizations give the same curve, but

/0 I (£) = 12(6)2 dt > 0

i.e. this integral does not define a metric on the set of curves.

A more classical idea is to work with the Hausdorf metric. For two curves
parametrized respectively by 7i(¢), ¢ € [0,1], and 72(t), t € [0,1], this distance is
defined by

d(m,72) = max {Jé}ﬁ:’f] ( min, [ (t) - 72(8)1) > max (féﬁéﬂ] I (t) — 72(5)|) }
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This metric has good compactness properties. For example, for any sequence of
compact sets K, which are included in some large ball, there is a subsequence which
converges in the Hausdorf metric to a compact set K. Unfortunately, for a sequence
of curves K, the K does not have to be a curve, as the following example illustrates.
The curves K, = {y =sin(nz),z € [0, 7]} converge to the set K = [0, 7] x [—1,1]. It
therefore seems natural that one has to impose some additional constraints on the set
of curves considered. These constraints could be on the length or on the Hausdorff
measure of the curves. The following sections will elaborate on these ideas.

It is well-known (e.g. see (Ziemer,1989)) that if v, is a sequence of continuous
curves whose Hausdorff measure is uniformly bounded by a number M, and if ~,
converges to 7y in the Hausdorff metric, then 4 is also a continuous curve. However,
it is not generally true that the Dirac-measures 6., converge weakly* to 8, (see Sec-
tion 3). But this is exactly the kind of convergence necessary to prove the continuity
of the solution to the problem above with respect to curves.

We are faced with a classical situation in shape optimization: the Hausdorff
distance has very good compactness properties, but is not strong enough to ensure
that the cost functional is lower semi-continuous.

Finally, we want to point out that the results of this paper also hold if the
Laplacian is replaced by more general uniform elliptic operators.

2. Existence of a Classical Solution

We assume that 2 is a simply-connected domain in IR? and let £ = ) x (0,d). We
write 3 = Q2 x {0}, Q1 =2 x {d} and T =80 x (0,d). Therefore

X =0Quul

Given a curve v C o parametrized by s € [0,1], we assume that A = 7(0) and
B = (1) are fixed points in Q. For the stationary heat equation, v is the heat
source. Let us consider the following elliptic equation:

(—Au=0 in 0

du
=0 on T

P 4
—ﬁ:u——ul on
k—gﬁ—:u—u()—&, on Qg

where uy and u; are given L2-functions, and 6y is a Dirac mesure supported on
the curve . The variational formulation of the stationary heat equation is given as
follows:

Find « € H'(X) such that for all functions v € H!(X)

(P2(7)) a(u,v) = L(v)
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where
a(u,v):/Vu-Vvdx+/ uvda+/ wvdo (1)
b 1221 Qo
L(v) :/ ulvdcr+/ uovda+/vd7 (2)
0 Qo vy
In order to have a well-defined problem, it is sufficient to show that the linear form
by 1 v /vdfy
vy

is continuous on the space H'(T). We are going to define the set of admissible
curves 7 in such a way that the linear form is continuous. To this end, we denote by
Q the cube @ = (0,1)x(0,1), and by I C Q the interval T = [-1,1] x {0}.

Definition 1. A given curve v is called admissible if there exists a one-to-one
mapping F : @Q +~ O, where O denotes an open neighbourhood of v in §y such
that

F(Q) =0, F(I)=~ (3)
NEllwr=(q) < La, IF w0y < Lo (4)

Prescribing uniform bounds L = L; = Ly > 0 and assuming that the following
compactness condition is satisfied:

- (H) Given a sequence F, which satifies uniformly the bounds (4), there exists a
subsequence, still denoted by F,,, such that

FLO1= PO weakly in 27 (3. 7) 9
we define an admissible family
Fr = {7 is admissible | (X) is satisfied, ||F||w1.() < L and [|F ™ [lw1.e(0) < L}

where L > 0 is a given constant.

Remark 1. Without the assumption () on the family F; we cannot expect that,
for any sequence {v,} C F, there exists a subsequence, still denoted by {,}, such
that

b — 6 weakly in the space (H'(Z))

A counterexample can be constructed using Fy,(z,y) = {z,y + L sin(nz)}.
Our problem consists now in minimizing the cost functional

J(7) = lluy — udll
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where u, denotes a solution to the stationary heat equation for any v € F;, and the
Dirac measure 6, in the boundary conditions, uq is a given function, and || - || is a
norm, or a seminorm on the space H'(X) which will be specified later.

Remark 2. We use the above definition of a set of admissible curves F,, since we
want to apply an appropriate trace theorem on ~y. Such a definition is better suited
for our applications than the simple definition of curves parametrized over an interval.

Remark 3. We can replace Definition 1 by a more general notion of a Lipschitzian
manifold, where the existence of a global parametrization is not required. We prefer
to work with the global parametrization for the sake of simplicity. The same result
can be obtained for a more general setting of the Lipschitzian manifold, provided that
the uniform bounds are prescribed with the same Lipschitz constant for any collection
of charts. Using a partition of unity the problem can be localized in a standard way.

Remark 4. Some classes of admissible curves in the plane are introduced by Daniliuk
(1975) in the framework of integral equations in non-smooth domains.

On the other hand, it seems to be possible to use some families of admissible
curves defined by using constraints of capacity type, which probably assure the exis-
tence of a solution in a slightly wider class. But this approach is rather complicated
and it is not evident that such families of admissible curves can be of any interest
for numerical methods. We refer the reader to the monograph (Ziemer, 1989) for
the definition and properties of capacity, and to (Bucur and Zolesio, 1996) for some
results in the case of admissible domains with capacitary constraints for homogeneous
Dirichlet problems. In the present paper we rather use the notion of a generalized
solution to the problem defined in Section 3.

Proposition 1. For any admissible curve v € Fr, the linear form

(6y,9) = / pdy
v
s continuous with the norm in the dual space bounded:
6511 < C,P(v)
where C, = Cy(L,%) and P(y) = f dv is the length of 7.

Proof. For an element ¢ € HY(Z) the trace on )y is also denoted by ¢ and it
satisfies ¢ € HZ(QO) we refer to (Adams, 1975; Lions and Magenes, 1968) for a
proof. The first important question is whether or not it is possible to define a trace
on v for any element of the space H? (f0). The positive answer is obtained by
applying the theorem of Besov-Uspienskii (Adams, 1975, Thm. 7.58): The injection
of the space H?(IR?) into L2(IR) is continuous.
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Let us show that if u isin HZ({), the funtion 4 = wo F defined on Q belongs
to the space H %(Q). Hence, it is sufficient to prove that the following integral is

finite
= in

[u(F(z)) — u(F(y)
dzd ' 6
/ / lz -y Y (©)
We set z1 = F(z),y1 = F(y), |DF~!| the determinant of Jacobian DF~!, hence
|u( 1?1 ) = u(y)[? 1
DF™ | dz;d 7
1= [, L g e @

Since the mapping F' is Lipschitz,

Li|F~ (&) = F' ()l = Lilz —y| > |[F(z) = F(y)| = |21 —y1]  (8)
and

IDF~!| < C =2L3 (9)

we have

2
I< 2L2L3/ / IUTJ?—;)—(—dzldyl < 00
1

since u € HE(QO).

The trace operator maps HZ(Q) into L*(Qo) by the theorem of Besov and
Usp1ensku and is defined by means of the mapping F, as a trace operator for the
space H%(0O) into the space L2(«). Furthermore,

lellzac) < Cllel 3 0 < Ol oy

where C' = C(Ly,L;), Ly and L, are Lipschitz constants of F and F~!, respec-
tively. In particular, I{ = Ly = Ly for v € Fr. In view of the continuity of the trace
operator H'(X) — Hz2 () it follows that -

llollzayy < Cllella(x) (10)
with a constant C = C(L;, L3, ¥). Therefore

[Iqodvl < P() ([/ o dv)% S CPMY)lellai(s)

which completes the proof. ]

An admissible curve is defined in the parametric form
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where F = (F1, Fy) is a bi-Lipschitz mapping. For v € Fy, it follows that

P(fy):/_i\/x’2(t)+y’2(t)dt:/;§ (%z(t,0)+%§2—2(t,0)) dt < V2L

1l
2

=

and therefore the length of admissible curves in the set Fp is uniformly bounded,
but the uniform boundedness of the length is a weaker condition for a curve than the
condition to be a member of F .

The class Fp is sufficiently small to obtain an existence result for the problem
under consideration.

Proposition 2. Given a sequence of curves v, in Fp, there ezists a curve v € Fr,
and a subsequence vy, such that

Oy, — 6y weakly in the space (H(X))
i.€.
(6, > 0) = (64, ) for all ¢ € H\(T)

Proof. Given v, = F,,(Qo) € FL, we have
| Fallwre <L and |E lwree < L

By the Ascoli theorem there exists a function F which is continuous over @ such
that for a subsequence F),,

F..(z) - F(z) uniformly over @

The functions F,, are uniformly Lipschitz continuous with a constant L, and the
same remains valid for F, thus F € Wh*(Q) with ||F|ly1e < L. We set v =
F(Qo).

Furthermore, the inequality ||F;!||wi. < L implies that

Falz) - Fa@)| > ~lz —4y]  Vo,y€Q (11)

Hence taking the limit leads to

P@)-Fa)l2 flo-yl  VayeQ (12)

which shows that F' is one-to-one. We write O = F(Q), thus there exists the inverse
mapping F~! : O+ @, F~! being Lipschitz continuous with constant L in view
of the latter inequality. Therefore v € Fr.

For the sake of simplicity we denote by <, the subsequence 7,,. We are going
to show that 6., convergesto &,. To this end, we assume that there is a function ¢
continuous on . Hence

)= | pam= [ (0,0 1B 0l

n 2
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The sequence F,, satisfies (4) uniformly, and using the assumption (H) we have that

|F (-, 0)] = [F'(:,0)] weakly in L? (——;— -é—)

Since ¢ is continuous, it is uniformly continuous on 2 :

o(Fu.0)) = o(FC0) in 2 (=3.3)

Thus
(6r0.19) 4/ ))IF(2,0)]d = (6. 0)
The same result can be obtained for an arbitrary ¢ € H'(Z) since C(Z)NH'(Z) is
dense in H'(X). n
Let us consider a sequence of admissible CUIVeS Tn and an admissible curve «
such that 6,, convergesto §, weaklyin (H!(Z))". We denote by u, and u solutions

to (P1) or (P,) for the boundary data §,, and 64, respectively. We are interested in
the convergence u, — u.

Proposition 3. Let {y.},y € Fr be given, such that 6, — &, weakly in (Hl(E))'.
Then

Up — U in H'(X) weakly and in L*(Z) strongly

Proof. The element u,, is the unique solution to the following variational problem:
a(tn,v) = Ly(v) Vv € HY(Z) (13)

where

En(v):/ ulvda+/ uovda-!-/ vdy,
Q1 Qo Tn

From Proposition 1 it follows that ||L.||« < C, where the constant C is indepen-
dent of n = 1,2,.... Since the bilinear form a(-,-) is coercive by the inequality of
Friedrichs-Poincaré, we obtain directly from the variational formulation that

a||un||%11(2) < a(Un,un) = Ln(un) < Cllunll g (s)

and therefore the sequence u,, n = 1,2,..., is bounded in H'(X). There exists a
subsequence of the sequence u.,, still denoted by wu,,, such that

Up — w* weakly in H'(Z) and strongly in L*(X)

(the strong convergence follows from the Rellich theorem). We show that u* = w.

By the weak convergence of the sequence {u,} in H'(X), since the trace mapping
is linear and continuous, we have the following convergence of the traces:

Up — u* in L*(9p) andin L?(Q,;)



Domain optimization problems for stationary heat equation - 361

Hence for any fixed test function v € H'(X)
a(un,v) — a(u*,v)

and with our assumptions

/ vd'yn—ﬂ/vd'y
n ’7

Ln(v) = L(v)

whence

We obtain
a(u*,v) = L(v)
and, since the solution to the problem (P,(v)) is unique, it follows that u* = u, which

completes the proof. |

Remark 5. In order to show that u, — u strongly in H'(X), it is sufficient to have
the following convergence:

/ und'yn—>/ud'y (14)
Tn Y

since, using the variational formulation of the problem (7P,), we obtain
/ [Vu,|*dz — / |Vu|® dz (15)
b >

Using the above results, we are in a position to prove an existence result for the
optimization problem under consideration. Assume that there is a given functional
J(-) continuous with respect to u = u(7) in the norm topology of the space L?(%)
or weakly lower semi-continuous on H'(X). Let us consider, as an example, the
following cost functional:

2
J(v) :/ (u(7) - ud) dz +/ IVu(y) — Vugl? do (16)
b %
Theorem 1. There exists a solution to the minimization problem
inf J
Jnf J() (17)

Proof. Let {v,} denote a minimizing sequence. Then for its subsequence, still de-
noted by {y.}, we have

w(Yn) = u(y) weakly in H*(X) (18)
Hence
liminf () > J(7)

which completes the proof of the theorem. ]
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Let us present another formulation of the problem which provides a smooth
solution. We denote by D ¢ IR* = € the unit disk. We denote by © the collection
of holomorphic functions defined on D with values in Qy,

D(z) = Z anz", an € C, the series convergesin D, ®(z) € Qq
n=0

The curve « is defined by the following parametrization:

= 11
Z(t) = Z ant™, te {:—5, '2‘:|
n=0

In fact, by the Stone-Weierstrass theorem, any curve located in £y can be approxi-
mated by the curve of this form.

Using the set O we obtain the existence of the solution to our problem since
if the sequence {®,}  , is a minimizing sequence, by using the Montel theorem
it follows, since €y is bounded and ®,(z) € Qg, that there exists a subsequence

which converges uniformly on any compact, along with all derivatives. In this case,
the assumption () is satisfied. In particular, ®, converges to the limit &' on the

interval [—1,1], which implies that 6, — &, weakly in (H(Z))".

3. Generalized Solutions to the Domain Optimization Problem

We start with the classical definition of a solution v € W'P(X), 1 < p < %, to the
system (P;) in the form

—-Au =0 in
g—% =0 on
(Pl(#)) Su
—Gnp =t w on
_Ou

op =Y~ U — i on Qo

where p is a Radon measure supported on Q.

We are going to prove the existence and uniqueness of the solution to P;(u).
First, we recall a Friedrich-type inequality related to our problem.

Lemma 1. Let @ ¢ RY be a bounded simply-connected domain with smooth bound-
ary I' =0Q, 4 CT a given set with |7] = fi dI'(z) > 0. Then there ezists a constant
C =0C(Q,9,p) such that

v |P » 1
| dz+ [ |v|® dT'(=) Yv € WHP(Q)
aflTi 5

N
vllr@y £ C [Z/
=1 Q2
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Let ¢ > N be fixed. By the injection theorem of Sobolev, taking into account the
variational formulation of (P;,) and the definition of the norm by duality, we have

N
[vllzo(e) < Cllvllwrzey < C (Z N&ill oy + ||§0”Lq(r0))

i=1

Furthermore,

N 3
;/ﬂﬁzg—: dz + /Fo boudl(z) = —/QuAv dz + [ &udl(z)

To

:/Vu-V'vdx+/ uvdI‘(m):/ (@+u)vdf(m)
Q To Iy on

Hence, for all &,...,&N,

N ou

2/ Lig—dr+ [ &udl(z)
=1 Q 61‘;’ Lo

%+u
on

ou

<{—+4u
_16n

loll oo (ro)
L1(Ty)

<cC

N
(Z €ill Logay + “fOHLq(Fo))
L1(To)

i=1

For p (the conjugate of ¢), p < % since ¢ > N, by the definition of the norm by
duality, it follows that

= Cll9llzr(re) = Cll¥llau(ro)
L1(To)

ou
lullwiny < C “£ tu

Since the space C(T'y) is dense in the space M;(Ty), this completes the proof of the
proposition. ]

Furthermore, we have the following variational formulation

/Vu-Vfder/ ugdr(z):/gdu vé € D(RY) (21)
Q Ty

For N = 3 the latter formulation remains valid, by density, for an arbitrary test
function ¢ € H?(Q2), since by the Sobolev imbedding theorem HZ2(Q) ¢ C(Q) and
the integral [¢dpu is well-defined.

From Proposition 4 we obtain the following result.

Proposition 5. Given a sequence {un} of Radon measures supported on T,
lnllpm, o) < C, there exists a subsequence, still denoted by {un}, and a Radon
measure g € My(Ty) such that

Pn — i weakly-(%) in My(T)
Un U weakly-(*) in WHP(Q)

N
N -1
where u, denotes a solution to the problem Py(uy).

U, —mu  in LP(Q), 1<p<
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The proof of Proposition 5 is omitted here. It uses the Banach-Alaoglu theorem
and the same argument as in the proof of Proposition 3.

We shall consider the admissible measures of the form
n= '(L‘(S»y

with some regularity properties imposed on the density ¥ € L°(y) and on the curve
v = suppu. The reason to consider such a class is that it is easy to construct a
sequence -y, such that the length of the curve v, is uniformly bounded and 6., —
Yé., weakly-(*).

Example 1. Let us consider the family of curves, n =1,2,...,

In = {xn(t):yn(t)}v te[o,1]

where

L
(=}

(X[

—

ul

b

wiN
—
—_—

0, te
)=t wa®) =4
~sin3dnwz, tE€ (

wir
~

)

o[

It can be shown that
by, — Y6,  weakly-(*)

where

and

with L= [vI+cos?atdt>1. m

Let us recall that for a sequence of Radon measures {j,} such that
Hn — p weakly-(*)
we have in general the only information on the support of the limit

supp p C lim sup supp g

n— 00

where the lim sup is taken in the sense of Kuratowski.

We choose p = 18,, since

[odu= / #(0)p(0) do
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It follows that

Il < ZO)Illo= ,  where L(y) = / do

i.e. L(y) denotes the length of the curve ~.

Now let > % and M > 0 be given constants. We introduce the set of
admissible Radon measures of the following form:

Meps = {n =08, = {1,300} € W20, 1))
/ @0+0) wu / o (=0.00) | Vo0 + R0 < )

Theorem 2. Given a sequence p, € Mq pr, there exists a subsequence, still denoted
by pn, a mesure p € My(Qo) and a curve v such that

Un — 4 weakly-(x) in My(Q)

where v = suppp = {z("),y()} € [W1’2“(0,1)]2. Furthermore, if the following
conditions are satisfied:

lnllze(r,) < C
for some p> 1, with C < MBZIﬂ and
?(t) +y?(t) >8>0 for t€(0,1) a.e.
then there exists a function v € L'(y) such that

l“=¢§7

Proof. First, since {z,} and {y.} are bounded sequences in the Sobolev space
Wh2%(0,1) which is a reflexive Banach space compactly imbedded in the space of
continuous functions by the Rellich theorem, it follows that there exist elements z,y €
W122(0,1) such that for subsequences, still denoted by {z,} and {y.},

T, — z uniformly in [0,1] and weakly in L?%(0,1) (22)
Yn — y uniformly in [0,1] and weakly in L2*(0,1) (23)

By lower semicontinuity of the norm we obtain

/: (z'2(t) + y'z(t))a dt < liminf /01 (mf(t) + y;f(t))a dt <M

Thus the curve v = {z,y} is the admissible support for the measure we are going to
construct.
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On the other hand, the sequence {1,} is bounded in L(7y,),

[ A CIGRAC) Va2 ) + 20 dt < M

i.e. the function t F> ¥n(zn(t), yn(t))y/z,%(t) + ¥42(t) is bounded in L1(0,1). We
denote by p, the measure defined in the following way:

Jodi= [ "0 (208 400 (00,90 ) 2220 + 700

for any v € C(Qp). Therefore, there exists a subsequence, still denoted by {#tn}, such
that

/vdu,1 - /'vdu for any v € C(Q)
where the limit mesure satisfies

supp p =

since
v(mn(t),yn(t)) - v(x(t),y(t)) uniformly on [0, 1]
Let us show the second part of the theorem. To this end, we observe that by our
assumptions the sequences {#,(-)} and { z2(") +y;2(-)} are bounded in L?(y,)

and L*(0,1), respectively, where p > 1 and a > 1.
Set B = 2ap/(p+2a—1). Since p > 1 and 2a > 1, it follows that 3 > 1 and

we verify that the sequence {1[),,(:1:,1,yn)\/z§12 + y{f} is bounded in LA(0,1). Let

p+2a-—1 « P+2a-1
m=-————— m‘'=-—-

1,1
20’ p—-1 ' m m*

From the Hoélder inequality it follows that

/ o (w030 (2200 + 0220)

<([
" (/01 (=2 0+uw) ™ " a) "

eeta) ([ ) )

1
m

o (200,9000) [ (2270 +2270) T )

1
=(/ ¢n(rmyn)
0
= 2 2|7 z
— n m x, 1 mn < Cnl M'm%
||¢ Le(y) I ™ +Un L=(0,1) ~
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The last inequality follows from our assumptions. Hence

3 o p -1
<CREM™F =CM'% <M

;2 ;2
Yn(Tn, Yn) zo" +Yn L) =

Therefore, there exists an element ¢ € LP(0,1) such that

Un(Tn,yn)/2h7 + 9% — ¢ weakly in L(0,1)
"/’n(zn: yn) V 1:;12 + yilz

<M
LA(0,1)

llollzsco,1) < liminf

and

Jrdu= [ 00,000 (5200, 1)) 2220 + 9120

- /vdu: /Olv(z(t),y(t))cp(t) dt

so that we define

p(t)
P (w(t% ?/(t)) = —m

with 9 € L'(y) and

1 1
Wi = [ [#(e).50)] o0 +v2 0t = [ el < ellsson < M
Thus

H= "/)67 € Ma,M

Conclusion. According to Theorem 2, there exists a solution to the minimization
problem

in J
pin (1)

for a class of cost functionals, e.g. J(u) = [;(u—%)?dz, u being a solution to Py (u).
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4. Optimality Conditions

We start with auxiliary results on differentiability of the shape functional

7~/gm
Yy

We assume that the function G € L'(y) may depend on the curve . We use the
same approach as in the case of a thin shell, where we consider a curve v on the
manifold. Here g is flat set.

Let a sufficiently smooth mapping F, : R® — R® be given, where s € [0, )
is a parameter, such that F, = F,|g for any s € [0,6) satisfies the assumptions of
Definition 1, i.e.

FS(Q)ZO, Fs(I):
|Fsllwr (@) < Ly, IFs w0y < Lo

Given a parametrization {z,(t),y,(t)}, t € [0, 1], of the curve ,, we write

i) = [ G = [0, (a.0).0.0) V@ + VP dt

Vs

The derivative takes the form

16 = [ {%+v6. G000 &0} VBTG

+ [ 6,5 00.0)m0 - L) a

where 7,(t) = :,’2(::)’:’_’(2“) is the unit vector tangent to v and &(t) =
s Ys
35 (@), ys (1))

Under regularity assumptions, after integration by parts, the latter integral can
be rewritten in the form

Ala(a()%@»n@)

() dt

= _/ﬂl {vgs (l's(t)ayS(t)) . (ws(t),ys(t))Ts(t) ()

+Gu (), 9.())

drs
060 b

+ 64 (219D (1) £6(1) = G, (2(0),,(0))72(0) - £:(0)
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On the other hand, we can use the material-derivative method to obtain the same
derivative j'(s). Namely, we introduce the vector field

Visaws) = (5207 @)

and assume that its support is included in a small neighbourhood O(y) of the curve
v in IR3. Furthermore, we assume that for (z,y,2) € O(y) and a sufficiently small
z € (—¢,€), € >0, the field is of the form

Vi(s,x,y)
Vis,z,y,2) = | Vi(s,z,y) | = V(s,2,9,0)
0

The shape functional we consider takes the form
J(v) = / Gdy
v
With the vector field V' we associate the mapping
T,(V) : R® - R3

In particular, under our assumptions on the support of the field V, supp V ¢ O(y),
it follows that T5(V) =TI on R*\ O(y), where I denotes the identity mapping,.

Let us define the Eulerian semiderivative
a7 V) = lim * (T () - 1))
’ s]0 8
For v, = Ts(v), s €]0,6) it follows that
7'(0%) = dJ(y; V)

and therefore, by application of the structure theorem for the shape gradient, we

obtain
1 ag
dJ(v; V) = 2
o= [ {5

+ [ 6(=0.0) T -y

+99(2(0),9(0) -£0) | VIR + @ a1
0

s§=

+6(2(1),3(0)7(17) - €01) - 6(2(0), 5(0) ) 7(0%) - £(0)

since V(s,z(t),y(t),0) = (£(2),0) for ¢ € [0,1], and the vector 7(t) € Qo, t € (0, 1),
is tangent to . If v(t) € Qp, t € (0,1), denotes the normal vector field on v, the
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equivalent form of the first integral reads

IR
:/Ol{gg; + [v6(2),u) - v(0)]e) - it }Wdt

since, by the structure theorem, the integral part of dJ(y;V) depends only on
the normal component V(0,z(t),y(t),0) - n = £(¢) - v(t), t € (0,1), of the field
V(0,z(t),y(¢),0). We write

s L (ag,
f,gd”‘/o{as

o var= [ 6(strun) o - e a

s=0

+9(s(0),3(0) - €0) } VI F 7D

s=0

(cv0) = @r,m),  (20).5(0)) = (w0,30)

Proposition 6. The shape functional J(y) = f G dvy is shape-differentiable, and the
Eulerian semiderivative takes the following form

dJ('y;V)z/Qd7+/g7'-Vd'y-f-g(zl,yl)r(xl_,yl_)-V(O,zl,yl,O)
v ¥

= G(z0,y0)7(z5 ,93) - V(0,0,%0,0)
where G denotes the material derivative of G in the direction of the vector field V.

Remark 6. In particular, for G =1 and J(y) = |y| = [, dv

dJ(7; V) =/T-DV'Td’)’
¥
We have the property

ol = ITa(y)] = / dy, = / &y, 7o =To(y)

] Y

provided that the vector field V satisfies the equation
/7" Vay+7(z7,97) - V(0,21,51,0) — 7(zd, yf) - V(0,z0,90,0) = 0
¥

Now, we are in a position to obtain the shape differentiability of solutions to the
problem P (7).
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We write £, = T5(X) and let u, € WHP(Z,) stand for the unique solution to
the following integral identity:

/ Vus~V<pdEs+/ ustpdas-l—/ usnpdas=/
3. Q Qs Q

uop dos + /
o 1 Q

for all p € W(E;), where Qf = T4(Q;), i = 0,1, 7, = Ts(7).

The integral identity is transferred to a fixed domain X, so we set u® = u 07, €
WhP(E), ¢ =vo T, !, and by the standard change of variables it follows that »° is
the unique solution of the following inegral identity:

/2<A(s)-Vu3,Vv>lR3 c12+/Q

:/ ung(s)da+/ u‘l“vw(s)da+/ vp(s)dry
QO Q1

~

'u,lgadas+/ pdys
Y=

s K]
0 1

usvw(s)da+/ uvw(s) do

0 Q

for all v € W19(Z), where the matrix A(s) and the boundary terms w(s), p(s) are
given, sufficiently smooth functions of space variables, and s € [0, §),

A(s) = det(DT)DT;* - *DT !
w(s) = ||det(DT,)* DT ! - n||g3

zl2 2
o(s) = ( <(8) +y2(t)

II?(t) +y2(t) ) 2 , (ﬂ?(t)a y(t)) €7 v =Ts(y), te (0, 1)

By application of the implicit-function theorem for solutions to the last inte-
gral identity we obtain the existence of the weak material derivative in Whr(L),
1<p<3,

N
= lim —(u® — u)
5|08

The material derivative & € W1P(T) satisfies the following integral identity:

/va-wdz +/ <A’(O)-Vu,Vv> s +/ ivdo +/ wuw'(0) do
> b R3 Qo Qo

+/ ﬂvda+/ wow'(0) do
o 0

= /Qo (710 ‘FUOWI(O)>vd0+/Ql (u'q +u1w'(0))vda +va'(0)d~y

where
A'(0) = divV(0)] — DV(0) — *DV/(0)
w'(0) = divV(0) — (DV(0) - , n) s
p(0)=7-DV(0)-r
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Finally, the weak shape derivative +' =4 —Vu-V in LP(Z), 1 <p< %, satisfies the
following integral identity:

—/ W Avde = —/w’ -V dy + (31, 3)7(55,97) - V(0,21,31,0)
z ¥

- v(wﬂayU)T(xgayg—) ) V(Oaxﬂayﬂao)
for all test functions v € W%4(%), —g—% =0on T, g—z +v=0 on 2 UQ;.

Theorem 3. A solution to the minimization problem

inf J
o ()

satisfies the first-order necessary optimality conditions

dJ(v;V)=0
for all admissible vector fields V, where
dJ(y;V) = 2/2 (u(’y) - ud)udZ + 2/2 <Vu('y) — Vg, vn>m3 s

- 2/E (V-9 (un) - ua), ¥ () ~ ) )z
+/E (‘V(u(’y) =) ]2 + }u(y) - udlz) divV ds

Remark 7. For any vector field V such that
V(@) -v=0 on ~, V(0,4)=V(0,B)=0

it follows that dJ(v;V) = 0. Therefore we obtain the following Green formula for
such fields:

0= 2/2 (u(v) - ud>Vu V(0)ds
+ 2/2 <Vu('y) - Vg, V(Vu - V(O))>1RS s
- 2/2 <*DV : V(u(’y) - ud),V(u(y) - ud> >1R3 dx

+/E (|V(u(’y) -ud)’2 + 'u(’y) —udr) divV ds

2
Remark 8. In the particular case of the cost functional I(y) = fnl (u('y) - ud) dQ,
it follows that

dI(v;V) = 2/

[ (s —uau vy aa
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