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DISCRETE-TIME AND CONTINUOUS-TIME
GENERALISED PREDICTIVE CONTROLLERS
WITH ANTICIPATED FILTRATION: TUNING RULES

Zpzisi.aw KOWALCZUK*, ProTrR SUCHOMSKI*
ANDRZE] MARCINCZYK*

A general class of control algorithms based on the generalised predictive control
(GPC) strategy with anticipated filtering (AF) of the control error is considered
in both the discrete- and continuous-time domains. It is shown that in the
discrete-time settings, under certain conditions, a solution of the AF-GPC de-
sign always exists and the design leads to stable control systems with definite
closed-loop characteristics. The plant cancellation issue is taken into account.
Conditions for the existence of the solution of the GPC design and the corre-
sponding rules of tuning of the resulting controller are given. A suitable iterative
procedure for a simultaneous determination of the AF-GPC design parameters
(the control horizon and the order of plant cancellation, as well as the con-
troller gain) and a root locus interpretation of the design are also supplied. The
continuous-time predictive control (CGPC) has properties similar to those of
the discrete-time GPC strategy. It is shown that the idea of using the anti-
cipated filtering approach to the GPC design can also be effectively applied in
the continuous-time restatement. Rules for tuning the CGPC controller, which
are based on parameters of a system rate of reaction, identified by a starting
phase of system step response, are given and shown to be practically effective.
With the anticipated filtering, applied in both the discrete- and continuous-time
frameworks, the excitation of the closed-loop system is suitably abated by per-
forming a moderating filtration in the anticipated-time domain. The pertinence
of the anticipated filtering lies in shaping the closed-loop characteristics of the
control system, reducing the disagreeable control effort and, consequently, based
on a certain balance obtained in the cost function, in making the A-tuning more
practicable. The proposed tuning rules are validated via simulation experiments.

1. Introduction

The development and research of identification and control procedures, including
those for adaptive control systems, in the discrete-time domain took considerable
attention in the literature (see e.g. Clark et al., 1987a; 1987b; Clark and Mohtadi,
1987: Favier, 1987; Gorez et al., 1987; Kowalczuk, 1992a). The general predictive
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control (GPC) strategy, discussed in this paper, that uses a multi-step cost function
has superior robustness in comparison with some other control methods (such as the
GMYV, the pole-placement, etc.). Therefore, the GPC strategy is a good candidate
for modern control system design procedures. The purpose of additional filtration
of the control error, which was originally proposed for the GPC design in (Clark
et al., 1987a; 1987b; Clark and Mohtadi, 1987; Demircioglu and Gawthrop, 1991), is
to abate the excitation of the closed-loop system. The filtration is performed in an
anticipation-time domain and is referred to as the anticipated filtering (AF).

This approach has recently been exercised in (Kowalczuk and Suchomski, 1995a;
1995b), where it has been shown that with the AF approach, under certain conditions
including the cancellation issue, the solution to the GPC design always exists and
the design leads to stable control systems with a definite closed-loop characteristics.
Moreover, it has been demonstrated that some bounds on the GPC design parameters
have to be taken into account. The effectiveness of this approach stems from the
possibility of using an iterative procedure, which has been proposed for solution to
the problem of determining some design parameters (the control horizons and the
order of plant cancellation) and the controller gain itself.

There are, however, a number of hindrances connected to the discrete-time ap-
proach to design. The loss of information on the relative order of the process, the
residual delay, the choice of the sampling time and the non-minimum phase property,
as well as the effects of roots clustering and the resulting system parameter sensitivity
can be enumerated here.

The above factors have had a considerable impact on the recently observed
restoration of interest in the continuous-time approach to the design of digital control
systems, where the fundamental design is carried out in the continuous-time domain
prior to digital mechanisation (Kowalczuk, 1991, 1993, 1994).

A continuous-time version of the general predictive control, referred to as the
CGPC (Demircioglu and Gawthrop, 1991), seems to be worth of consideration for
adaptive purposes. It has properties similar to those of the discrete-time GPC strategy
and can be suitable for stable, unstable, minimum and non-minimum phase systems.

An important feature of that approach both in the discrete- and continuous-time
domains is that the anticipated filtering makes it possible to reduce the disagreeable
control effort associated with GPC and to make the A-tuning more practicable.

2. The Discrete-Time AF-GPC Design Principles
We consider the following CARIMA model of a linear system:
Alg)y(n) = B(g™ Ju(n) + A7 C(g7")e(n) 1)

where n is the discrete-time index, {u(n)} and {y(n)} are the input and output
of the controlled system, {e(n)} is a zero-mean white-noise disturbance, ¢g=! is the
backward shift operator, A =1 — ¢! is the difference operator, and

Alg)=1+ag7 +- +an,g V4 (2)
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Clg™Y) =big™t + - +bynyg " (3)
A(q—l)=1+clq_1+--~-9_-c1ch_NC 4)

and a cost function of the form

Ny Ny
J:E{Z [y(n—!—i)—w(n-}-i)r+A2Au(n+i-1)2} (5)
=N, i=1

where {w(n)} denotes the reference sequence, Ny and N, are the bottom and top
of the observation horizon, respectively, Ny is the control horizon, A > 0 is a control
weighting factor, and E is the expectation operator conditioned on data up to time n.
To facilitate further discussion, let us also introduce an auxiliary notion of the effective
observation horizon Ny = N — N; + 1. The optimal, in the minimum variance sense,
i-step ahead predictor of y is given by (Clark and Mohtadi, 1987; Favier, 1987)

F(n +1) = Hi(g H)Au(n +i— 1)+ §(n+i|n) (6)
where 3(n +i|n) satisfies the following equation:
ClgMi(n+i|n) = Gi(g Hy(n) + Ei(g~")Au(n —1) (7)

The polynomials H;, G; and E; can be obtained from the Diophantine equations
(Clark and Mohtadi, 1987; Favier, 1987; Gorez et al., 1987)

(g™ = A HFlg™) + a7 Cila™) (8)

Fi(g™M)B(¢") =C(g)Hi(g™) + ¢ Bi(g™) (9)
where

Al =04A@™), Bla")=4Bld™)

deg Ei(¢™") = max(Np —2,No — 1), degFi(¢™}) =i—1

degGi(¢™') = Na, degHi(¢g')=1i—1

Note that for discrete-time models of continuous-time systems without a transporta-
tion delay we have deg F;(¢™*) = N4 — 2.

Assuming that Au(n +i—1) = 0 for ¢ > Ny, where Ny denotes a control
horizon, one obtains (Clark et al., 1987a; 1987b; Clark and Mohtadsi, 1987) the optimal
incremental control Au(n) that minimises (5)

Au(n) = K (w(n) - §(n)) (10)

K=(HTH+)'H” (11)
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where Au(n) € RV, K € RVv*No ay(n) € RV, G(n) € RMo, H € RNoxNu and

Au(n) = [Au(n) -+ Au(n + Ny — 1)]T
w(n) = [w(n + Ny) oo wn+ Ng)]T (12)

T
§(n) = [Jn+ Ny |n) - §n+ Ny |n)]

hvi—1 hny—2 - hy,—Ny
hy hAny—1 - hy,—N +1
H=| & T (13)
hn,—1 hn,—2 -+ hn,—ny

with h; =0 for j < 0.

Let k € RM be a column vector formed of the first row of K

k' = [kl e sz—N1+1} (14)
Then the GPC control law is given by the formula
Aufn) = k* (w(n) - §(n)) (15)

Note that only the first element of all Ny elements of Au(n) is used as the
control input. That means that a relative range of realization of the control sequence
is RRR=1/Ny.

Assuming that the future set point is known, i.e. w(n + 1) = w(n) for { =
1,2,..., we define a reference signal, resulting from anticipated filtering (Kowalczuk
and Suchomski, 1995a; 1995b)

w*(n+14) = r; (w(n) - y(n)) (16)

where 7;, ¢+ = 1,2,... are the coefficients of the step response of the filter used in
anticipation. The above reference signal goes from the current output y(n) to w(n)
as illustrated in Fig. 1.

Now the objective of the design is to drive the predicted output to the reference

signal w*(n +1), 1 =1,2,.... Consider therefore the modified cost function
Nz 9 NU
J:E{ > [y*(n—i—i) ——w*(n+i)] +AD Au(n+i— 1)2} (17)
=Ny i=1

where y*(n +1) = y(n + i) — y(n). Minimisation of the above criterion yields the
following control action:

Aufn) = k" (w*(n) - 7"(n)) (18)
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Fig. 1. Anticipation of the set point signal‘in discrete- and continuous-time.
where the vectors
wt () = (w(m) ~ 9(a)r = () ~ym) [ 7]
§() = [0+ Malm) —(w) - Fn + Nafm) —y(m)|

are from RM Ny =N, — N; +1.
By virtue of (7) it can be shown that the incremental control law (18) can be
expressed by

ClaH)Au(n) = gC(g™) () ~ y()) - Lg™)du(n) - M(g™y(n)  (20)

(19)

where
No
9= Z kit Ny +i-1 (21)
Lgh=q" 2 kiBny+i-1(a7) (22)
No
=Y k(Gmsia@™) - 0la™)) (23)

and degL(q™!) = max(Np — 1, Ng), degM(q™!) = max(Na, N¢).
From (20) it follows that the closed-loop characteristic polynomial D(qg71) of
the resulting GPC control system shown in Fig. 2 is given by

D(g™) = A(g™1)C(¢7t) +9B(g™H)C(¢ ™)

+A(gYL(g™) + B(g Mg (24)
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Fig. 2. The GPC system structure.
Finally, by virtue of (8) and (9)
D(¢™") =C(¢7")D(g™?) (25)
where
Dg") = A7) - ¢ Ag™Y) + ¢"B(¢™")
No Ny—N;+1
F=9-Y k= > kilrmtio1—1) (26)
=1 =1

Ny
Aq™) = 3o k(A Hwima (™) - Blg™)) g4

Note that because C(g™!) is assumed to be stable, the closed loop system is stable
if and only if D(¢™!) is stable.

3. Parameter Properties and Tuning of the AF-GPC Controller

For A =0 two cases, distinguished in the following two Theorems (1 and 2), will be
considered. The first case concerns relatively prime polynomials A\(q_l) and B(g™1)
and the other treats those polynomials, which have a common factor.

Note that an interesting relationship between A\(q_l) and B(g™') of (9) and
{h«}, which is the sequence of the Markov parameters of the open-loop system

B(g~")/A(g™"), can be demonstrated by introducing a double infinite lower-triangular
Toeplitz matrix, in which H of (13) is included as a submatrix

[ b | [ 1]
ba hg 0 0 -.. ay
: hi hy O :
bNy = hy hi hy .- AN 441 (1)
0 0
L J L .
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It has been shown (Kowalczuk and Suchomski, 1995a; 1995b) that the antici-
pated filtering approach to the GPC design leads to stable control systems with a
desired corresponding closed-loop pole placement (for A = 0) and that under certain
conditions the solution (11) always exists. The main results, summarised in the form
of two theorems, are given and discussed below (see Appendix A for the derivation).

Theorem 1. If A(g™!) and B(q™') are relatively prime and one of the following
set of conditions

(C1) No >Ny + Ny —1 (c1) N> Ny + Ny -1

(C2" N; > Np or (02”) N; = Np
(C3") Ny=Ns+1 (C3"M) Ny>Ng+1

is satisfied, then H has full column rank (rank H = Ny), the solution (11) exists,
and the closed-loop characteristic polynomial D(q™!) is determined by

D(¢™') =C(¢™)D(g™) (28)
D(g™)=1+g¢"B(¢™") (29)

Remarks:

1. Note that the stability of the closed-loop control system can be regulated via the
anticipated filter and that in the special case of r; = 1, i = Np,..., N2 in (26)
the characteristic polynomial D(qg™!) is completely determined by the observer
polynomial C(g~!)

D) =C(q") (30)

2. Setting N; to the value of the plant delay (k) does not guarantee solvability of the
design problem (11) and (28)—(29) because Theorem 1 states that for this purpose
(with A = 0) it is sufficient that N; is not less than the order of the numerator Np.
Thus it can be interesting to notice that—by using this suggestion—we simply
reject the first Np — k nonzero samples. Consequently, we can interpret

N1=NB

the lowest number of the samples in the output sequence that carry the most “es-
sential information” necessary for the design solution, as an information boundary.

3. With reference to the first set of triple condition C1’ it is now evident that in
order to assure the main result of Theorem 1 one has to set

Ny=Nsg+1

Note that in the case of a parsimonious choice of N; = Np (see the second triple
— C1") the upper bound does not exist.
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Fig. 3. The control horizon (Ny) and the observation (No, N1, N2) horizons.

4. Conditions C1' and C1” are identical and equivalent to the relation
Ny < Ny

according to which that the effective observation horizon Ny = Ny —N;+1 should
not be shorter than the assumed length Ny (on the prediction time axis) of the
designed control sequence Awu(t) (see eqns. (10)~(12) and Fig. 3). It is clear from
the above relation that conditions C3’' and C3" lead to a bilateral restriction on
Ny

NA+1SNUSNQ=N2—N1+1

Since rank H = Ny, matrix H is Ny x Ny and Ny is the critical parameter
sought after. From the above restriction it also results that the GPC observation
horizon is limited as well

Nog>Ny+1

5. Note that Ny = Ny + 1 fulfils both the C3 conditions at the same time. Hence
N; > N can be accepted as a general restriction C2.

6. Having in mind both the design parsimony (with respect to Ny and Ny) and the
maintenance of the “essential information” (N1), one can propose two parsimo-
nious (P and S) ways of selecting the observation and control horizons based on
the orders of the plant transfer function N4 and N B:

(Pl) Nl =NB (Sl) N] :NB+1
(P2) Ny =Ny + Np or (S2) No=Ng+ Ng+1
(P3) NU:NA+1 (83) Ny=Ny4+1

With both the tuning settings given above the effective observation horizon is

N0:N2—N1+1:NA+1=NU
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Conditions C’ and the suboptimal tuning set (S) play a key role in the derivation
of a numerical design support (the CD-HAG algorithm presented in the sequel).

Let us assume now that
A(g™") = Ao HA(e™) (31)
B(g™") = Bo(g" " )A¢ ™) - (32)

where Ag(g~') and By(g~!) are relatively prime, and A(g™!) with degA(q™!) =
N, > 0, denotes the greatest common divisor of A(¢~!) and B(g~!), which will
be referred to as the cancellation order. Note that the Markov parameters of
B(q1)/A(¢™") are identical to the Markov parameters of Bo(g™)/Ao(g™"), where

Bo(q™1) = ¢Bo(g ). Therefore from (25)—(26) it follows that the closed-loop chara-
cteristic polynomial D(g~!) has now the form

D(gH)y=C(gHAe™) (Eo(q‘l) —q M Ao(gh) + g*Bo(q“l)) (33)

where

No
Ao(g™") =) ki (A\o(q‘l)HNlJr,-,l(q—l) - Eo(q"l)) gNiti=1

=1

Theorem 2. If A(g™') and B(g~') are not relatively prime and one of the two
following triple conditions:

(Cll) No >Ny +Ny—-1 (Cl”) Ny >Ny +Ny—1
(02,) N1 Z NB -—NA or (C2”) N1 = NB - NA
(C3l) Ny=Ny—Ny+1 (C3”) Ny>Ng—Np+1

is satisfied, then H has full column rank (rank H = Ny), the solution (11) erists,
and the closed-loop characteristic polynomial is

D(g™") = Clg")A(g™)Dala™) (34)
Da(¢™") =1+g"Bo(g™) (35)
Remarks:
1. Note that this time for r; = 1, i = Ny,..., N2 in (26) the characteristic polyno-
mial D(¢™!) is partly determined by the observer polynomial C(g~!)
D(g™!) =Cla™ A (36)

This means that the closed-loop system will be stable for all stabilisable systems
of (1).
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2. While designing with another choice of = from (19), in fundamental stability con-
siderations, the locations of the zeros of the factor Dy (¢') have to be analysed.
To this end the idea of root loci can be applied to show that for sufficiently small
absolute values of g* the polynomial Dj(g~!) will always be stable. In Fig. 4
the root locus plot is given for a second-order system (Kowalczuk and Suchomski,
1995a; 1995b) controlled by GPC defined by N; =3, N; = 8 and Ny =3, and

T
k = [1.4288 —0.1471 —0.7960 —0.6664 — 0.0175 0.8649]

L(g7') = 04754¢7", M(q™') = 1.3578 — 2.0235¢™ + 0.6657¢~2
r=[r11111)F

z-plane

g* = -0.6667
r=0.5334

/

g*=0
r=1

gr=2
r=72.3998 (dead beat)

Fig. 4. Root loci of a control system (g* = k1 (r — 1)).

3. A relative stability indez (cf. (26)) can be evaluated as

*

g _q,_90B
g g

(= (37)

where

No
gpB =Y ki
=1

4. The conditions of Theorem 2 are analogous to those of Theorem 1, provided that
the orders of the numerator (Np) and denominator (N,) of the plant transfer
function are reduced by the cancellation order. In other words, the parameters
(i.e. the “effective orders”) of a minimal realisation of the plant should be used:
In Theorem 2 the equivalent restriction concerning the knowledge of the cancel:
lation order () is used explicitly. This is especially inconvenient in the case of
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condition C2", which imposes the necessity of precise knowledge of the effective
order of the numerator

N% = Np — Na

5. Since condition C3' has been chosen (Kowalczuk and Suchomski, 1995a) as the
upper bound on Ny, the first set of conditions C' seems to be a convenient basis
for choosing the design parameters. Consequently, with reference to Remark 6
given after Theorem 1, it is the suboptimal tuning procedure (S), resulting in the
same observation horizon N, and the same order of the controller, that should
be preferred.

6. There is a practical problem with the determination of the cancellation order
N,. Note that cancellation can take place in the controlled plant or be induced
by an overparametrised model used in identification of the plant. Because the
cancellation order diminishes the bound on Ny it can be evaluated via detection
of the upper bound of Ny that guarantees nonsingularity on H TH.

An iterative algorithm for concurrent determination of the control horizon Ny
and gain K (CD-HAG), derived in Appendix B for A = 0, is described in the
following procedure.

Procedure (CD-HAG)

Starting with ¢ =0, Po = I, and having h; = [hAn,—i - hy,-i)T asthe i-th column
of H, the upper bound on Ny can be obtained from the conditions of termination
of the procedure that follows:

niy1 = Pihiy

Ininl3 = nlyynip  (terminate if il =0)
”;++1 = “ni+1“2—2”?+1
Piy1 = H:—hi+1 (38)

+
nig

Hf —p,. . ,nt '
Hf, = [ i TP . for the first run (i = 0) use H = nf
Py =P —ngnf,
Remarks:

1. For practical reasons, the condition [[ni41]|3 < € should be monitored, where ¢ is
a small computer-dependent value used for detecting zero (and linear dependence).

9. Observe that if for some i rank-H; = i, then H} = (HT H;)"'H (Boullion
and Odell, 1971). Thus, setting Ny = ¢ yields the corresponding solution K
of (11) for A =0.
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3. After termination of the procedure CD-HAG, index i has a maximum allowable
value tgax and rank H; = 45,,. Hence, putting H = H; and Ny = NU,max =
Tmax, W€ have

H" = (H"H)'HT
and the sought solution for K.

4. Consequently, for an arbitrarily assumed value of N, the cancellation order can
simply be calculated based on the detected maximum value of Ny (see also C3’
in Theorem 2):

Np=Njs—Ny+1 (39)

5. It is interesting to note that by using this procedure we have found that the
parameter Ny is an equivalent of the effective system order

Ny=Nj+1, where NY=N,— Ny (40)

6. It is clear from Theorem 2 that the second set of conditions (C1") does not lead
to analogous results, since the parameter Ny can be of arbitrarily large value.

Simulated Performance. The basic form of the plant under examination is given by
the following minimal model with relatively prime polynomials A(g~') and B(g~!)

A(g™) = (1-0.67032¢1)(1 — 0.76593¢)(1 — 0.81873¢™ 1)
B(g™") = 0.0028689(1 + 0.21523¢™1)(1 + 3.01224¢™1)g™*
Clg™Y) = (1+0.9¢71) [(1 +0.63639¢~1)2 + (0.63639q—1)2]

According to the first parsimonious rule of selecting the observation and control hori-
zons (P1-P3), the design settings are as follows:

A=0, Ny=Np=3, Ny=N4+Np=6, Ny=Ns+1=4
and
TNy =T, TNi41=--=7N, =1, r=ry, €[08, 1]
The resulting discrete-time control and output signals corresponding to a unit
step excitation w(n) are demonstrated in Figs. 5(a) and 5(b), respectively. It is clear

that the desired effect of reduction of control effort is obtained at the cost of a slight
deterioration of transient of the controlled process.
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Fig. 5. The GPC system performance for different AF: (a) control signals,
(b) step responses.

4. The Continuous-Time GPC Design Principles

In the derivation of the continuous-time generalised predictive controller CGPC
(Demircioglu and Gawthrop, 1991) the following aggregated plant model is consi-
dered:

B(s) C(s)
a7t A

Y(s) = V(s) (41)

This model covers non-minimum phase objects and unstable objects without dis-
turbances (V(s) = 0). For a disturbed unstable plant model another structural
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output-error (OE) plant model is necessary

v (s) = 208) (—]’;’%’%U(s){L CO(S)V(S)) (42)

from which we have
A(s) = By(s)C1(s)D1(s)
B(s) = C1(s)Bo(s)Do(s)
C(s) = Bu(s)Co(s)Do(s)

In the aggregated plant models, C(s) must be stable, while in the OE plant
models all the polynomials, except for By(s) and D;(s), must be stable to assure
the stability of the regulator (Kowalczuk and Marciiiczyk, 1995a; 1995b).

The CGPC regulator design (Demircioglu and Gawthrop, 1991) is based on the
model (41), which can be characterised by the model order N, and the relative model
order p

Na =deg A(s) (43)
p=Ns—Np, where Np = degB(s) (44)
and on calculation of the first &k derivatives of the model output signal function

s*B(s) skC(s)

=0y VO )

V(s) (45)

The output prediction can then be calculated from

“(44T) = Zyk (46)
which can be expressed in the matrix form
V't+T)=Tyn,Hu+Ty,Y° (47)
Y7(s) =Tn, HSrU(s) + Tw, YO(s) (48)
where
GSg FSp
Ys) = U(s Y(s 49
()= G U + G ) (49)
0 0 0 0 T
YO [6®) 800 - 1% ()] (50)

w=[ut) w) - 'u,NU(t)]T : | (51)
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T2 TNY
Ty, =[1 T 5 Ny!] (52)
T
Sy = [1 s % e sN"] (53)
Na—2]T
SG = {1 S 52 - oghAT :| (54)
T
Srp= [1 s §* ... sN"_l] (55)
R 0 0
h} h} 0
H = Ny —p Ny—p Ny —p Ny —p (56)
hy hy ho by
YR WY
9 R a2
9% o 9h
G = 0 1 Nyp—2 (57)
%Y g o gnis
f(()] f]? f]Q/A—l
F= & fll fIIVA—l (58)
N N N
L fo Y il fNX—1

where Ny < Ny — p, and fF, gF and h¥ are the coefficients of polynomials Fy(s),

Gr(s) and Hi(s), respectively, which results from polynomial division

skC(s) _ Fr(s)
A - PO 40
Ey(s)B(s) _ Gr(s)
Tow IrEy

Consider now the following cost function:

() = /:2 [+ 7) ~wi(e+ T)]2 aT + A /OTTTI [ ¢ + 7)) ar

(59)

(60)
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where w?(t+7T) is a reference trajectory obtained by the anticipated filtration whose
purpose is to protect against excessive control actions and overshoots. This idea is
identical to the one used in the discrete-time domain, which has been explained in
Fig. 1. Note that y*(t +T) and w}(t +T) are now respectively the output and
reference trajectory related to y(t)

wi(t+T) = wi(tT) = Fy [w(t + T) - y(t)] = Frr[w(t) - y(t)]

or
i) = o {1 2040} -
and
Yt +T)=y"(t+T)—y(t) (63)

Note that the inverse Laplace transform results in the T-time domain. Consequently,
(49) can be replaced by

G'Sg F'Sp

Y2 = Zry VO + Gy Y ) (64)
where

Yo=[0 i) - y%fy(t)]T (65)

G’=diag[0 11 ]G (66)

F’=diag[0 11 ]F (67)

Since the reference trajectory can be approximated by the Maclaurin series ex-
pansion

NY i i, o
Wt +T) = Frfu®) -y » 3 T THR | =Tww (@)
=0 =
where Ty, is defined in (52) and

w=r [w(t) - y(t)] (69)

TI[TQ Ty - TNY]T (70)

Bu(s) S, i

Rals) ~ Zns (71)

=0
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the cost function becomes (see(61))
T2

J(t) = / (Tny Hu + Ty, Y'* — Ty, w)?dT
T
To—-T1 T
+ A /0 u T, TnyuwdT (72)
and its minimisation results in (51) given by
w=Kw-Y") (73)
K=(H'TyH + \Ty) *H Ty (74)
10 0 0 T
v =[0 50 - 18 O] (75)
Ty
Ty = T, T ny dT (76)
T
Ts ——T1
Ty = /0 T%, Tny dT (77)
T2 TNU
TNU—{I T o .]\7_[]'] (78)

Note that simply implementable is the control signal defined as the first element of u
in (73)

u(t):[l 00 --~]K(w—Y’0) (79)

Hence the CGPC formula (similar to Fig. 2 if one sets L := Gp(s) and M := Fy(s))
becomes

uis) = o[W) - Y ()] - S - V(o) (50)
where

g=[1 00 ---]Kr (81)

§0=[1 00 -~]KG’SG (82)

Fy = [1 00 - ]KF’SF (®3)

The effect of the s-transform of the reference trajectory (see (62)) is reduced here
to a single scalar gain coefficient g (see (21), (26), and (81)). Therefore, a simple
anticipated filter characterised by a time constant r will be sufficient for generation
of the reference trajectory:

R.(s) 1
Ry(s)  rms+1

(84)
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5. Tuning of the AF-CGPC Controller

The values of the preliminary design parameters (Ny, Ny, Ti, Ts, r and A) that
have to be determined for the algorithm are extremely critical for the closed-loop
CGPC system behaviour and therefore the way of tuning is of great importance.
While yielding unstable control systems, the approximate tuning indications given by
Demircioglu and Gawthrop (1991) apparently do not work in many practical cases.

By examining the problem, it can easily be established that the classically recog-
nised step response and its dominant time constant cannot serve as a rational basis
for the determination of the design time-parameters, including their time scale. At
the same time, these parameters can be effectively derived based on an initial phase
of the system step response.

The origins of the proposed tuning rules can be found in a simple claim that from
the prediction viewpoint the most substantial characteristics of the controlled object
is its ability to follow the command signal in an open-loop operation. Namely, it is
important to know when and how the value of the controlled variable will acquire the
value of the controlling variable. Consequently, the top of the prediction horizon Ty
can be determined by the time of the value replication (approximately “1-to-1”) and
the bottom of the prediction horizon 77 can be found as an approximate delay-time.

To illustrate the basic tuning principles, let us consider an exemplary plant model
with undamped modes

A(s) = s(s? +1)

1
C(s)=0.2s2+5s+1

The initial phase of a step response of such a plant is given in Fig. 6. Note that this
part of the step responses of objects of other types, including non-minimum phase
'y

1] 2 o e /

¥

/

Q t
- L
1.1 2.1
Fig. 6. System step response and parameters PRR.
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and unstable ones, can be parametrised in a similar manner, provided that the ob-
ject has a positive gain, an integral property, and that the non-minimum phase and
unstable properties are not overly dominant.

PRR Tuning Principles. In view of observations of many simulation runs for
plant models of different types, the tuning principles based on the Parameters of the
Reaction Rate (PRR) can be stated as follows:

1. Ty — corresponding to = 20% of the height of the input step function,

T, — corresponding to = 120% of the height of the input step function,

r =T, - Ti,

Ny =Nag+ N +1,

Ny =min{N¢, 2Np + 1}, where N¢ = degC(s), and

6. A€ [0.0005, 0.05] (e.g. A =0.01).

AN

If there is a lack of the integral property in the object model, the above principles
cannot be used and in the closed-loop system the steady-state error is bound to
appear. To circumvent this problem, it is recommended to attach an integral part at
the input of the plant — and to modify accordingly the plant model.

Note that the value of the output order Ny = N4 + Np + 1 is in accordance
with its discrete-time equivalent Ny = N4+ Np+1 of the suboptimal tuning set (S)
given in Remark 6 after Theorem 1.

Simulated Performance. In the simulation study, a programming package for
simulation of analogue and digital control systems has been used (Kowalczuk, 1992b;
Kowalczuk and Marcifczyk, 1995a). Different types of aggregated plant models, in-
cluding unstable and non-minimum-phase ones, with the preliminary design parame-
ters set according to the PRR tuning principles have been tested (Kowalczuk and
Marcinczyk, 1995b) successfully. In the study, the weighting coefficient A has been
set t0 0.01. For the model (85) represented in Fig. 6 the tuning parameters have been
set as follows:

Ty=11, Tpo=21, r=1, Ny=4, Ny=1 (86)
The correspponding simulation run of the CGPC system is shown in Fig. 7.

In order to characterise the quality of the step response of the CGPC systems,
the following performance indices have been used:

o ISE — the integral of squared error,

e ISC ~ the integral of squared control,

o Ty — 5% regulation time,

e MACS - max absolute value of control signal, and

. 1_1( ISE_ISC_ Ty MACS)
4 \ISEprr ISCprr Tsuprr MACSprr
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4 w()

\ X

u()

Fig. 7. Simulation run for CGPC control.

Index I is a global index composed of the four basic indices which are normalised
with respect to their ‘optimal’ values that have been obtained during simulation runs
with the CGPC regulators designed using the preliminary design parameters, set
according to the PRR tuning principles. The results of a sensitivity study are shown
in Fig. 8(a)-8(c), where the vertical dashed lines are used to mark the proposed
values of the design parameters under consideration. Note also that the global index
I manifests its minimum close to an optimal value that takes into account all of the
component indices (ISE, ISC, Tsy, MACS).

It can easily be seen that the proposed PRR tuning method minimises in practice
the global cost function I with a certain stability margin. Note that for the plant
model under consideration the chosen value of the parameter 75 is placed inside a
sharply outlined and confined stability region, in the plot using a logarithmic scale
(Fig. 8(b)). With a linear scale the I function would have a rectangular shape.
Therefore, it can be concluded that the value of T, obtained via the PRR method
practically minimises the global cost function I. Analogous efects have also been
obtained with respect to other parameters and for other types of plant models.

Thus the PRR method has been succesfully verified by simulation of the
continuous-time control loops with continuous-time objects of different types with

respect to the stability and minimum-phase properties (Kowalczuk and Marcificzyk,
1995b).

6. Conclusions

It is known that designs based on the dead-beat approach lead to an excessive control
action, which can in many cases result in a very limited practical range of A and
some sensitivity problems. It has been shown that within the discrete-time approach
the anticipated filtering can have a desired effect on the closed-loop behaviour of
the controlled plant in terms of pole placement and that an appropriate design of
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10-
] Tsy,
MACS
1SC
14 ISE -
Y|
0.1 T T T T T T —
0 0.4 0.8 12 16 2
(a)

Fig. 8. Performance indices versus the PRR parameters: (a) T1, (b) Tz, (c)r.
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the anticipated filter can reduce the disagreeable control effort leading to a certain
balance in the cost function.

Another problem of practical importance is to provide the user with a set of
tuning rules. The proposed iterative algorithm for the simultaneous determination
of the control horizon Ny, the matrix controller gain K, and the cancellation order
are in line with this requirement. The tools developed make it possible to apply the
algorithm along with an identification procedure using models with an overestimated
order and, at the same time, to design a regulator of reduced order.

The results concerning the continuous-time approach show that the proposed
tuning principles, based on the controlled system’s dynamics, outcome in stable
closed loop CGPC systems for all the preliminary design parameters (time constants:
Ty, T, r). Moreover, the principles lead to approximately optimally tuned regulator.
Namely, it is shown that the method minimises in practice the global cost function I
with a certain stability margin. More examples of the continuous-time results are
given in (Kowalczuk and Marciriczyk, 1995b).

It is thus clear that the CGPC algorithm has properties similar to those of the
GPC and can be used for unstable and non-minimum-phase object models. The
algorithm can also be equipped with anticipated filtration, which can produce a salu-
tary effect on the control loop in terms of the closed loop system characteristics, the
regulation overshoot and the control effort.

The nice discrete-time tuning rules have been analytically obtained due to the
assumption that XA is equal to zero. There are, however, no restrictions as to using
non-zero A in (11) and (74) after the determination of the tuning design parameters
(see also the continuous-time example). Nevertheless, one has to keep in mind that the
effect of the anticipated filter is similar to the effect of A # 0. On the other hand, since
without the AF mechanism the value of X necessary to practise the cost functions (5)
and (17) or (61) can appear to be extremely small, and in effect unimplementable,
in fact, it is the anticipated filtration that makes the A-tuning practicable and thus
allows for a further improvement of the GPC control that is originally attributed to .

The idea of application of the simplest anticipation filter results from the math-
ematical characteristics of the design in both the disctete-time and continuous-time
domains that consists in reducing the effect of the AF filter to a scalar gain coeffi-
cient g. This fact, supported also by experience, leads to a conclusion that it is
sufficient to apply a single parameter r tuning the AF filter (or, equivalently, the
outer loop gain g).

Within both the discrete- and continuous-time developments, a constant setpoint
is considered, but, principally, this implicitly takes place only in the anticipated time
domains. On the other hand, there are no stringent restrictions imposed on the input
signal, and it is apparent that the discussed design solution can also be used for a
tracking problem. Note that the unit step function applied in the simulation study
is considered in industry as one of the most severe types of excitation signals.
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Appendices

A. Derivation of Theorem 1

1. Note that assuming A = 0, Ny > N; + Ny — 1 and rank H = Ny, we have
K =(HTH)"'HT and KH = I, where I € R"v*Nv is the identity matrix.
Thus the entries of kT H can be expressed as

N Nitl { 1 for k=1

kihay pipo1 = Al
; M1 7 0 for k=2,...,Ny (A1)

2. By using (26), (27) and N; > Np, the polynomial A(g™') can be written down

as
Algh) =Y v’ (A2)
j=0
where
Na—j+1
vy = Z ak+]"rk, j=0,...,NA
k=1
and

Ny
Tk:ZkihN1+i—k—la k=1,...,Ns+1
i=1

3. If Ny > Na+1, then from steps 1 and 2 it results that v; = @41, 7=0,...,Ny
and

Na .
Alg™h) =) 8197 (A3)
=0
with
Ag) -g " A(gT) =1
4. Hence it may be concluded that for relatively prime A\(q‘l) and B(g™!), Ny >

N; + Ny — 1, rankH = Ny, Ny > Np, and Ny > Na+1, the closed-loop
characteristic polynomial D(q™!) is determined by (25) with

DYy =1+¢"B(¢™") (A4)

5. Now, we shall assume that N, > N; + Ny — 1, N1 > N, and Ny = Ng +1
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6.

10.

2.

From (13) and (27) it follows that
1. by —Ny -1
H &.1 = —aNa+1 th._NU (A5)
an, hNy—Ny—1

. If the polynomials .Z(q‘l) and B(g™!) are not relatively prime, then the right-

hand side of (A5) is zero. This means that the matrix H cannot have full rank.
Hence, by using contradiction, we can claim that if H has full column rank,
then the polynomials A(g™!) and B(g~!) are relatively prime.

. It results from (A5) that if rank H < N4 + 1, then there must be a reduced-

order system having the same Markov parameters as the original system (1). This
means that there exists a polynomial different from A\(q‘l) of a lower order that
fulfils the “matching” relation similar to (A5). This means that, by contradiction,
we have proved that if the polynomials A(¢g~') and B(q~!) are relatively prime,
then the matrix H has full column rank.

. Accordingly augmenting the considerations of steps 5-8 (to the “restricted” case

of Ny > N4+1 and to a “complementary” case of N; = Np,and Ny > Ng+1)
and using a similar judgement, we can show that if (N > N1+Ny—-1, N; > Np
and Ny <Ng+1)or (N> N1+ Ny—~1, Ny =Np and Ny > Ny + 1), then
H has full column rank if and only if A(g~!) and B(q™!) are relatively prime.

Combining steps 4 and 9 together results in Theorem 1, and reconsidering the
whole discussion for the cancellation case proves Theorem 2.

. Derivation of Algorithm CD-HAG

. Taking into account solvability of the design problem with X\ = 0, as it results

from Theorem 2 and its first set of conditions C1'-C3', where Ny > N; + N4
and Ny > Np > Np — Np (see also Remark 4), there always exists an upper
bound on Ny:

Ny < Ng—Ny+1 (B1)

Note that this bound establishes the largest value of the controller parameter Ny
necessary to assure the claim corresponding to the claim of step 9 from Ap-
pendix A. This means that the cancellation order diminishes appropriately the
bound on Ny.

Let the matrix H;yq, ¢=1,2,... be partitioned as follows:

Hio = [Hi hip (B2)
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where H; € RVoxi h; € RV, and (with hy =0 for k < 0)

hyny—1 hny—2 - hy—i hn,—i
hn,  hwn—1 0 hv-it hny—i
H; = . T T and = T
hn,—1 hn,—2 -+ hNy—i h,—s

3. First, consider the projection I — H;H} on R(H;)*, where H} e R*™o
denotes the Moore-Penrose pseudo inverse of H; and R(H ;) denotes the
orthogonal complement of the range of H;. Let us assume that, for some 1,
hi+1 belongs to the null space of I — H;H:

hi+1 € N(I - HZHj—)
Hence H;H[ hiy1 = hit1 and hip € R(H;). Consecutively,
rank [Hi hit1 ] =rank H; (B3)

4. Now we may recall the common rule of computing the pseudo inverse of parti-
tioned matrices (Boullion and Odell, 1971)

+ Hf — Hfhipinf,
[Hl hi+1j| = + +1 (B4)
i

where n;y; € RMo is defined as follows:
niy1 = (I — HiH )hip

5 Let P; = I — H;H} such that P; € R¥oxNo. Note that assuming that
niy1 7 0, we obtain the recursive solution
Mty

Py =P, — (B5)

T .
LORRRLEED
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