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SPREADABILITY AND SPRAY ACTUATORS

SAMIRA EL YACOUBI*, ABDELEAQ EL JAI*
JamiLa KARRAKCHOU**

Spreadability of distributed systems has been recently introduced (El Jai and
Kassara, 1994; El Jai et al., 1995). The aim of this paper is to Propose a new ap-
proach to spreadability based on considering actuators as generators of spread-
ability. This approach is related to ecological and environmental problems,
like vegetation dynamics, where the actuators are assumed to be governed by
a transport equation while the system is described by a diffusion model.

1. Introduction

Nowadays man’s activity perturbs significantly the evolution of our planet. Among
the effects of these disturbances one can enumerate the reduction of vegetable areas.
Consequently, it is essential to create adequate models which describe this evolution
and to predict, for example, what areas will be vegetated in the future. Wide literature
is focused on this problem, see (El Jai et al., 1995) and the references therein. Most
of the models have origins in empirical biogeographical approaches. This is the case
of Budyko models (Budyko, 1971; Monserud, 1993), Gap models (Shugart, 1984;
Watt, 1947) or cellular automata (Colasanti and Grime, 1993). The spreadability
approach (El Jai and Kassara, 1994) is innovative in this field because it is based on
finding a distributed-parameter system which describes, on certain time and space
scales, a growing area which satisfies a given property. This paper is motivated by
the following principle. As the vegetation generates more vegetation, this suggests
that one should consider a vegetable area as the support of an actuator (El Jai and
Pritchard, 1988). Moreover, based on what ecologists suggest (Solomon and Shugart,
1993), this support is assumed to be embedded in a global diffusion system.

In the next section, we recall some basic results on spreadability. In Section 3,
we define spray actuators extending the results of (El Jai and Pritchard, 1988). Sec-
tion 4 is then focused on modelling the actuator support by a transport model which
excites a global diffusion system. Finally, an application in the one-dimensional case
is detailed. The results are also illustrated with a one-dimensional example.
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2. Preliminaries

Let (S) be a given distributed system defined on an open bounded domain QCR.
Its initial state yo is assumed to be known in a given subregion wp C 2. The state
of the system will be denoted by y(z,t,y0), where z € Q and t € I = 10, T are
respectively the space and time variables. Let p be a given profile in the state space
L?(). We consider the family of sets

we={z €0 y(a,t,yo) =p(x)} o

which are closed if we assume that y and p are real-valued and continuous. At the
initial time ¢t = 0, we have wy = {z € Q| y(z,0,50) = p(z)}.

Definition 1. The system (S) is said to be p-spreadable from wg in the time interval
I if the family {w;}ier is increasing, i.e.

wr Cws if s>t (2)

In particular, if p =0, then the system is said to be null-spreadable.

Spreadability has also been considered from another point of view, by considering
the growth of the areas of (w;) (Bernoussi, 1998). We are also tempted to connect
the spreadability to the viability of dynamical systems as developed in (Aubin, 1991).
All these ideas seem, in some sense, realistic as regards spreadable environmental
systems, but at this moment they do not actually lead to significant results.

Remark 1. The notion of p-spreadability is closely linked to the choice of the initial
state yo. For that purpose, if we consider the map ¢; defined by

$1: (yO‘; t) € Lz(ﬂ) X ]U’T[ - y("t>y0) € L2(Q) (3>

which is continuous with respect to yo, where y is the solution of the system (S)
and the map 2 is such that

gy €IX(Q) — {z € | y(@) =p@)} € P(O) 0

P(Q) holding for the parts of £, then 3 o ¢1(yo,t) = w;, where w; is given by (1).
The system (S) is p-spreadable if o 0¢; is an increasing function with respect to ¢.

Remark 2. We can easily show that, with the change of variables z = y — p, the p-
spreadability of a system (S,) with the state y is equivalent to the null-spreadability
of the corresponding system (S,) with the state z.
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3. Spray Actuators

El Jai and Pritchard (1988) defined various types of actuators in distributed-
parameter systems. They showed how important are the choices of actuators which
achieve certain concepts in systems analysis. In (El Jai et al., 1995) these definitions
were extended to the case of regional analysis. In both the works an actuator is de-
fined by the couple (D, g), where D defines the support of the actuator and g isa
spatial distribution on the support. In this section, we extend these definitions by
considering the distribution g as a given function in the whole domain 2, while the
support D is expanding in time.

Definition 2. A spray (or ezpanding) actuator is defined by any couple ((we), 9),
where:

e (wi)e>o is a family of closed sets defined by:

h: PO x [0,1] — PO
(wat) — Wi

such that

{ h{w,0) = wp

h(w,s) D h(w,t) if s>t

(wt) being the support of this moving actuator.

® g is a spatial distribution, g € L*(Q), such that V¢ € [0,1] the couple (we, 9)
is an actuator in the common sense (El Jai and Pritchard, 1988).

Remark 3. In some particular situations, we can have wy = {b} (i.e. the action
starts from a point b or, more generally, from a set B such that meas (B) = 0).
In this case there are some difficulties regarding the transition of the spreadability
from b to a nonempty subdomain w;. For more details, see (El Yacoubi and El Jai,
1992), where it is shown that a pointwise actuator can be considered as a limit of
zone actuators by considering suitable spatial distributions.

Remark 4. We can also consider the notion of an absorbing actuator when the
map h in (6) satisfies h(w,t) D h(w,s) for all ¢ < s.

The term spray actuator is motivated by the notion of spray control introduced
in (El Jai et al., 1997). In this paper, the authors define the spray control as a control
which yields the spreadability of a system.
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Fig. 1. Expanding actuator supports.

4. Study of the Model

Let © be an open bounded set in R* and (S) be a distributed system whose state
satisfies a given spatial property on a subregion w; at time ¢ (w; C ). For example,
in ecology we can consider w; as an expanding vegetation area. From a mathematical
point of view, we may cut w; and consider the system (S) only on the residual domain
0\ w;. But, when referring to the above example, it is precisely from w; that the
expanding property will be generated. Thus the system will vanish if w; is split
out of the domain. This leads us to considering w; as an actuator support which
grows in time. Inspired by vegetation dynamics problems and various considerations
of ecologists, we explore the situation where the system is of the diffusion type and is
excited by a moving actuator which is subjected to transport dynamics. The model
is then governed by two systems:

1. A diffusion system defined on € and excited by a control u € L?(0,T) via
moving actuator whose support is (w:), wy C §;

2. A transport system which describes the evolution of the support (ws).

This description is suggested in various papers on ecological modelling where the
vegetation dynamics is assumed to be of diffusion type and the growing vegetation
area is of transport type (Solomon and Shugart, 1993). Finally, we are not concerned
here with the choice of the control u which may be considered as given in L*(0,T).

4.1. System of Distributed Equations

The system can be seen as a diffusion process defined on §2 and excited by one source
located in w; (wo is given at the initial time ¢ = 0) and described by the parabolic
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equation
% = oAy + Xy, u(t) on 2x]0,T
(5) y(z,0) = yo on (7)
y(-,t) =0 on 90 x]0,T

where X, denotes the characteristic function w; and ]0,77[ is a time interval. The
system (7) is excited by the actuator ((w¢),1) (El Jai and Pritchard, 1988) to be
regarded in the sequel as a spray actuator. We consider the following hypothesis:

(o yeD(-ad) = HX(Q) N HL(Q),

e ue L?(0,7) is given,

(H1)S o {weteso CQ with a boundary I', parameterized by
Ty ={(z,t) €2 x]0,T[| z = a(t)}

( with a € C*(0,T), a(t) € Q2 Vt€]0,T][.

On these assumptions the system (S) has a unique solution depending on the
family (we)ser, where (w;) signifies the support of the moving actuator defined by (5)
and such that the solution of the advection system described by

%% +vVf=0 on Qr
F)Y 16.0=f  onw ®)
fe. =0 on 10, 7]
where ‘
QTZ{(x,t)EQx]O,THxth} )

allows for an expansion of the supports (w;). Figure 2 shows, in the one-dimensional
case, what the domain Q7 is in case (w¢) are increasing.

Moreover, we consider the following hypothesis:
[ v denotes a velocity field v € V C R?,
*S_={(z,v,t) €I x Vx]0,T[| z €T and v - v(z) < 0}
where v(z) is the outward normal to w; at = € T,
« feD(~v-V) = {f € I*(V; I*(Qr)) |
v Vf € IA(V;L2(Qr)), fis =0},
( ® fo € L*(wo) with fo = yolu,-

(H2) ¢
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7

0 1

Fig. 2. Subset Qr in the one-dimensional case with increasing (we).

Remark 5. In (8) the boundary condition means that, for every ¢ € ]0,7[, w is
a bounded domain, w; C © C R™, which is surrounded by a total absorber in such
a manner that nothing enters w; from the outside.

Note that the advection equation (8) is defined on a moving domain Q7. General
situations for this class of equations are developed in (Bardos, 1970) where we can
consider a time-varying operator given by

At = g‘ +v- \Y%
which generates a strongly continuous semi-group under a convenient hypothesis and
then the problem (P) has a unique solution in L?(V x L*(Qr)). In this paper,
inspired by the results of (Conrad et al., 1990), we consider the above problem as
a free-boundary one in which the bounda.ry is parameterized by a function a which
satisfies the differential equation

(Pz){ a'(t) = H(a(t),f(a(t),t)) in 10,7

ag) = 0o

(10)

where H € C%1(2 x R) may be unknown.

For the moving boundary problem, we consider a variable change which trans-
forms the domain Q7 into a fixed domain denoted by Qr. Accordingly, the problems
(Pl) and (P) are transformed into the problems defined in Qr which are denoted

y (P,) and (P,), respectively. In the next section, we show that the problem (By)
has a unique solution in the case of one-dimensional systems.

Remark 6. Note that the boundary may be defined by a more general equation of
the form

I = {(m,t) €Ox10,T[| ¢(z,t) = D}
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4.2. One-Dimensional Case

In the one-dimensional case, we set Q =]0,1[, wy = [ag,bo] with ap < by and
w = [a(t),b(t)] C Q for all ¢ €]0,7[. The system (S) becomes then

2
%:a%%mwm)mqupﬂ
9 9(z,0) = wo in 10, 1]
y(0,t) =y(L,)=0  in ]0,T]
where the support of the actuator (w;) may be connected or not. For v € V = [—1,1],
the problem (P;) can be rewritten as follows:
of  of . .
( N + ’U&- =0 in Qr
f(0) = fo in wy
(Pr) 4

fla(t),t) =0 ifv>0
F(bt),t) =0 ifv<o0

\

with Q7 = {(z,t) €]0,1[x]0,T[| a(t) < = < b(t)}. In this case, T; = {a(t),b(t)}
and

(11)

E_:{ {(a(®),v,t)} fv>0

{(6(t),v,0)} if v<oO

The boundary variation is governed by

w){mmzh@mJ@mJU,am:%
v =i(0.700.0). 20 =k

4.2.1. Solution of the System (P;)

At first, it is convenient to reformulate the problem (P1) in order to work on a fixed
one-dimensional domain. Thus we make the change of variables
z — a(t)

setting

f(rt) = f(z,t) (13)
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So the problem is now defined on the fixed domain Q7 =10,1[ x ]0,T[ and denoted
by (Py):

%+FMQg=Oin@~

(pl)ﬁ F(r,0) = fo(r) in ]0,1]
Ffo,H =0 if v>0 in ]0,T]
| f(L,1) =0 if ¥<0 in ]0,T7]

On account of (13), we have

r(b'(t) —a'(t)) —v+a'(t)

PO = =30 @

and

fo(r) = fo(ao +r(bo — ao)) (15)

Thus the free-boundary problem links the above relation with the problem

” { 0 = h(aft), f
() = 5 (b(t), £

and we have the following result:

i

0,8)), a(0) = ao
19

t)), b(0) =bo

Proposition 1. Assume that h and j are suitable functions in C%'((0,1) x R)
satisfying the inequalities h(0,-) <0 and j(1,-) > 0 (in order to ensure the growth
of the family (wi)i>0) and let 0 < ag <bg <1 and fo € L?(0,1). Then there exists

a unique solution to the problems (Py) and (P:) given by the pair (f;(a,b)), where

e (a,b) € C(0,T) x C*(0,T), with 0 < a < b < 1 on ]0,T[ and (a,b) is
a solution to (Pa),

e f is a unique solution to a linear advection system with a variable velocity
fleld F.

Proof. Tt is based on the study of the maps T and T defined by the following
scheme:

1. First, we consider a function w given on ]0,7'[ and solve the initial-value prob-
lem
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2. 'We solve the problem (Pl) which arises as a linear advection system with a vari-
able velocity field F' given by (14). In (Bardos, 1970; Dautray and Lions, 1988)
it is shown that the solution f is a constant function along the characteristic
graph described by the equation

{ £ = F(¢,1)

€0 =1 1)

Then we have df(£(t),t)/6t = 0.
3. Finally, we set, for ¢ €10, 7],

(Tiw)(®) = £(0,8), (Tw)(t) = £(1,¢)

By the compactness arguments, this shows that the maps 71 and T, are strict
contractions when they are defined on suitable spaces so that the problems (P1) and
(P2) have a unique solution in ]0,7[. For more details, see (Seidman, 1987). [

In (Conrad et al, 1990) it is stated that the pair (f, (a,b)) € L*Qr) x
(CI(O,T))2 is a solution to the problems (P1) and (P,) on ]0,T] if the pair
(£, (a,b)) is a solution to the problems (P;) and (P).

For simplicity, we can consider, in examples, the functions A and J independent

of £(0,) and f (1,-). Then we obtain an explicit solution to the problem (P)) as

follows. Consider the restriction of f to the characteristic graph C defined by the
differential equation

dR

R(0)=r

With f(R(t),t) = const, if R(t) € C, we have

df (R(t), 1) _0fdR(t)  of _

ot or dt ot 0

Then we obtain the first equation of (131) if we replace dR(t)/dt by F(r,t) and set

flrt) = G(®) folr) (18)
where {G(t)}t>0 denotes the semi-group generated by the operator
7]
A=—F(r, t)ﬁ (19)

and given by
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Solving the differential equation, we easily obtain

_ vt —a(t) +ag +7(bo — ao)

R(t) = b — al) (21)
Now, let us introduce the time ¢t* defined by
t* = sup {t €]0,T[| R(s) €]0,1] for 0 <s < t} (22)
Then the solution f to the problem (P,) is given by
A fo[vt—a(t)+ao+r(b0—a0)} £t
f(r,t) = b(t) — a(t) (23)

0 if > ¢
Notice that R(t) € ]0,1[ is equivalent to ag + R(t)(bo — ao) € wo and, based on (15),
we can write

vt — a(t) + ao + 7(bg — ao)
b(t) — a(t)
0 if >t

R fo [ao +

f(r’ t) _ (bg - ao)jl if ¢t<t*

(24)

From the above result, (12), (13) and the fact that fo = yo in wo, we obtain the
solution to the problem (P;) in the form

f

Yo|ao +(bo — ao)
y (z — a(t)) (bo — ao) + (vt —a(t) + ao) (b(t) — a(t))
f(z,t) = 4 (a(t) — a(t))2 (25)
if ¢t <t*
L 0 if ¢t >t

Proposition 1 and the underlying assumptions force that the couple (([a(t),b(t)]),1)
is a spray actuator for the system (Si). '

4.2.2. Spreadability and Actuators

In this section, we give a result related to the null-spreadability of the system (.S;)
taken in conjunction with the actuator choice.

Proposition 2. The actuator (([a(t),b(t)]), 1), where the couple (a,b) given by (By)
defines the function f in (25), is a spray actuator for the system (S1).

Proof. Assume that yo =0 in wp. Then

wo = {.7: €10,1[ | yo(z) = 0}
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From (25) we deduce that

wy = {z €10,1[] f(z,t) = o}

Moreover, the functions a and b are constructed in such a manner that the family
(wi) = ([a(t),b(t)]) satisfies w; C w, when s > t. Therefore the transport system
(P1) is null-spreadable and then the system (Si1) is spreadable via the spray actuator
((wy), D). [

4.2.3. Simulation

Consider the one-dimensional case with € = 10,1, T=2,p=0 (null-spreadability).
The diffusion system (S1) is considered with & = 1 while the transport model is
considered with v = 1. The boundary conditions are homogeneous and of Dirichlet
type. The initial state is given by

0 in Wo

C(#0) in w

Yo =

The simulations are performed using a finite-difference method. The system is ex-
cited continuously in time via an actuator whose support is described by a transport
equation. Figure 3 shows the evolution of the (wt)’s and one can see how the state
is spread over Q2. The initial subdomain wy = [0.35,0.65] is centred and we can see
the increasing supports (w;) of the spray actuator in the central part of the domain.
The lateral zones coincide with the null-spreadability derived from the Dirichlet ho-
mogeneous boundary conditions. We can notice that, at time ¢ ~ 0.5, the property
Is spread over the whole domain Q =10, 1.

Fig. 3. Evolution of the growing actuator supports ws.
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5. Conclusion

This work essentially deals with a possible connection between spreadability and ac-
tuators. It comes from realistic assumptions to consider the spreadability zones as
actuator supports (a spray actuator). We have considered the case of a diffusion sys-
tem excited by an actuator whose support is to expand over the space domain. In
the case of one-dimensional systems, inspired by free-boundary techniques, we have
developed a simple way for making the actuator support expanding with a trans-
port dynamics. The results may be applied to the case of two-dimensional systems,
but one has to be more careful as regards the choice of the dynamics of the support
boundary (problem (P:)). An illustrative example has been given via a very heavy
and difficult simulation. A possible extension of this approach may concern the case
of other dynamics or a link which can be made with the choice of the control u.
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