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FINITE-DIMENSIONAL CONTROL OF NONLINEAR

PARABOLIC PDE SYSTEMS WITH TIME-DEPENDENT

SPATIAL DOMAINS USING EMPIRICAL

EIGENFUNCTIONS

Antonios ARMAOU∗, Panagiotis D. CHRISTOFIDES∗

This article presents a methodology for the synthesis of finite-dimensional non-
linear output feedback controllers for nonlinear parabolic partial differential
equation (PDE) systems with time-dependent spatial domains. Initially, the
nonlinear parabolic PDE system is expressed with respect to an appropriate
time-invariant spatial coordinate, and a representative (with respect to differ-
ent initial conditions and input perturbations) ensemble of solutions of the re-
sulting time-varying PDE system is constructed by computing and solving a
high-order discretization of the PDE. Then, the Karhunen-Loève expansion is
directly applied to the ensemble of solutions to derive a small set of empirical
eigenfunctions (dominant spatial patterns) that capture almost all the energy of
the ensemble of solutions. The empirical eigenfunctions are subsequently used
as basis functions within a Galerkin model reduction framework to derive low-
order ordinary differential equation (ODE) systems that accurately describe the
dominant dynamics of the PDE system. The ODE systems are subsequently
used for the synthesis of nonlinear output feedback controllers using geometric
control methods. The proposed control method is used to stabilize an unstable
steady-state of a diffusion-reaction process with nonlinearities, spatially-varying
coefficients and time-dependent spatial domain, and is shown to lead to the con-
struction of accurate low-order models and the synthesis of low-order controllers.
The performance of the low-order models and controllers is successfully tested
through computer simulations.

Keywords: Karhunen-Loève expansion, Galerkin’s method, nonlinear control,

diffusion-reaction processes with moving boundaries

1. Introduction

There is a large number of industrial control problems which involve highly nonlinear
transport-reaction processes with moving boundaries, such as crystal growth, metal
casting, gas-solid reaction systems and coatings. In these processes, nonlinear behavior
typically arises from complex reaction mechanisms and their Arrhenius dependence
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on the temperature, while the motion of boundaries is usually a result of a phase
change, such as a chemical reaction, mass and heat transfer, and melting or solidifica-
tion. The mathematical models of transport-reaction processes with moving bound-
aries are usually obtained from the dynamic conservation equations and consist of
nonlinear parabolic partial differential equations (PDEs) with time-dependent spatial
domains. Research on control of linear/quasi-linear parabolic PDEs has been exten-
sive in the past and has mainly focused on systems with fixed spatial domains (see, for
example, the review papers (Balas, 1982; Lasiecka, 1995) and the book (Christofides,
2001) for discussion and references). The main feature of parabolic PDE systems is
that the eigenspectrum of the spatial differential operator can be partitioned into a
finite-dimensional slow one and an infinite-dimensional stable fast complement (Fried-
man, 1976). This implies that the dominant dynamic behavior of such systems can
be approximately described by finite-dimensional systems. Therefore, the standard
approach to the control of linear/quasi-linear parabolic PDE systems (e.g., Balas,
1979; Chen and Chang, 1992) involves the application of standard Galerkin’s method
to the parabolic PDE system to derive ordinary differential equation (ODE) systems
that accurately describe the dominant dynamics of the PDE system, which are sub-
sequently used as the basis for controller synthesis.
Unfortunately, the developed control methods for quasi-linear parabolic PDE

systems cannot be directly employed for the design of low-dimensional controllers for
systems that include nonlinear spatial differential operators. The reason is that, in
general, the eigenvalue problem of nonlinear spatial differential operators cannot be
solved analytically, and thus, it is difficult to choose a priori (without having any
information about the solution of the system) an optimal (in the sense that it will
lead to a low-dimensional ODE system) basis to expand the solution of the PDE
system. An approximate way to address this problem (Ray, 1981) is to linearize the
nonlinear spatial differential operator around a steady state and address the con-
troller design problem on the basis of the resulting quasi-linear system. However,
this approach is only valid in a small neighborhood of the steady state where the
linearization takes place. An alternative approach which is not based on lineariza-
tion is to utilize detailed finite difference/element simulations of the PDE system to
compute a set of empirical eigenfunctions (dominant spatial patterns) of the system
through Karhunen-Loève expansion (also known as proper orthogonal decomposition
and principal component analysis), using the method of snapshots (Sirovich, 1987).
The use of empirical eigenfunctions as basis functions in Galerkin’s method has been
shown to lead to the derivation of accurate nonlinear low-dimensional approximations
of several dissipative PDE systems arising in the modeling of diffusion-reaction pro-
cesses and fluid flows (Bangia et al., 1997; Park and Cho, 1996). Recently, empirical
eigenfunctions were computed using K-L expansion for PDE systems whose solutions
contain traveling structures by exploiting symmetry (Rowley and Marsden, 2000). In
the area of control, linear feedback controllers were synthesized in (Shvartsman and
Kevrekidis, 1998; Theodoropoulou et al., 1999) for specific diffusion-reaction systems
on the basis of low-dimensional models obtained using empirical eigenfunctions as ba-
sis functions in Galerkin’s method, and a method for the design of nonlinear output
feedback controllers for nonlinear parabolic PDE systems was developed in (Baker and
Christofides, 2000) by combining Galerkin’s method with empirical eigenfunctions.
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Despite the recent progress on nonlinear control of parabolic PDE systems with
fixed spatial domains, few results are available on control and estimation of parabolic
PDE systems with time-dependent spatial domains. In this area, important contri-
butions include work on the synthesis of linear optimal controllers (e.g., Wang, 1967;
1990), as well as the synthesis of nonlinear distributed state estimators using stochas-
tic methods in (Ray and Seinfeld, 1975), and the design of nonlinear and robust
controllers on the basis of finite-dimensional models obtained using a combination
of Galerkin’s method with approximate inertial manifolds (Armaou and Christofides,
1999; 2001).

The objective of this paper is to present a methodology for the synthesis of
finite-dimensional nonlinear output feedback controllers for nonlinear parabolic PDE
systems with time-dependent spatial domains. Initially, the nonlinear parabolic PDE
system is expressed with respect to an appropriate time-invariant spatial coordinate
and a representative (with respect to different initial conditions and input perturba-
tions) ensemble of solutions of the resulting time-varying PDE system is constructed
by computing and solving a high-order discretization of the PDE. Then, Karhunen-
Loève expansion is directly applied to the ensemble of solutions to derive a small
set of empirical eigenfunctions (dominant spatial patterns) that capture almost all
the energy of the ensemble of solutions. The empirical eigenfunctions are subsequent-
ly used as basis functions within a Galerkin model reduction framework to derive
low-order ODE systems that accurately describe the dominant dynamics of the PDE
system. The ODE systems are subsequently used for the synthesis of nonlinear output
feedback controllers using geometric control methods. The proposed control method
is used to stabilize an unstable steady-state of a diffusion-reaction process with non-
linearities, spatially-varying coefficients and time-dependent spatial domain, and is
shown to lead to the construction of accurate low-order models and the synthesis
of low-order controllers. The performance of the low-order models and controllers is
successfully tested through computer simulations.

2. Nonlinear Parabolic PDE Systems with Moving Domains

2.1. Description of PDE Systems

We consider nonlinear parabolic PDE systems in one spatial dimension with the
following state space description:

∂x̄

∂t
= L(x̄) + wb(z, t)u+ f(t, x̄),

yci =

∫ l(t)

0

ci(z, t)kx̄ dz, i = 1, . . . , l, (1)

ymκ =

∫ l(t)

0

sκ(z, t)ωx̄ dz, κ = 1, . . . , q,
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subject to the boundary conditions

C1x̄(0, t) +D1
∂x̄

∂z
(0, t) = R1,

C2x̄
(

l(t), t
)

+D2
∂x̄

∂z

(

l(t), t
)

= R2,

(2)

and the initial condition

x̄(z, 0) = x̄0(z), (3)

where the rate of change of the length of the domain, l(t), is governed by the following
ordinary differential equation:

dl

dt
= G

(

t, l,

∫ l(t)

0

ā

(

z, t, l, x̄,
∂x̄

∂z

)

dz

)

, (4)

where x̄(z, t) = [x̄1(z, t) · · · x̄n(z, t)]
T denotes the vector of state variables, [0, l(t)] ⊂

�
is the domain of definition of the process, z ∈ [0, l(t)] is the spatial coordinate,

t ∈ [0,∞) is the time, u = [u1 u2 · · · ul]
T ∈

� l denotes the vector of manipulated
inputs, yci ∈

�
denotes the i-th controlled output, and ymκ ∈

�
denotes the κ-th

measured output. L(x̄) is a nonlinear differential operator which involves first- and

second-order spatial derivatives, f(t, x̄), G(t, l,
∫ l(t)

0 ā(z, t, l, x̄, ∂x̄∂z ) dz) are nonlinear

vector functions, ā(z, t, l, x̄, ∂x̄∂z ) is a nonlinear scalar function, k, w, ω are constant
vectors, A,B,C1, D1, C2, D2 are constant matrices, R1, R2 are column vectors, and
x̄0(z) is the initial condition.

b(z, t) is a known smooth vector function of (z, t) of the form b(z, t) =
[b1(z, t) b2(z, t) · · · bl(z, t)], where bi(z, t) describes how the control action ui(t)
is distributed in the interval [0, l(t)] (e.g., point/distributed actuation), ci(z, t) is
a known smooth function of (z, t) which is determined by the desired performance
specifications in the interval [0, l(t)] (e.g., regulation of the entire temperature profile
of a crystal or regulation of the temperature at a specific point), and sκ(z, t) is a
known smooth function of (z, t) which is determined by the location and type of
the κ-th measurement sensor (e.g., point/distributed sensing). In the case of point
actuation (i.e., where the control action enters the system at a single point z0, with
z0 ∈ [0, l(t)]), the function bi(z, t) is taken to be nonzero in a finite spatial interval of
the form [z0−ε, z0+ε], where ε is a small positive real number, and zero elsewhere in
[0, l(t)]. We note that in contrast to the case of parabolic PDE systems defined on a
fixed spatial domain, we allow the actuator, performance specification and measure-
ment sensor functions to depend explicitly on time (i.e., moving control actuators and
objectives, and measurement sensors). The value of using moving control actuators
and sensors in applications with time-dependent domains was illustrated in (Armaou
and Christofides, 2001). Throughout the paper, we will use the order of magnitude
notation O(ε) (i.e., δ(ε) = O(ε) if there exist positive real numbers k1 and k2 such
that |δ(ε)| ≤ k1|ε|, ∀ |ε| < k2). In order to simplify the notation of this manuscript,
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we assume that l(t) is a known and smooth function of time. Specifically, our as-
sumptions on the properties of l(t) are precisely stated below:

Assumption 1. l(t) is a known smooth (i.e., l̇ exists and is bounded, ∀ t ∈ [0,∞))
function of time which satisfies l(t) ∈ (0, lmax], ∀ t ∈ [0,∞), where lmax denotes the
maximum length of the spatial domain.

Finally, throughout the paper, we assume that the nonlinear parabolic PDE
systems under consideration, with and without feedback control, possess a unique
solution which is also sufficiently smooth (i.e., all the spatial and temporal derivatives
in the PDEs are smooth functions of space and time); the reader may refer to the books
(Curtain and Zwart, 1995; Pazy, 1983) for techniques and results for studying the
mathematically delicate questions of existence, uniqueness and regularity of solutions
for various classes of PDE systems. In addition, we focus our attention on nonlinear
parabolic PDE systems for which the manipulated inputs, measured and controlled
outputs are bounded. From a practical point of view, this means that we do not deal
with control problems that involve boundary actuation, measurements and control
objectives, even though several problems of this kind can be addressed by the proposed
method. Linear infinite dimensional systems with unbounded manipulated inputs,
measurements and control objectives have been studied extensively (see, for example,
(Curtain, 1982; van Keulen, 1993)).

2.2. Formulation of the Parabolic PDE System in Hilbert Space

We formulate the system of eqns. (1)–(3) in a Hilbert space H(t) consisting of n-
dimensional vector functions defined on [0, l(t)] that satisfy the boundary conditions
of eqn. (2), with inner product and norm

(ω1, ω2) =

∫ l(t)

0

(

ω1(z), ω2(z)
) �

n dz,

‖ω1‖2 = (ω1, ω1)
1
2 ,

(5)

where ω1, ω2 are two elements of H(t) and the notation (·, ·)
�

n denotes the standard
inner product in

� n . To this end, we define the state function x on H(t) as

x(t) = x̄(z, t), t > 0, z ∈
[

0, l(t)
]

, (6)

the time-varying operator

L(t, x) = L(x̄) +
l̇

l(t)
z
∂x̄

∂z
,

x ∈ D(L) =

{

x ∈ H(t) : C1x̄(0, t) +D1
∂x̄

∂z
(0, t) = R1,

C2x̄(l(t), t) +D2
∂x̄

∂z

(

l(t), t
)

= R2

}

,

(7)
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and the input, controlled output and measurement operators as

B(t)u = wb(t)u, C(t)x =
(

c(t), kx
)

, S(t)x =
(

s(t), ωx
)

, (8)

where c(t) = [c1(t) c2(t) · · · cl(t)]
T and s(t) = [s1(t) s2(t) · · · sq(t)]

T , and ci(t) ∈
H(t), sκ(t) ∈ H(t). The system of eqns. (1)–(3) can then be written as

ẋ = L(t, x) + B(t)u+ f(t, x), x(0) = x0,

yc = C(t)x, ym = S(t)x,
(9)

where f(t, x(t)) = f(t, x̄(z, t)) and x0 = x̄0(z). We assume that the nonlinear term
f(t, x) satisfies f(t, 0) = 0 and is also locally Lipschitz continuous uniformly in t,
i.e., there exist positive real numbers a0,K0 such that for any x1, x2 ∈ H(t) that
satisfy max{‖x1‖2, ‖x2‖2} ≤ a0, we have

‖f(t, x1)− f(t, x2)‖2 ≤ K0‖x1 − x2‖2, ∀ t ∈ [0,∞). (10)

Remark 1. In the formulation of the PDE system of eqns. (1)–(3) in H(t), the time-

varying term l̇(t)
l(t)z

∂x̄
∂z in the expression of L(t, x) (eqn. (7)) accounts for convective

transport owing to the motion of the domain. This term was not present in the
expression of the differential operator in the case of parabolic PDE systems with
fixed spatial domains (where l̇(t) ≡ 0), and makes L(t, x) an explicit function of
time.

2.3. Methodology for Model Reduction and Control

The main obstacles in developing a general model reduction method for systems of
the form of eqn. (1) are: (a) the spatial differential operator is nonlinear, and (b)
the domain of definition of the process is generally time-varying. These issues do not
allow the computation of analytic expressions for the eigenvalues and eigenfunctions
of the spatial differential operator of the system, and thus, they prohibit the direct
use of Galerkin’s methods or orthogonal collocation methods with the eigenfunctions
as basis functions to derive finite-dimensional approximations of the PDE system.

To overcome the above problems, we employ the following methodology for the
derivation of finite-dimensional approximations and the synthesis of low-dimensional
nonlinear output feedback controllers for systems of the form of eqn. (1):

1. Initially, the nonlinear parabolic PDE system is expressed with respect to an
appropriate time-invariant spatial coordinate, and a representative (with respect
to different initial conditions and input perturbations) ensemble of solutions of
the resulting time-varying PDE system is constructed either by computing and
solving a high-order discretization of the PDE, or alternatively, using available
process data (see Remark 5).
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2. Then, Karhunen-Loève expansion (and in particular the method of snapshots
(Sirovich, 1987)) is directly applied to the ensemble of solutions to derive a small
set of empirical eigenfunctions (dominant spatial patterns) that capture almost
all the energy of the ensemble of solutions.

3. The empirical eigenfunctions are subsequently used as basis functions within a
Galerkin’s model reduction framework to derive low-order ODE systems that
accurately describe the dominant dynamics of the PDE system.

4. These ODE systems are used as a basis for the synthesis of low dimensional
nonlinear controllers, which use on-line measurements of process outputs to
stabilize the closed-loop infinite-dimensional system and force its outputs to
follow their respective set-points.

3. Order Reduction

3.1. Computation of Empirical Eigenfunctions

In this section, we review the K-L expansion in the context of nonlinear one-
dimensional parabolic PDE systems of the form of eqn. (1) with n = 1 (see (Fuku-
naga, 1990; Holmes et al., 1996) for a general presentation and analysis of the K-L
expansion). Introducing the time-invariant spatial coordinate ζ = z/l(t), the system
of eqns. (1)–(3) can be written in the following form:

∂x̄

∂t
= L(x̄) +

l̇

l(t)
ζ
∂x̄

∂ζ
+ wb(ζ, t)u + f(t, x̄),

yci = l(t)

∫ 1

0

ci(ζ, t)kx̄ dζ, i = 1, . . . , l,

ymκ = l(t)

∫ 1

0

sκ(ζ, t)ωx̄ dζ, κ = 1, . . . , q,

(11)

with boundary conditions

C1x̄(0, t) +
D1
l(t)

∂x̄

∂ζ
(0, t) = R1,

C2x̄(1, t) +
D2
l(t)

∂x̄

∂ζ
(1, t) = R2

(12)

and the initial condition

x̄(ζ, 0) = x̄0
(

ζl(t)
)

. (13)

We assume that the solution of the system of eqn. (11) is known and consider a
sufficiently large set (called ensemble), {x̄κ}, consisting of N sampled states, x̄κ(ζ)
(typically called “snapshots”) of the solution of eqn. (1). To simplify our presentation,
we assume uniform in time sampling of x̄κ(ζ), (i.e., the time interval between any
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two successive sampled states is the same), while we define the ensemble average of

snapshots as 〈x̄κ〉 := (1/N)
∑N
κ=1x̄κ(ζ) (we note that non-uniform sampling of the

snapshots and weighted ensemble average can be also considered; see, for example,
(Graham and Kevrekidis, 1996)). Furthermore, the ensemble average of snapshots
〈x̄κ〉 is subtracted out from the snapshots, i.e.,

xκ = x̄κ − 〈x̄κ〉, (14)

so that only fluctuations are analyzed. The issue is how to obtain the most typical
or characteristic structure φ(ζ) among these snapshots {xκ}. Mathematically, this
problem can be posed as the one of obtaining a function φ(ζ) that maximizes the
following objective function:

Maximize
〈(φ, xκ)

2〉

(φ, φ)
,

s.t. (φ, φ) = 1, φ ∈ L2
(

[0, 1]
)

.

(15)

The constraint (φ, φ) = 1 is imposed to ensure that the function φ(ζ), computed as
a solution to the above maximization problem, is unique. The Lagrangian functional
corresponding to this constrained optimization problem is

L̄ =
〈

(φ, xκ)
2
〉

− λ
(

(φ, φ) − 1
)

(16)

and a necessary condition for extrema is that the functional derivative vanishes for
all variations φ+ δψ ∈ L2[0, 1], where δ is a real number:

dL̄(φ + δψ)

dδ

∣

∣

∣

∣

δ=0

= 0, (φ, φ) = 1. (17)

Using the definitions of inner product and ensemble average, dL̄(φ+δψ)dδ

∣

∣

∣

δ=0
can be

computed as follows:

dL̄(φ+ δψ)

dδ

∣

∣

∣

∣

δ=0

=
d

dδ

[〈

(xκ, φ+ δψ)(φ+ δψ, xκ)
〉

− λ(φ+ δψ, φ+ δψ)
]

δ=0

= 2Re
[〈

(xκ, ψ)(φ, xκ)
〉

− λ(φ, ψ)
]

=

〈
∫ 1

0

ψ(ζ)xκ(ζ) dζ

∫ 1

0

φ(ξ)xκ(ξ) dξ

〉

− λ

∫ 1

0

φ(ξ)ψ(ξ) dξ

=

∫ 1

0

∫ 1

0

〈

xκ(ζ)xκ(ξ)
〉

φ(ζ) dζψ(ξ) dξ −

∫ 1

0

λφ(ξ)ψ(ξ) dξ. (18)

Since ψ(ξ) is an arbitrary function, the necessary conditions for optimality take
the form

∫ 1

0

〈

xκ(ζ)xκ(ξ)
〉

φ(ζ) dζ = λφ(ξ), (φ, φ) = 1. (19)
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Introducing the two-point correlation function:

K(ζ, ξ) :=
〈

xκ(ζ)xκ(ξ)
〉

=
1

N

N
∑

κ=1

xκ(ζ)xκ(ξ) (20)

and the linear operator:

R :=

∫ 1

0

K(ζ, ξ) dξ, (21)

the optimality condition of eqn. (19) reduces to the following eigenvalue problem of
the integral equation:

Rφ = λφ =⇒

∫ 1

0

K(ζ, ξ)φ(ξ) dξ = λφ(ζ). (22)

The computation of the solution to the above integral eigenvalue problem is, in
general, a very computationally expensive task. To circumvent this problem, Sirovich
introduced in 1987 (Sirovich, 1987) the method of snapshots. The central idea of this
technique is to assume that the required eigenfunction, φ(ζ), can be expressed as a
linear combination of the snapshots, i.e.,

φ(ζ) =
∑

k

ckxk(ζ). (23)

Substituting the above expression for φ(ζ) into eqn. (22), we obtain the following
eigenvalue problem:

∫ 1

0

1

N

N
∑

κ=1

xκ(ζ)xκ(ξ)

N
∑

k=1

ckxk(ξ) dξ = λ

N
∑

k=1

ckxk(ζ). (24)

Defining

Bκk :=
1

N

∫ 1

0

xκ(ξ)xk(ξ) dξ (25)

the eigenvalue problem of eqn. (24) can be equivalently written as

Bc = λc. (26)

The solution of the above eigenvalue problem (which can be obtained by utilizing
standard methods from matrix theory) yields the eigenvectors c = [c1 · · · cN ] which
can be used in eqn. (23) to construct the eigenfunction φ(ζ). Due to its structure,
it follows that the matrix B is symmetric and positive semi-definite, and thus, its
eigenvalues, λκ, κ = 1, . . . , N , are real and non-negative. Furthermore,

∫ 1

0

φκ(ζ)φk(ζ) dζ = 0, κ 6= k. (27)
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Remark 2. The calculated eigenvalues, once normalized, represent the percentage of
energy, or equivalently, time that the solution of the PDE system spends along the
spatial structure of the empirical eigenfunction.

Remark 3. Note that the empirical eigenfunctions that were derived using the above
methodology can be used directly as basis functions of the Hilbert space defined in
Subsection 2.2 since the two spaces are completely analogous, and the basis functions
can be interchanged through the coordinate transformation z = ζ l(t) (note that in
order for the basis functions to be orthonormal instead of just orthogonal to each
other, the multiplication φj(z) =

√

l(t) φj(ζ) must also take place).

Remark 4. The K-L expansion can also be used to compute a set of empirical
eigenfunctions when the optimization objective of eqn. (15) is modified to 〈(φ̇, ẋκ)

2〉
under the same constraints. The modified objective focuses on the acceleration en-
ergy of the fluctuations towards the average value, rather than the energy of the
fluctuations which is used in our development. It has been shown that the empirical
eigenfunctions that are generated using the modified objective function also form a
set of orthonormal basis functions (the reader may refer to (Sirovich et al., 1990) for
a detailed discussion on this issue). A variety of optimization objectives have been
formulated in the literature to address the specific characteristics of processes, such
as periodic phenomena, etc.

Remark 5. The ensemble of solutions can be derived from process data as well as
through the solution of a high-order discretization of the PDE system of eqn. (11).
Process data-based construction may be more suitable in controller design problems
for which there is an abundance of measured data and the model of the process is
too complex to be solved in a time-effective manner with reasonable computing power
(note that numerous model solutions are needed to obtain a representative ensemble).

3.2. Galerkin’s Method

In this section, we use Galerkin’s method to derive low-dimensional dynamical systems
of nonlinear ordinary differential equations that accurately reproduce the dynamics
and solutions of the nonlinear parabolic PDE system of eqn. (1). To this end, we
assume that we have available an orthogonal and complete set of global (in the sense
that they span the entire spatial domain of definition of the process) basis functions,
φi(ζ), that satisfy the boundary conditions of eqn. (2). In practice, φi(ζ) may be the
set of empirical eigenfunctions obtained through K-L expansion.

Let Hs, Hf be two subspaces of H, defined as Hs = span{φ1, φ2, . . . , φm}
and Hf = span{φm+1, φm+2, . . . , }. The basis functions φj can be obtained through
K-L expansion. Defining the orthogonal projection operators Ps and Pf such that
xs = Psx, xf = Pfx, the state x of the system of eqn. (9) can be decomposed as

x = xs + xf = Psx+ Pfx. (28)
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Applying Ps and Pf to the system of eqn. (9) and using the above decomposition
for x, the system of eqn. (9) can be equivalently written in the following form:

dxs
dt
= Ls(t, xs, xf ) + Bs(t)u+ fs(t, xs, xf ),

∂xf
∂t
= Lf (t, xs, xf ) + Bf (t)u+ ff (t, xs, xf ),

yc = C(t)xs + C(t)xf , ym = S(t)xs + S(t)xf ,

xs(0) = Psx(0) = Psx0, xf (0) = Pfx(0) = Pfx0,

(29)

where Ls(t, xs, xf ) = PsL(t, xs+xf ), Bs(t) = PsB(t), fs(t, xs, xf ) = Psf(t, xs+xf ),
Lf (t, xs, xf ) = PfL(t, xs + xf ), Bf (t) = PfB(t), and ff (t, xs, xf ) = Pff(t, xs + xf ).

Owing to the parabolic nature of the spatial differential operator, the nonlinear
vector Lf (t, xs, xf ) satisfies Lf (t, xs, xf ) = Lfs(t)xs + (1/ε)Lf (t)xf + f̃f (t, xs, xf ),
where ε is a small positive parameter quantifying the separation between the slow
(dominant) and fast (negligible) eigenmodes of the spatial operator, and Lfs(t),
Lf (t) are matrices with Lf (t) being stable (in the sense that the state of the system

∂xf/∂t = Lf (t)xf tends exponentially to zero), and f̃f (t, xs, xf ) is a nonlinear vec-
tor function which does not include linear terms. Note that the partial derivative in
the term ∂xf/∂t is used to denote that xf belongs to an infinite dimensional Hilbert
space. Neglecting the infinite dimensional xf -subsystem in the system of eqn. (29)
(this is equivalent to assuming that ε = 0 when the system of eqn. (29) is formulated
within a singular perturbations framework), the following m-dimensional slow system
is obtained:

dxs
dt
= Ls(t, xs) + Bs(t)u+ fs(t, xs),

yc = C(t)xs, ym = S(t)xs,

xs(0) = Psx(0) = Psx0,

(30)

where Ls(t, xs) = PsL(t, xs), Bs(t) = PsB(t), fs(t, xs) = Psf(t, xs). Moreover,
Ls(t, xs), fs(t, xs) are Lipschitz vector functions.

Remark 6.We note that when the approximate ODE model of eqn. (30) is obtained
through Galerkin’s method with empirical eigenfunctions, it provides a valid approx-
imation of the parabolic PDE model in a broad region of the state space and not
only in the region that was used for the computation of the snapshots, provided that
the ensemble of snapshots is sufficiently large and contains sufficient information on
the global dynamics of the PDE system. This property is a consequence of the fact
that the empirical eigenfunctions form an orthogonal set of functions whose dimen-
sion is equal to the number of snapshots, and thus, it can be made arbitrarily large
(even though completeness of this set cannot be guaranteed). Therefore, the use of
empirical eigenfunctions for discretization of the PDE system is not fundamentally
different from the use of other standard basis functions sets (sine and cosine functions,
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Legendre polynomials, etc.) for discretization with Galerkin’s method, and thus, the
finite-dimensional approximation obtained through Galerkin’s method with empirical
eigenfunctions is valid in a broad region of the state space, as long as the dimension
of the ensemble is sufficiently large.

4. Nonlinear Output Feedback Control

In this section, we synthesize nonlinear finite-dimensional output feedback controllers
that guarantee local exponential stability and force the controlled output of the closed-
loop PDE system to follow the reference input, provided that ε is sufficiently small.
The output feedback controllers are constructed through combination of state feed-
back controllers with state observers.

More specifically, we use the system of eqn. (30) to synthesize nonlinear state
feedback controllers of the following general form:

u = p(t, xs) +Q(t, xs)v, (31)

where p(t, xs) is a smooth vector function, Q(t, xs) is a smooth matrix, and v ∈
� l

is the constant reference input vector. The synthesis of [p(t, xs), Q(t, xs)] so that a
nonlinear controller of the form of eqn. (31) guarantees local exponential stability
and forces the output of the system of eqn. (30) to follow a desired linear response is
performed by utilizing geometric control methods for nonlinear ODEs (the details of
the controller synthesis can be found in (Palanki and Kravaris, 1997), and are omitted
for brevity).

Since measurements of x̄(z, t) (and thus, xs(t)) are usually not available in
practice, we assume that there exists a matrix L so that the nonlinear dynamical
system

dη

dt
= Ls(t, η) + Bs(t)u+ fs(t, η) + L

[

ym − S(t)η
]

, (32)

where η denotes an m-dimensional state vector, is a local exponential observer for
the system of eqn. (30) (i.e., the discrepancy |η(t) − xs(t)| tends exponentially to
zero).

Theorem 1 that follows provides the synthesis formula of the output feedback
controller and conditions that guarantee closed-loop stability and output tracking. To
state our result, we need to use the Lie derivative notation and the concepts of relative
order and characteristic matrix (which are defined in the appendix) for the system
of eqn. (30). First, the Lie derivative of the scalar function hi(t, xs) with respect to
the vector function f(t, xs) is defined as Lfhi(t, xs) = (∂hi/∂xs)f(t, xs) + ∂hi/∂t
(this definition of Lie derivative was introduced in (Palanki and Kravaris, 1997) and
is different from the standard one used in (Isidori, 1989) for the case of time-invariant
hi, f0), L

k
fhi(t, xs) denotes the k-th order Lie derivative and LglL

k
fhl(t, xs) denotes

the mixed Lie derivative. Now, referring to the system of eqn. (30), we set Ls(t, xs)+
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fs(t, xs) = f(t, xs), Bs(t) = g(t, xs), Ci(t)xs = hi(t, xs) to obtain

dxs
dt
= f(t, xs) + g(t, xs)u,

ycsi = hi(t, xs).

(33)

For the above system, the relative order of the output ycsi with respect to the vector
of manipulated inputs u is defined as the smallest integer ri for which we have

[

Lg1L
ri−1
f hi(t, xs) · · · LglL

ri−1
f hi(t, xs)

]

6≡ [0 · · · 0] (34)

or ri =∞ if such an integer does not exist. Furthermore, the matrix

C(t, xs) =















Lg1L
r1−1
f h1(t, xs) · · · LglL

r1−1
f h1(t, xs)

Lg1L
r2−1
f h2(t, xs) · · · LglL

r2−1
f h2(t, xs)

...

Lg1L
rl−1
f hl(t, xs) · · · LglL

rl−1
f hl(t, xs)















(35)

is the characteristic matrix of the system of eqn. (33).

Theorem 1. Suppose that the following conditions hold:

1. The roots of the equation

det
(

B(s)
)

= 0, (36)

where B(s) is an l×l matrix whose (i, j)-th element is of the form
∑ri

k=0β
i
jks

k,

lie in the open left-half of the complex plane, where βijk are adjustable controller
parameters.

2. The zero dynamics of the system of eqn. (33) are locally exponentially stable.

Then, there exist positive real numbers µ̃1, µ̃2, ε̃
∗ such that if |xs(0)| ≤ µ̃1,

‖xf (0)‖2 ≤ µ̃2 and ε ∈ (0, ε̃
∗], and η(0) = xs(0), the dynamic output feedback con-

troller

dη

dt
= Ls(t, η) + Bs(t)

{[

β1r1 · · ·βlrl
]

C(t, η)
}−1

{

v −

l
∑

i=1

ri
∑

k=0

βikL
k
fhi(t, η)

}

+ fs(t, η) + L
(

ym − S(t)η
)

, (37)

u =
{[

β1r1 · · ·βlrl
]

C(t, η)
}−1

{

v −
l
∑

i=1

ri
∑

k=0

βikL
k
fhi(t, η)

}

(a) guarantees local exponential stability of the closed-loop system, and
(b) ensures that the outputs of the closed-loop system satisfy

lim
t→∞
|yci(t)− vi| = O(ε), i = 1, . . . , l, (38)

where vi is the set-point for the i-th controlled output.
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Proof. Substituting the controller of eqn. (38) into the infinite-dimensional system of
eqn. (9), we obtain

dη

dt
= Ls(t, η) + Bs(t)u(t, η) + fs(t, η) + L

(

ym − S(t)η
)

,

ẋ = L(t, x) + B(t)
[

p(t, η) +Q(t, η)v
]

+ f(t, x), x(0) = x0,

yc = C(t)x, ym = S(t)x.

(39)

A direct application of Galerkin’s method to the above system with Hs =
span{φ1, φ2, . . . , φm} and Hf = span{φm+1, φm+2, . . . , }, and Ps and Pf such that
xs = Psx, xf = Pfx, yields

dη

dt
= Ls(t, η) + Bs(t)u(t, η) + fs(t, η) + L

(

ym − S(t)η
)

,

dxs
dt
= Ls(t, xs, xf ) + Bs(t)

[

p(t, η) +Q(t, η)v
]

+ fs(t, xs, xf ),

∂xf
∂t
= Lf (t, xs, xf ) + Bf (t)

[

p(t, η) +Q(t, η)v
]

+ ff (t, xs, xf ),

(40)

or

dη

dt
= Ls(t, η) + Bs(t)

[

p(t, η) +Q(t, η)v
]

+ fs(t, η) + L
(

ym − S(t)η
)

,

dxs
dt
= Ls(t, xs, xf ) + Bs(t)

[

p(t, η) +Q(t, η)v
]

+ fs(t, xs, xf ),

ε
∂xf
∂t
= εLfs(t)xs + Lf (t)xf + εf̃f (t, xs, xf )

+ εBf (t)
[

p(t, η) +Q(t, η)v
]

+ εff (t, xs, xf ).

(41)

The system of eqn. (41) is in the standard singularly perturbed form (see (Koko-
tovic et al., 1986) for a precise definition of standard form), with xs being the slow
states and xf being the fast states. Introducing the fast time-scale τ = t/ε and
setting ε = 0, we obtain the following infinite-dimensional fast subsystem from the
system of eqn. (41):

∂xf
∂τ
= Lf (t)xf . (42)

Since Lf (t) is a stable matrix, we have that the above system is globally exponentially
stable. Setting ε = 0 in the system of eqn. (41), we have xf = 0 and thus, the finite-
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dimensional slow system takes the form

dη

dt
= Ls(t, η) + Bs(t)

[

p(t, η) +Q(t, η)v
]

+ fs(t, η) + L
(

ym − S(t)η
)

,

dxs
dt
= Ls(t, xs, 0) + fs(t, xs, 0) + Bs(t)

[

p(t, η) +Q(t, η)v
]

=: f(t, xs) + g(t, xs)
[

p(t, η) +Q(t, η)v
]

,

ycsi = Ci(t)xs =: hi(t, xs).

(43)

For the above system, one can show (see (Isidori, 1989; Palanki and Kravaris, 1997)
for details) that it is locally exponentially stable provided that Assumptions 1 and 2
of the theorem hold and that the output follows the reference input. Finally, since the
infinite-dimensional fast subsystem of eqn. (42) is exponentially stable, an application
of Proposition 1 in (Armaou and Christofides, 1999) (a singular perturbation stability
result for infinite dimensional systems) yields that there exists an ε∗ such that if ε ∈
(0, ε∗], max{|xs(0)|, ‖xf (0)‖2} ≤ δ, then the state of the closed-loop parabolic PDE
system is exponentially stable and that its outputs satisfy the relation of eqn. (38).

Remark 7.We note that the approach followed here for the synthesis of output feed-
back controllers is not applicable to hyperbolic PDE systems (i.e., convection-reaction
processes) where the eigenvalues cluster along vertical or nearly vertical asymptotes
in the complex plane and thus, the controller synthesis problem has to be addressed
directly on the basis of the hyperbolic PDE system (see, for example, (Kowalews-
ki, 1998; 2000) for results on optimal control and (Christofides, 2001) for results on
geometric and Lyapunov-based control).

Remark 8. It is important to point out that the result of Theorem 1 can be general-
ized to the case where the ODE systems used for controller design are obtained from
combination of Galerkin’s method with approximate inertial manifolds (see (Armaou
and Christofides, 1999; Christofides, 2001) for details on the design of output feedback
controllers on the basis of such ODE systems and (Byrnes et al., 1994; 1995; Sano
and Kunimatsu, 1995) for other applications of inertial manifold theory to control of
nonlinear parabolic PDEs).

5. Application to a Diffusion-Reaction Process

In this section, we present an application of the proposed method to a diffusion-
reaction process with nonlinearities, spatially-varying coefficients and a time-
dependent spatial domain. Specifically, we consider a diffusion-reaction process which
is described by the following parabolic PDE in dimensionless form:

∂x̄

∂t
=

∂

∂z

(

k(z)
∂x̄

∂z

)

+ βT (z)
(

e−γ/(1+x̄) − e−γ
)

+ βU
(

b(z, t)u(t)− x̄
)

(44)
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subject to the Dirichlet boundary conditions

x̄(0, t) = 0, x̄(l(t), t) = 0, (45)

and the initial condition

x̄(z, 0) = 0.5, (46)

where x̄ ∈
�
is the state of the system, γ, βu are constant dimensionless process

parameters, βT (z), k(z) are dimensionless process parameters that are explicit func-
tions of the spatial coordinate z, u(t) = [u1(t) u2(t)]

T is the vector of the inputs
(which will be used in the construction of the ensemble of solutions), and b(z, t) =
[b1(z, t) b2(z, t)] is a vector function which determines how the inputs u1(t), u2(t)
are distributed in space. The values and expressions of the process parameters that
were used in our calculations are: βU = 2.0, γ = 4.0, βT (z) = 45(1.5 − e

−0.5 z),
k(z) = e−0.5 z and l(t) = π[1.4 − 0.4 exp(−0.02t2.7)]. Note that l(t) is a smooth
function of time (i.e., dl/dt exists and is continuous) as requested per Assumption 1.

An accurate high-order discretization of the PDE of eqn. (44) was constructed
using Galerkin’s method with the following set of basis functions (which is the set
of eigenfunctions resulting form the solution of the eigenvalue problem of the spatial
operator for the constant value of k = 1):

φj(z, t) =

√

2

l(t)
sin

(

j π
z

l(t)

)

, j = 1, . . . ,∞. (47)

It was found that a 30-th order Galerkin truncation of the system of eqn. (44) using
the above basis functions leads to an accurate solution of the PDE (it was verified
that a further increase in the order of the Galerkin model as well as reduction in
the temporal discretization step provide no substantial improvement on the accuracy
of the simulation results). Figure 2 shows the evolution of the state of the PDE
for u(t) = 0 starting from initial conditions which are very close to the steady-
state x̄(z, t) = 0. We observe that the system moves to another steady-state which
is characterized by a maximum at z = 0.375 l(t). This implies that the steady state
x̄(z, t) = 0 is an unstable one, and thus, the system moves to a stable spatially
non-uniform steady state.

u(t ) u(t )
1 2

y (t )
m

0

1
y (t )
m 2

.     .     .     .    .    

.   .    .   .   . l(t ) l(t )
21

Fig. 1. Schematic of a process with moving boundaries.



Finite-dimensional control of nonlinear parabolic PDE systems with . . . 303

0
2

4
6

8
10

12
t 0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

z

0
2
4
6
8

10
12
14
16

_
x

Fig. 2. Profile of x̄ for spatially varying βT , k; u(t) = 0.

We now continue with the computation of the set of empirical eigenfunctions. We
initially constructed an ensemble of solutions. This was accomplished by solving the
high-order discretization of eqn. (44) for four different initial conditions (including the
initial condition in the examined problem and the unstable steady-state as an initial
condition) and for five different time-profiles of the manipulated variables. This led
to a total of 20 spatiotemporal solution profiles. Subsequently, 51 “snapshots” of the
profile of the state of eqn. (44) as a function of the spatial coordinate, z, for 51 fixed
time instants (during the process time and domain size) were taken from each solution
data set and were combined to generate an ensemble of 1020 solutions. To successfully
apply Karhunen-Loève expansion, we first expressed the developed ensemble of solu-
tions into an appropriate spatial coordinate ζ = z/l(t) whose domain of definition
is time-invariant. The Karhunen-Loève expansion was then applied to the developed
ensemble of solutions to compute seven empirical eigenfunctions that describe the
dominant spatial solution patterns embedded in the ensemble (they account for more
than 99.9% of the energy included in the entire ensemble). The first three of these
empirical eigenfunctions are presented in Figure 3. Note that they are not symmetric
with respect to the center of the system, ζ = 0.5, owing to the spatial nonuniformity
of βT = 45(1.5− e

−0.5 z) and k = e−0.5 z.

We now proceed with the use of the computed empirical eigenfunctions as basis
functions in Galerkin’s method to construct accurate low-dimensional ODE approxi-
mations of the PDE. To accomplish this, the parabolic PDE system of eqns. (44)–(45)
is equivalently expressed in terms of ζ = z/l(t) as follows:

∂x̄

∂t
=
1

l(t)2
∂

∂ζ

(

k(ζ)
∂x̄

∂ζ

)

+
l̇

l(t)
ζ
∂x̄

∂ζ
+ βT (ζ)(e

−γ/(1+x̄) − e−γ)

+ βU
(

b(ζ, t)u(t)− x̄
)

, (48)
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Fig. 3. First three empirical eigenfunctions.

subject to the boundary and initial conditions

x̄(0, t) = 0, x̄(1, t) = 0, x̄(ζ, 0) = 0.5. (49)

We initially applied Galerkin’s method with the first two of the seven empirical eigen-
functions as basis functions to the PDE of eqn. (48) to construct a second-order model.
Figure 4 shows the deviation between the spatiotemporal profiles of the state of the
system computed by the second-order ODE model and the high-order discretization
of the PDE; we observe a very good agreement between the two models for all times,
with the maximum deviation being less than 3.4% (the deviation is computed to be
the maximum error in the solution profile divided by the value of the state at that
point; for accuracy results in the sense of L2 norms the reader may refer to Table 1).

To further improve the accuracy of the second-order ODE model, we noted that
the spatial pattern of the error in Fig. 4 resembles the shape of the third empirical
eigenfunction (see Fig. 3), and thus, we applied Galerkin’s method with the first
three empirical eigenfunctions as basis functions to the PDE of eqn. (48) to construct
a third-order model. Figure 5 shows the discrepancy between the third-order model
and the high-order discretization of the PDE; it is clear that the addition of the third
eigenfunction has greatly improved the accuracy of the low-order approximation (the
maximum deviation in this case is less than 0.5%).

For the sake of comparison, we also constructed a third-order approximation of
the PDE of eqn. (44) using Galerkin’s method with the first three eigenfunctions of
eqn. (47) as basis functions. We observe that the error (Fig. 6) between this third-
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Table 1. Model error for different process conditions

Basis functions Model order Process conditions Error [%]? Figure

Empirical 2 nominal 3.300 4

Empirical 3 nominal 0.352 5

Sinusoids 3 nominal 4.939 6

Sinusoids 8 nominal 0.483

Empirical 3 +20% change in βT 0.358 8

Empirical 3 −20% change in βT 0.353 9

Empirical 3 +20% change in k 0.588 10

Empirical 3 −20% change in k 0.459 11

Empirical 3 arbitrary initial condition 0.515 12

Empirical 3 arbitrary initial condition 2.905 13

Empirical 5 constant process parameters 0.037 16

Analytical 5 constant process parameters 0.710

? The error is calculated using eqn. (50).
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Fig. 4. Deviation between the second-order model and the
high-order discretization of the PDE (nominal case).
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Fig. 5. Deviation between the third-order model and the
high-order discretization of the PDE (nominal case).

0
2

4
6

8
10

12
t 0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

z

-1

-0.5

0

0.5

1

1.5

2

e

Fig. 6. Deviation between the third-order model and the high-order discretiza-
tion of the PDE (sinusoidal functions used as basis functions).
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order model and the high-order discretization of the PDE is significant (about 11%),
which is mainly a result of the fact that this approach does not account for the spatial
variation of the coefficient k(z). We note that higher-order approximations comput-
ed using this approach result in more accurate models; specifically, we found that
a 7-th order model was needed in order to produce the same error of 3.4% as the
second-order model based on empirical eigenfunctions, and a 10-th order model was
needed to have the same error of 0.5% as the third-order model based on empirical
eigenfunctions. This comparison is also presented in Fig. 7, where the relative error
between the norm of the reduced-order model and the norm of the high-order dis-

cretization of the PDE,
∣

∣

∣

‖x̄low‖2−‖x̄high‖2
‖x̄high‖2

∣

∣

∣
, is shown as a function of time for the cases

of a third-order model derived using empirical eigenfunctions, a third-order model
derived using sinusoids, and an eighth-order model based on sinusoids. We observe
that initially the model based on empirical eigenfunctions gives the highest error,
but as time progresses the error becomes insignificant. This is due to the fact that
the empirical eigenfunctions capture the dominant spatial structures of the PDE and
as a result, the third-order model follows the process dynamics closely after the fast
dynamics of the PDE system die out.
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Fig. 7. Relative error profiles (defined as
∣

∣[‖x̄low‖2 − ‖x̄high‖2]/‖x̄high‖2
∣

∣) between
the reduced-order models, based on empirical or analytical basis functions,
and the high-order discretization of the PDE (nominal case).

Having numerically established the ability of the computed reduced-order models
to describe the PDE, we then tested the ability of the third-order model to give accu-
rate predictions when the process parameters have values which are different from the
ones used in the construction of the ensemble of solutions for the computation of the
empirical eigenfunctions. Specifically, for βT = 55(1.5− e

−0.5 z) (which corresponds
to of variation about +20% with respect to the nominal value of βT ), the maxi-
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mum error between the third-order model and the high-order discretization of the
PDE is less than 0.5% for all times as can be seen in Fig. 8. On the other hand, for
βT = 45(1.5− e

−0.4 z) (which corresponds to of variation about −20% with respect
to the nominal value of βT ), the error between the two models remains under 0.7%
for all times as can be seen in Fig. 9. We also tested the robustness of the third-order
model for a +20% (k = e−0.4 z) and −20% (k = e−0.6 z) variation in the spatial
dependence of k. The corresponding errors between the third-order model and the
high-order discretization of the PDE are shown in Figs. 10 and 11, respectively; they
remain small for all times, under 0.6% in the first and 1.6% in the second case.
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Fig. 8. Deviation between the third-order model and the high-order
discretization of the PDE (βT (z) = 55(1.5 − e
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Fig. 9. Deviation between the third-order model and the high-order
discretization of the PDE (βT (z) = 45(1.5 − e
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Fig. 10. Deviation between the third-order model and the high-order
discretization of the PDE (k(z) = e−0.4 z).
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Fig. 11. Deviation between the third-order model and the high-order
discretization of the PDE (k(z) = e−0.6 z).



310 A. Armaou and P.D. Christofides

We also tested the robustness of the third-order model for two initial conditions
which are different from the ones used for the construction of the empirical eigen-
functions. Specifically, for the initial condition x̄0(z) = 0.5+ 0.5 sin(z), the deviation
between the third-order model and the high-order discretization of the PDE is pre-
sented in Fig. 12, while for x̄0(z) = 0.4 + 0.6 sin(3 z), the same deviation is shown
in Fig. 13. In both the cases, the maximum error between the two models is less
than 1.6%, implying the robustness of the proposed model reduction procedure with
respect to significant variations in the initial conditions. The aforementioned results
are summarized in Table 1 which presents the integral error between the reduced- and
high-order models during the process cycle for the different process conditions that
we presented in this section. Specifically, the error was calculated using the following
formula:

∫ tf

0

∣

∣

∣

∣

‖x̄low‖2 − ‖x̄high‖2
‖x̄high‖2

∣

∣

∣

∣

dt, (50)

where tf = 12 is the final time of the process simulation run. We note that, even
though the third-order model closely tracks the solution of the high-discretization for
almost all times, in the case of x̄0(z) = 0.4+0.6 sin(3 z), the integral error is computed
to be large compared to the rest of the simulation runs. This is due to the large initial
error between the two models as can be seen in Fig. 13, caused by the excitation
of the stable and fast-dissipating higher modes that the reduced-order model does
not capture. Note that the models that were derived based on the eigenfunctions of
eqn. (47) exhibit a larger error in the spatial profile of the solution for all times, as
can be seen in Fig. 6.

Finally, we used the proposed method to control the process. Specifically, the
controller synthesis formula of Theorem 1 was used to synthesize a second-order con-
troller on the basis of a second-order model obtained using Galerkin’s method with the
first two empirical eigenfunctions as basis functions. The control objective is to stabi-
lize the system at the unstable steady state x̄(z, t) = 0 using one point measurement
of the state at z = l(t)/3 (i.e., moving sensor with s(z, t) = δ(z − (l/3)(t)), where
δ(·) is the Dirac function). Performing a linearization of the PDE system around
the spatially uniform steady-state, we found that the first two modes are unstable.
Therefore, the controlled outputs were defined as

yc1(t) =

∫ l(t)

0

φ1(z, t)x̄(z, t) dz,

yc2(t) =

∫ l(t)

0

φ2(z, t)x̄(z, t) dz,

(51)

where φi denotes the i-th empirical eigenfunction. The actuator distribution functions
were taken to be b1(z, t) = 1 (uniform in space, distributed control action) and
b2(z, t) = δ(z −

2
3 l(t)) (moving point control actuation).

Figure 14 shows the evolution of the closed-loop rod temperature profile under
the nonlinear output feedback controller, while Fig. 15 shows the corresponding ma-
nipulated input profiles. Clearly, the proposed controller achieves regulation of the
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Fig. 12. Deviation between the third-order model and the high-order
discretization of the PDE (x̄0(z) = 0.5 + 0.5 sin(z)).
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Fig. 13. Deviation between the third-order model and the high-order
discretization of the PDE (x̄0(z) = 0.4 + 0.6 sin(3 z)).
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Fig. 14. Closed-loop profile of x̄ under nonlinear output feedback
control using empirical eigenfunctions (m = 2).

temperature profile at the spatially uniform steady state x̄(z, t) = 0. For the sake of
comparison, we also constructed finite-dimensional models using Galerkin’s method
with the analytical eigenfunctions of eqn. (47) as basis functions, and we used the re-
sulting models for the synthesis of a nonlinear output feedback controller utilizing the
result of Theorem 1. We found that the lowest-order controller that achieves stabiliza-
tion of the PDE system at x̄(z, t) = 0 is of order 4. Therefore, we observe a significant
reduction on the order of the controller that stabilizes the system at the spatially uni-
form steady state when we use empirical eigenfunctions as basis functions. This again
happens because the empirical eigenfunctions take into consideration the spatial vari-
ation of the coefficients of the process model, while the analytical eigenfunctions were
derived on the basis of the spatial operator with spatially uniform coefficients, and
thus, they do not capture the spatially varying features of the process.

Remark 9. To illustrate the applicability of the proposed approach to parabolic
PDE systems with spatially-uniform coefficients, we considered the PDE system of
eqn. (44) with

βT = 75.0, k = 1.0. (52)

For this system, the steady-state x̄(z, t) = 0 is also unstable, and the eigenfunctions
of the spatial operator can be computed analytically and are given in eqn. (47).
Furthermore, for this system, we constructed a representative ensemble of solutions
by varying the initial conditions and the inputs, and used it to construct a set of seven
empirical eigenfunctions. Then, we employed Galerkin’s method to construct two
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Fig. 15. Manipulated input profiles for the output feedback controller.
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Fig. 16. Deviation between reduced and full-order models for
spatially uniform process parameters βT and k.

fifth-order models corresponding to the two different sets of basis functions (analyt-
ical and empirical). Figure 16 shows the discrepancy between the fifth-order model
based on empirical eigenfunctions and a high-order discretization of the PDE. We
can see that this discrepancy remains small for all times, thereby implying that the
use of empirical eigenfunctions leads to accurate low-order models for parabolic PDE
systems with spatially-uniform coefficients as well. For comparison purposes, we also
present in Table 1 the integral error of eqn. (50) for both the fifth-order models that
we derived. We can see that the integral error of the model derived using the proposed
methodology is 20 times smaller than the error of the model based on analytical eigen-
functions of the spatial operator. The reason for this difference is that the empirical
eigenfunctions take into consideration all the characteristics of the process, including
the effect of nonlinearities, while the analytical eigenfunctions account only for the
structure of the linear spatial differential operator and of the boundary conditions.

6. Conclusions

In this work, we presented a methodology for the synthesis of finite-dimensional non-
linear output feedback controllers for nonlinear parabolic PDE systems with time-
dependent spatial domains. Initially, the nonlinear parabolic PDE system was ex-
pressed with respect to an appropriate time-invariant spatial coordinate and a rep-
resentative (with respect to different initial conditions and input perturbations) en-
semble of solutions of the resulting time-varying PDE system was constructed by
computing and solving a high-order discretization of the PDE. Then, the Karhunen-
Loève expansion was directly applied to the ensemble of solutions to derive a small set
of empirical eigenfunctions (dominant spatial patterns) that capture almost all the
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energy of the ensemble of solutions. The empirical eigenfunctions were subsequent-
ly used as basis functions within a Galerkin’s model reduction framework to derive
low-order ODE systems that accurately describe the dominant dynamics of the PDE
system. The ODE systems were used for the synthesis of nonlinear output feedback
controllers using geometric control methods. The proposed control method was suc-
cessfully used to stabilize an unstable steady-state of a diffusion-reaction process with
nonlinearities, spatially-varying coefficients and time-dependent spatial domain, and
was shown to lead to the construction of accurate low-order models and the synthesis
of low-order controllers.
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