
Int. J. Appl. Math. Comput. Sci., 2001, Vol.11, No.2, 537–556 537

TRANSFORMATION OF DYNAMIC ASPECTS OF UML

MODELS INTO LOTOS BEHAVIOUR EXPRESSIONS

Bogumiła HNATKOWSKA∗, Zbigniew HUZAR∗

The lack of formal semantics for the UML creates many ambiguity problems,
especially when real-time systems are specified. The paper proposes an approach
to a formal definition of UML statecharts. Main features of the UML statecharts
are described, and next, a transformation of the UML statecharts into LOTOS
is defined.

Keywords: statecharts, UML, LOTOS

1. Introduction

The Unified Modelling Language (UML) is a language for specifying, constructing,
visualising, and documenting the artefacts of a software development process (Booch
et al., 1998). The UML represents a collection of the best object-oriented engineering
practices that have proven successful in the modelling of large and complex systems
(Douglass, 1999).

Although the developers of the UML have tried to provide a sufficient semantics
and a notation, the formalism of the language still needs more improvements. Official
UML documents describe most of the language constructs in a precise natural lan-
guage. Some formality is necessary to help users and CASE designers to understand
the language. It must be precise and approachable; a lack of either dimension damages
its usefulness.

A model in the UML should express both static and dynamic aspects of the
modelled system. The static aspects are mainly expressed by use-case diagrams as
well as class and object diagrams. The dynamic aspects are expressed by interaction
diagrams and state diagrams. The interaction diagrams are usually limited to a partial
specification of the model behaviour, while state diagrams may be used for a complete
specification of the model behaviour.

A state diagram of a given use-case or an object represents a state machine. The
state machine specifies the behaviour as a set of sequences of states that the use-case
or the object goes through during its lifetime in response to external events.

There are two ways to visualise the state machines: by activity diagrams or by
statechart diagrams.

∗ Computer Science Department, Wrocław University of Technology, ul. Wybrzeże Wyspiań-

skiego 27, 50–370 Wrocław, Poland, e-mail:
�
b.hnatkowska, z.huzar � @ci.pwr.wroc.pl

538 B. Hnatkowska and Z. Huzar

The UML statecharts constitute an extension of Harel’s statecharts (Harel, 1987),
which are a generalisation of finite-state machines. Nestings of states and parallel
states are two specific statecharts mechanisms, which effectively prevent a state ex-
plosion during specification. At the beginning, Harrell’s statecharts were defined infor-
mally; next, several attempts have been made to formalise them (Harel et al., 1987). It
appeared that formalisation of their semantics is not a trivial task. Various approach-
es were used to formalise statecharts. For example, the paper (Armstrong, 1998) uses
Real-Time Logic, and (Pnueli and Shalev, 1991) uses a denotational approach. The
statecharts have been effectively used in several packages supporting software devel-
opment. The STATEMATE is a widely-known example of their application (Harel
and Naamad, 1996; Harel and Politi, 1996). The UML statecharts have well defined
syntax, but their semantics is still informally defined.

The aim of the paper is to give precise semantics of the UML statecharts. To do
this, we decided to use LOTOS (ISO, 1989) as an expressive formal description tech-
nique, which has proved to be useful in many applications. The semantics of a given
statechart is defined as a LOTOS behaviour expression. We define an algorithm which
transforms any statechart into a LOTOS behaviour expression. The UML statecharts
possess many mechanisms which are sometimes redundant. Therefore, we concentrat-
ed on a subset of statecharts which seems to be the most important and, at the same
time, which is representative for presentation of the transformation.

The paper is organised as follows. Section 2 gives a brief description of the UML
statecharts and imposes restrictions that define their considered subset. Section 3
is the main section and presents rules of the transformation. The transformation is
rather complex and therefore some of its details are moved to Appendix A. An example
statechart and its transformation into a LOTOS behaviour expression are presented
in Section 4. Further details of the example are presented in Appendix B. Section 5
ends the paper with some final remarks.

2. UML Statecharts

2.1. Statechart Graphs

UML statecharts visualise state machines by emphasising the potential states and
transitions among these states. State and transitions are represented graphically as
state boxes and transition arrows.

A state is a situation during which some (usually implicit) invariant condition
holds. A transition is a relationship between two states indicating that an object in the
first state may leave it and after that enters the second state. Usually, the occurrence
of some event triggers a transition between states. An event has a location in time
and space, and it is a stimulus that can trigger a state machine. Both in a state and
during transition between states some actions may be performed. The actions are
interpreted as executable atomic computations that result in a change in the state or
a return of a value.

Transformation of dynamic aspects of UML models into LOTOS . . . 539

The following state categories are distinguished:
– Pseudostates , which consist of initial and final states, shallow and deep history,
fork and join, junction and stub states.

– Synchronisation states, used to synchronise concurrent regions of a state machine.

– Normal states, or just states, which may be simple or composite. A composite
state is a state that contains one or more other states. Any state enclosed within
a composite state is called a substate, or a ‘child’ of that composite state, which
in turn is called its ‘parent’. A state is called a direct substate when it is not
contained in any other state; otherwise it is referred to as a transitively nested
substate. If a state contains only one direct substate, then it is called a sequential
state. Otherwise, if it contains more than one direct substate, then the substates
are called regions and the state is called a concurrent state. A state is simple if
it does not contain any substate.

A statechart is represented as a graph. A statechart graph S is a six-tuple:

S = 〈BoxN, childB, typeB, defaultB,ArcN,Arc〉, (1)

where:
– BoxN is a finite set of names for boxes (graph vertices).

– childB ⊆ BoxN × BoxN is a hierarchy relation: 〈b1, b2〉 ∈ childB means that
b2 is a ‘child’ of a ‘parent’ b1. The set BoxN and the hierarchy relation childB
define a tree of boxes. The root r of the tree has no parents, and the leaves of
the tree have no children. childB∗ is the reflexive transitive closure of childB.

– typeB: BoxN → {PRIM, XOR, AND, FIN} is a function that gives the type
for each box. The root r is of type XOR, the leaves are of type PRIM or FIN,
and other boxes may be either of type XOR (a sequential state box) or AND (a
concurrent state box). The leaves of type FIN represent final boxes.

– defaultB: BoxN → 2BoxN is a function that gives a default for each box. The
default for a XOR box is a set with exactly one box of its children, while the
default for an AND box is the set of all its children. The default for a PRIM box is
the empty set. An extension of the default function is defaultB : BoxN → 2BoxN

defined as follows: b ∈ defaultB(b), and for boxes b′ ∈ BoxN such that 〈b, b′〉 ∈
childB∗ we require b′ ∈ defaultB(b) if and only if defaultB(b′) ⊆ defaultB(b).

– ArcN is a finite set of arc names. Note that BoxN ∩ ArcN = ∅.

– Arc ⊆ BoxN × ArcN × BoxN is the set of arcs. An arc α ∈ Arc is a triple
〈b1, a, b2〉 with source(α) = b1, target(α) = b2, and name(α) = a. It is assumed
that arcs are uniquely identified by arc names.

2.2. Graph Labelling

Both state boxes and transition arrows are labelled. In addition to its name, a state
box has:
– actions , executed on entering and exiting the state, which are atomic, i.e. unin-
terrupted and undivided computations,

540 B. Hnatkowska and Z. Huzar

– sequences of actions , executed in the state; actions are still atomic, but a sequence
of actions may be interrupted after completion of any of its action,

– internal transitions , which are handled without causing a change in the state,

– deferred events , which are not handled in the state but are postponed and queued
for handling in another state.

Each transition arrow has its source and target states, and moreover, it may be
labelled by:
– a triggering event , whose reception in the source state makes the transition eli-
gible to fire, provided that its guard condition is satisfied,

– a guard condition — a Boolean expression defined on the object’s attributes
evaluated at the moment of the reception of the triggering event; if evaluated to
true, the transition is enabled to fire, if evaluated to false, the transition does
not fire, and if there is no other transition that could be triggered by the same
event, the event is lost,

– an effect action, which may directly act on the object that owns the state ma-
chine, and indirectly on other objects that are visible to the object.

The label with a triggering event may be empty, which means that the transition
happens immediately after completing activities in its source state. If the label is not
empty, then one of the following four kinds of events may occur:
– a signal event, which represents reception of an asynchronous signal,

– a call event, which represents reception of a request to synchronously invoke a
specific operation,

– a change event, which occurs when an explicit Boolean expression becomes true
as a result of a change in the value of one or more attributes,

– a time event, which occurs at the moment of expiration of a specific deadline.

Signal and call events may have parameters to carry data to objects.

A statechart is defined as the triple:

MS = 〈S, labB, labA〉, (2)

where:
– S is a statechart graph,

– labB is a box labelling function which assigns a box b ∈ BoxN a quintuple

labB(b) = 〈entry(b), do(b), exit(b), deferrable(b), internal(b)〉, (3)

where entry(b), do(b), exit(b) are sequences of actions, and deferrable(b),
internal(b) are lists of events,

– labA is an arc labelling function, which also assigns an arca ∈ ArcN a quintuple

labA(a) = 〈source(a), target(a), trigger (a), effect(a), guard(a)〉, (4)

where
• source(a) and target(a) are functions determining the source and target boxes
for a given arc a,

Transformation of dynamic aspects of UML models into LOTOS . . . 541

• trigger (a) is a triggering event; it may be an event of any kind, in particular, it
may be a timed event (time-out), and if it is empty, it means that the transition
occurs immediately after completion of activities in the source state,

• effect(a) is an action; if empty, it means there is no accompanying action,

• guard(a) is a guard condition; if empty, it means an always-true condition.

For the sake of further use, we will employ an auxiliary function

typeA : ArcN →
{

EV-LAB,TO-LAB,UN-LAB
}

(5)

in order to distinguish between one of three situations: when the triggering event is
a signal or a call event (EV-LAB), when it is a time event (TO-LAB), or when there
is no triggering event (UN-LAB).

2.3. Statechart Transitions

The semantics of a statechart is described in terms of a sequence of its configurations.
At a given moment a statechart is in some configuration. A configuration consists of
a subset of active box states. If a statechart is in a composite box state, then this
state is active and so are some of its sub-states. So, a configuration can be described
as a tree of boxes.

More precisely, a configuration of the statechart S is a subset of boxes B ⊆
BoxN such that r ∈ B, and for each box b ∈ B, if typeB(b) = AND then all its
children are in B, and if typeB(b) = XOR, then exactly one of its children is in B. The
hierarchy relation childB restricted to this set B forms a subtree 〈B, childB∩B×B〉
of the tree of boxes 〈BoxN, childB〉. An initial configuration of the statechart S is
defined as Binit = defaultB(r).

Let lca(b1, b2) stand for the least common ancestor of b1 and b2 in the box
tree 〈BoxN, childB〉, i.e. 〈lca(b1, b2), bi〉 ∈ childB∗ (i = 1, 2), and there is no other b
such that 〈b, bi〉 ∈ childB∗, and (lca(b1, b2), b) ∈ childB∗. The boxes b1, b2 ∈ BoxN
are orthogonal if neither is an ancestor of the other and typeB (lca(b1, b2)) = AND.
Similarly, two arcs 〈b1, a1, b′1〉 and 〈b2, a2, b

′
2〉 are orthogonal if boxes lca(b1, b

′
1) and

lca(b2, b
′
2) are orthogonal.

A transition T from a configuration B to a configuration B ′ is defined as the
maximal set of names of mutually orthogonal arcs in which a source box of each arc
is an element of B.

A configuration is changed as a result of triggering a transition. Transitions de-
pend on a configuration of the statechart and on an external environment of the
statechart that generates events which enable passing along arcs. There are two kinds
of transitions: low-level transitions between simple states and high-level transitions
leaving composite states. High-level transitions have priority over low-level ones.

2.4. Statechart Limitations

In the UML standard document (Unified Modelling Language, 1998), the change of
configurations is presented informally. In the following, we define formal semantics for

542 B. Hnatkowska and Z. Huzar

the UML statecharts. We do not take into account evaluation of an object’s attributes,
and moreover, for simplicity, the following constraints are assumed:

– Only normal states (composite and simple), and initial and final pseudostates are
taken into consideration.

– Crossing the border of composite states is not allowed. This means that if there
is some arc between two boxes (states) b1, b2 ∈ BoxN , i.e. 〈b1, a, b2〉 ∈ Arc,
then each of the boxes is a child of the same XOR type state. This restriction is
introduced not only for the purposes of the paper, but it is also a strong recom-
mendation for system modelling.

– The labelling function labB is limited to the first three elements, i.e. there are
neither deferred events nor internal transitions.

– The labelling function labA is limited to the first three elements, i.e. there are
no accompanying actions, and the guard conditions are always true.

– The unlabelled transitions are not considered at all. The main reason of this
limitation is unclear semantics of such transitions in the context of complex states.

3. Transformation Rules

In this section, a function transforming a given statechart into a LOTOS specification
is presented. We assume that the reader is familiar with LOTOS. For other readers,
we recommend the book (Turner, 1993).

The function BTrans(b) is the main function of the transformation. It defines
some LOTOS behaviour expression for a given state b. The behaviour expression
represents the functionality of a statechart rooted at the box b. A modelled sys-
tem is always in its root state, and therefore the root state has no entry and exit
actions. BTrans(b) employs two additional functions procD∗(b) and procD(b), gen-
erating process definitions, representing AND and XOR types of boxes, respectively.
The structure of the function follows the statecharts transformation into the process
algebra presented in (Uselton and Smolka, 1994). The BTrans function is used with-
in the SMTrans(sm) function, which yields for a given sm statechart a LOTOS
specification.

Appendix A contains a skeleton of the SMTrans function. In this section only
the BTrans function is presented.

The transformation function SMTrans generates for a given statechart sm
LOTOS specification S, see Fig. 1. The roles of the processes and their gates are
described below.

The StateHandler process remembers an active state for each XOR box. The
gates putS and getS are used for setting and getting an active state for a given
XOR box, respectively.

The Synchroniser process locks reception of events by an entrance-state until the
state becomes stable, i.e. after completion of all (nested) entry actions. The locking is
constrained to the least common ancestor of the source and target states. The arcN

Transformation of dynamic aspects of UML models into LOTOS . . . 543

State
Handler

Complete >>
B_Trans

putS
getS

syn
arcN

arcN

Synchroniser

syn

putS
getS

S
arcN

Fig. 1. The structure of the specification S. The behaviour expression of the specification in-
stantiates three parallel processes: StateHandler, Synchroniser and the process which
is the sequential composition of the Complete process with a behaviour expression
resulting from application of the BTrans function.

and syn gates are used respectively to lock and unlock reception of events in a given
state.

The Complete process is responsible for the execution of the nested entry and
exit actions for composite states. The process performs the following operations:

1. for a given arca, it takes from the StateHandler an active box through the getS
gate, provided that typeB(source(a)) = XOR;

2. it executes the suitable (nested) exit actions in the source state;

3. it executes the suitable (nested) entry actions in the target state;

4. it sets a new active state or states (communication on the putS gate);

5. it unlocks reception of events in the least common ancestor of the source and
target states (communication on the syn gate).

A complete formal definition of the SMTrans transformation function is rather
lengthy; for further details we refer to Appendix A. The transformation upholds all
the assumptions made in Subsection 2.4. Furthermore, it is assumed that action names
and event names are unique, and the set of state names and the set of event names
are disjoint. Within the definition the names of transformation functions are written
in italics, while fragments of LOTOS specifications are written using a normal font.

The TO-LAB transitions are uniquely numbered, and the trigger function returns
for a given TO-LAB transition its number. The leaving(b) is a function that results
for a given state b in the set of arcA for that a ∈ A if source(a) = b.

We assume that card{a ∈ leaving(b) | typeA(a) = TO-LAB} ≤ 1 for a given
state b. The parallel and sequential compositions of behaviour expressions Pi, where
i ∈ I , belonging to the finite set of behaviour expressions, are described by

∏

i∈I Pi

544 B. Hnatkowska and Z. Huzar

and
∑

i∈I Pi, respectively, i.e.

∏

i=1,...,n

Pi = P 1[]P2[] · · · []Pn and
∑

i=1,...,n

Pi = P 1|||P2||| · · · |||Pn

BTrans(b) =

b[ExtArcN] if typeB(b) = PRIM

or typeB(b) = FIN,

BTrans
(

defaultB(b)
)

[¿b[ExtArcN]

if typeB(b) = XOR

for each b′ ∈ childB(b)

a new process definition

is generated by procD(b′),

∏

b′∈childB(b)

BTrans(b′)

[¿b[ExtArcN]

if typeB(b) = AND, for all b′ ∈ childB(b)

a new process definition is generated by procD∗(b′)

(6)

where

ExtArcN = list
(

{putS, getS, syn} ∪ ActionNames ∪ ArcN
)

, (7)

ActionNames =
⋃

b∈BoxN

(

ASNames
(

entry(b)
)

∪ ASNames
(

exit(b)
)

∪ASNames
(

do(b)
)

)

, (8)

EventArcN =
{

a ∈ ArcN • typeA(a) = EV-LAB
}

. (9)

The list(S) is a function that transforms a given set S into a list containing all
elements from S. The ASNames(a) is a function that, for a given sequence of actions
a, yields a set of actions names belonging to the sequence.

A process definition, representing a root state r, is an independent statechart
and has the form

process r[ExtArcN] : noexit := stop endproc. (10)

A function procD∗ for a given state b is defined as follows:

procD∗(b) = process b[ExtArcN] : noexit := stop endproc. (11)

A function procD for a given state b is defined as follows:

1. If typeB(b) = FIN then

procD(b) = process b[ExtArcN] : noexit := stop endproc. (12)

Transformation of dynamic aspects of UML models into LOTOS . . . 545

2. If typeB(b) 6= FIN then

ProcD(b) = process b[ExtArcN] : noexit :=

(DoTrans(b)TimeOut
(

leaving(b)
)

DisablingPart(b)

) AfterTimeOut
(

leaving(b)
)

endproc.

(13)

The functions that appear in the procD definition have the form:

DoTrans(b) =

do(b);

if do(b) is a non-empty sequence

of actions separated

with a semicolon,

an empty string otherwise,

(14)

DisablingPart(b) =

[>
(

∑

〈b,a,b′〉∈Arc

(

trigger (a); exit
)

if there exists

>> Complete [ExtArcN](a) x ∈ leaving(b)

>> BTrans(b′)
)

that typeA(x) =

EV-LAB,

an empty string otherwise,

(15)

TimeOut(A) =

stop if for each a ∈ A

typeA(a) = EV-LAB,

trigger(a); exit if there exits a ∈ A

such that typeA(a) = TO-LAB,

(16)

AfterTimeOut(A) =

>> Complete[ExtArcN](a) if there exists a ∈ A

>> BTrans
(

target(a)
)

such that

typeA(a) = TO-LAB,

an empty string otherwise.

(17)

4. Testing Examples

In order to verify the correctness of the transformation presented in the previous
section, an exhausted testing was carried out. First, according to the transformation
defined, testing statecharts were transformed by hand into executable LOTOS spec-
ifications. Next, the LOTOS specifications were tested by means of the modelling
package LOLA (Pavon et al., 1995).

In Figs. 2 and 3, we present only two simple examples of the tested statecharts.
The first example illustrates a statechart with a composite sequential state and with

546 B. Hnatkowska and Z. Huzar

a time-out transition. The second one illustrates a statechart with a composite con-
current state.

LOTOS specifications are rather lengthy, especially when statecharts contain
concurrent states. In Appendix B we present the final text of LOTOS specification
for the statechart of Fig. 2.

We assume that each simple state has entry and exit actions, represented by
appropriate gates, for example the ia gate enables an entry action performance for
box bA, and ea – an exit action performance for box bA.

bB

bD

bF bG

bE

bH bJ

bC

bA

g

f

j

h

c

Fig. 2. The statechart with a sequential composite state.

bA

bB

bC

bD

tm1

b1

a

b2

Fig. 3. The statechart with a concurrent composite state.

5. Conclusions

The paper discusses briefly the UML statecharts and presents a formalisation of their
semantics using the formal specification technique LOTOS (ISO, 1989). LOTOS spec-
ifications are formal, which enables their examination by algebraic means, and they
are executable, which enables their validation by testing. Unfortunately, LOTOS does
not enable real-time systems to be specified. Its new enhanced version E-LOTOS (ISO,
1997) enables a time representation and the modelling of time constraints. However,
up to now, there have been no programming tools supporting the development and
validation of E-LOTOS specifications. In LOTOS, we model real-time aspects of UML
statecharts using internal actions to represent time events.

Transformation of dynamic aspects of UML models into LOTOS . . . 547

We have concentrated on a subset of UML statecharts only; however, some exten-
sions of the subset are possible. For example, omitted flow data can be easily included
in an extended transformation.

A more difficult task is to take into account all kinds of states, because this entails
the complexity of a final specification. A similar problem is caused by crossing borders
of composite states by transition arrows. However, it seems that the maintenance of
this restriction should be a firm methodological recommendation.

Internal transitions in a state box as well as effect actions labelling transition
arrows can be easily taken into account. Another problem is related to the lack of de-
ferred events. A solution to the problem requires extension of the notion of statechart
configurations.

Our transformation of statecharts into LOTOS specifications is a modification
and an extension of the algebraic approach presented in (Uselton and Smolka, 1994).
In our approach, we took into account time transitions and, which was rather difficult,
exit and entry actions.

The correctness of the transformation is the main evaluation problem. Because
original semantics of UML statecharts is expressed informally, testing is the only way
to validate it. The validation was performed in the following way. First, according
to our transformation, exemplary statecharts were transformed into LOTOS speci-
fications. Next, by means of the LOLA package (Pavon et al., 1995), which enables
syntax checking and step-by-step execution of specifications, transition sequences were
generated. Finally, the obtained transition sequences of LOTOS specifications were
compared with respective transition sequences from original statecharts.

It is well-known that a LOTOS specification can be automatically transformed
into an (executable) program (Turner, 1993). So, our transformation may be treated
as a prototype implementation for UML statecharts.

The UML is still under development. The paper contributed to formalisation of
UML semantics, which is one of the most important demands.

References

Armstrong J. (1998): Industrial integration of graphical and formal specifications. — J. Syst.
Software, Vol.40, pp.211–225.

Booch G., Rumbaugh J. and Jacobson I. (1998): The Unified Modeling Language User Guide.
— Reading, Massachusetts: Addison-Wesley.

Douglass B.P. (1999): Doing Hard Time. Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns. — Reading, Massachusetts: Addison-Wesley

Harel D. (1987): Statecharts: A visual formalism for complex systems. — Science of Computer
Programming, Vol.8, No.3, pp.231–274.

Harel D., Pnueli A., Schmidt J. and Sherman R. (1987): On the formal semantics of state-
charts. — Proc. 2nd IEEE Symp. Logic in Computer Science, Ithaca, NY, pp.54–64.

548 B. Hnatkowska and Z. Huzar

Harel D. and Naamad A. (1996): The statemate semantics of statecharts. — ACM Trans.
Software Engineering Method, Vol.5, No.4.

Harel D. and Politi M. (1996): Modelling Reactive Systems with Statecharts: The Statemate
Approach. — Patent No.D-1100-43, i-Logix Inc.

International Standard Organisation (1989): International Standard ISO/IEC 9646 Infor-
mation Processing Systems—Open Systems Interconnection—LOTOS—A Formal De-
scription Technique Based on the Temporal Ordering of Observational Behaviour.

International Standard Organisation (1997): ISO/IEC JTC1/SC21 WG7—Final Committee
Draft on Enhacements to LOTOS.

Pavon S., Larrabeiti D. and Rabay G. (1995): LOLA—LOTOS Laboratory, User Manual.
— Departamento de Ingenieria Telematica, Universidad Politechnica de Madrid, LO-
LA/NS/V10.

Pnueli A. and Shalev M. (1991): What is in a step: On the semantics of statecharts, In:
Theoretical Aspects of Computer Software (T. Ito and A.R. Meyer, Eds.). — Berlin:
Springer, pp.244–264.

Turner K.J. (Ed.) (1993): Using Formal Description Techniques. — Chichester: Wiley.

Unified Modelling Language (1998): UML Semantics Vol.1.3. — Rational Software Corpo-
ration.

Uselton A.C. and Smolka S.A. (1994): A process algebraic semantics for statecharts via state
refinement, — Proc. IFIP Working Conf. Programming Concepts, Methods and Calculi
(PROCOMET), State University of New York at Stony Brook, pp.262–281.

Appendix A

Definition of the SMTrans Function

SMTrans(ms) =

specification S[list(ActionNames ∪ EventArcN)]: noexit
type ArcNames is
sorts arcN
opns

ai : −> arcN (* for each ai ∈ ArcN such that typeA(ai) = EV-LAB *)

trigger(tmi) : −> arcN (* for each tmi ∈ ArcN such that typeA(tmi) = TO-LAB *)

default : −> arcN (* points to the default initial state *)
endtype

type BoxNames is
sorts boxN
opns

bi : −> boxN (* for each bi ∈ BoxN *)
endtype

behaviour

hide putS , getS, syn, list({trigger (tmi)}) in
(* for each tmi ∈ ArcN that typeA(tmi) = TO-LAB *)

Transformation of dynamic aspects of UML models into LOTOS . . . 549

(
StateHandler[putS, getS]

—[putS, getS]—
(Complete[ExtArcN](default) >>
(BTrans(r)) (* where r is the name of the root state *)

)
—[syn, list(ArcN)]—
Synchroniser[syn, list(ArcN)](TrueList)

)
where

process Synchroniser[syn, list(ArcN)](BoxList): noexit:=
LetExpression (r) (* where r is a name of the root state *)
(
∑

b∈BoxN•typeB(b)=PRIM or typeB(b)=FIN
(

syn !boxN(b); Synchroniser[syn, list(ArcN)](ChangeBoxList (b)))
[]
∑

a∈ArcN•b=source(a)
([b]−>

trigger (a); Synchroniser[syn, list(ArcN)](ChangeBoxList(target(a))))
)
endproc (* Synchroniser *)

process StateHandler[putS, getS]: noexit :=
∏

b∈BoxN•typeB(b)=XOR
b[putS, getS](default(b))

where

process bi[putS, getS](s : boxN): noexit :=
(* for each bi ∈ BoxN • typeB(bi) = XOR *)

getS !bi !s; bi[putS, getS](s)
[]
∑

a∈choldB(bi)
putS !bi !a; bi[putS, getS](a)

endproc (* bi *)

endproc (* StateHandler *)

process Complete[ExtArcN](s : arcN): exit :=
([s=default] −>
Entryr[ExtArcN];
SetdefaultBox(r); (* where r is a name of the root state *)

exit)

[]
∑

a∈ArcN
(([s = a]−> (* reception of an event *)

(* the state becomes unstable *)

Exitsource(a)[ExtArcN]; (* execution of appropriate entry actions *)

Entrytarget(a)[ExtArcN]; (* execution of appropriate exit actions *)

SetDefaultBox(target(a)); (* setting of a new active state *)

SetStableBox(target(a)); (* unlocking reception of events *)

(* the state becomes stable *)

exit))

endproc (* Complete *)

550 B. Hnatkowska and Z. Huzar

(* definitions of processes that execute an entry action in a given bi state *)

process Entrybi[ExtArcN] : exit := (* for each bi ∈ BoxN • typeB(bi) = PRIM *)

entry(bi) exit (* the entry function returns a sequence *)

endproc (* of entry actions, separated and ended *)

(* with a semicolon *)

process Entrybi[ExtArcN]: exit := (* for each bi ∈ BoxN • typeB(bi) = FIN *)
exit

endproc

process Entrybi[ExtArcN] : exit := (* for each bi ∈ BoxN • typeB(bi) = XOR *)

entry(bi) Entrydefault(bi) (* the entry function returns a sequence *)

endproc (* of entry actions, separated and ended *)

(* with a semicolon *)

process Entrybi[ExtArcN] : exit := (* for each bi ∈ BoxN • typeB(bi) = AND *)

entry(bi) (* the entry function returns a sequence *)

[(
∏

a∈childB(b)
Entrya[ExtArcN]) (* of entry actions, separated and ended *)

endproc (* with a semicolon *)

(* definitions of processes that execute an exit action in a given bi state *)

process Exitbi[ExtArcN] : exit := (* for each bi ∈ BoxN • typeB(bi) = PRIM *)

exit(bi) exit (* the exit function returns a sequence *)

endproc (* of exit actions, separated and ended *)

(* with a semicolon *)

process Exitbi[ExtArcN] : exit := (* for each bi ∈ BoxN • typeB(bi) = FIN *)
exit

endproc

process Exitbi[ExtArcN] : exit := (* for each bi ∈ BoxN • typeB(bi) = XOR *)

(* bi 6= root *)

getS !bi ?s : boxN;

(
∑

a∈childB(bi)
([s = a]−> Exita[ExtArcN])

); exit(bi) exit (* the exit function returns a sequence *)

endproc (* of exit actions, separated and ended *)

(* with a semicolon *)

process Exitbi[ExtArcN] : exit := (* for each bi ∈ BoxN • typeB(bi) = AND *)

(
∏

a∈choldB(bi)
Exita[ExtArcN] (* the exit function returns a sequence *)

); exit(bi) exit (* of exit actions, separated and ended *)

endproc (* with a semicolon *)

(* definitions of the processes generated by procD, and procD∗ functions *)
(* definition of the root state process r *)
endspec

Transformation of dynamic aspects of UML models into LOTOS . . . 551

The SMTrans function uses auxiliary functions defined as follows:

SetdefaultBox (b) =

putS !b′ !b; if typeB(b) = PRIM

or typeB(b) = FIN

and ∃b′ ∈ BoxN • b ∈ childB(b′)

and typeB(b′) = XOR

putS !b′ !b; if typeB(b) = XOR and

SetdefaultBox (default(b)) ∃b′ ∈ BoxN • b ∈ childB(b′)

and typeB(b′) = XOR

SetdefaultBox (default(b)) if typeB(b) = XOR and

¬∃b′ ∈ BoxN • b ∈ childB(b′)

and typeB(b′) = XOR

putS !b′ !b; if typeB(b) = AND

and bi ∈ childB(b)

SetdefaultBox (b1) . . . and ∃b′ ∈ BoxN • b ∈ childB(b′)

SetdefaultBox (bk) and typeB(b
′) = XOR

SetdefaultBox (b1) . . . if typeB(b) = AND

SetdefaultBox (bk) and bi ∈ childB(b)

and ¬∃b′ ∈ BoxN • b ∈ childB(b′)

and typeB(b′) = XOR

(18)

SetdefaultBox (b) =

syn !b; if typeB(b) = PRIM

or typeB(b) = FIN

SetdefaultBox (default(b)) if typeB(b) = XOR

SetdefaultBox (b1) . . . if typeB(b) = AND

SetdefaultBox (bk) and b
′ ∈ childB(b)

(19)

LetExpression (b) =

LetExpression (b1) . . .LetExpression(bk)

Let b : bool = (b1 and . . . and bk) in if typeB(b) = XOR

or typeB(b) = AND

and bi ∈ childB(b)

an empty string otherwise

(20)

TrueList = true1, . . . , truek k = card
(

{b ∈ BoxN • typeB(b) = PRIM

or typeB(b) = FIN}
)

(21)

BoxList = b1 : bool, . . . , bk : bool Where b1, . . . , bk = list
(

{b ∈ BoxN •

typeB(b) = PRIM or typeB(b) = FIN}
)

(22)

ChangeBoxList (b) = Where b1, . . . , bk = list
(

{b ∈ BoxN •

if-not(b, b1), . . . , if-not(b, bk) typeB(b) = PRIM or typeB(b) = FIN}
)

(23)

552 B. Hnatkowska and Z. Huzar

If-not(b1, b2) =

b2 if b1 6= b2 and (b2 6∈ childB
∗(b1)

or
(

b2 ∈ childB(b1)

and defaultB(b1) 6= b2)
)

not(b2) if b1 = b2

if-not
(

default(b1), b2
)

if typeB(b1) = XOR

and b2 ∈ childB
∗(b1)

if-not(b3, b2) if typeB(b1) = AND

and b3 childB(b1)

and b2 ∈ childB
∗(b3)

(24)

The SetdefaultBox and SetStableBox functions generate fragments of the be-
haviour expression within the Complete process definition.

The other functions are related to the Synchroniser process definition. Their
formal and actual parameters are described by the BoxList and TrueList functions,
respectively. The number of formal (actual) parameters is the total number of PRIM
and FIN states. The variables b1, . . . , bk of the sort bool, contained in the Let expres-
sion (the LetExpression function), represent the state of the corresponding composite
states. If bi is true, this means that the respective state is stable, otherwise the state
is unstable. The variables are evaluated on the basis of actual parameters of the Syn-
chroniser process. The composite state is stable only if all of its substates are stable.
A simple target state is unstable until actions performed during the transition have
been completed.

Appendix B

An Exemplary Specification Resulting from

the SMTrans Function

Specification S[ia,ea,ib,eb,ic,ec,b1,b2,a]: noexit

library Boolean endlib

type ArcNames is

sorts arcN

opns

b1,b2,a :−> arcN

tm1 :−> arcN

default :−> arcN

endtype

type BoxNames is

sorts boxN

Transformation of dynamic aspects of UML models into LOTOS . . . 553

opns bA, bB, bC, bD :−> boxN

endtype

behaviour

hide putS, getS, syn, tm1 in

(* time-out transitions are hidden *)

(

StateHandler[putS, getS]

|[putS, getS]|

(

Complete[putS,getS,syn,ia,ea,ib,eb,ic,

ec,b1,b2,a,tm1](default) >>

(bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

[> bD[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

)

)

|[syn,b1,b2,a,tm1]|

Synchroniser[syn,b1,b2,a,tm1](true, true, true)

)

where

process Synchroniser[syn,b1,b2,a,tm1](A,B,C: bool): noexit :=

let bD: bool = (A and B and C) in

(syn !bA; Synchroniser[syn,b1,b2,a,tm1](not(A),B,C)

[]

syn !bB; Synchroniser[syn,b1,b2,a,tm1](A,not(B),C)

[]

syn !bC; Synchroniser[syn,b1,b2,a,tm1](A,B,not(C))

[]

[A] −> b1; Synchroniser[syn,b1,b2,a,tm1](A,not(B),C)

[]

[A] −> tm1; Synchroniser[syn,b1,b2,a,tm1](A,B,not(C))

[]

[B] −> a; Synchroniser[syn,b1,b2,a,tm1](not(A),B,C)

[]

[C] −> b2; Synchroniser[syn,b1,b2,a,tm1](A,not(B),C)

)

endproc (* Synchroniser *)

process StateHandler[putS, getS]: noexit :=

bD[putS, getS](bA)

where

process bD[putS, getS](s: boxN): noexit :=

getS !bD !s; bD[putS, getS](s)

[]

554 B. Hnatkowska and Z. Huzar

putS !bD !bA; bD[putS, getS](bA)

[]

putS !bD !bB; bD[putS, getS](bB)

[]

putS !bD !bC; bD[putS, getS](bC)

endproc (* bD *)

endproc (* StateHandler *)

process Complete[putS,getS,syn,ia,ea,ib,eb,ic,ec,

b1,b2,a,tm1](s: arcN): exit :=

([s=default] −>
EntrybD[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> putS !bD !bA; exit

)

[]

([s=b1] −>
ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> putS !bD !bB; syn !bB; exit

)

[]

([s=b2] −>
ExitbC[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> putS !bD !bB; syn !bB; exit

)

[]

([s=a] −>
ExitbB[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> putS !bD !bA; syn !bA; exit

)

[]

([s=tm1] −>
ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> EntrybC[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

>> putS !bD !bC; syn !bC; exit)

endproc

(* ---------------- entry and exit ----------------*)

process EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]: exit :=

ia; exit

endproc

Transformation of dynamic aspects of UML models into LOTOS . . . 555

process ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]: exit :=

ea; exit

endproc

process EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]: exit :=

ib; exit

endproc

process ExitbB[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]: exit :=

eb; exit

endproc

process EntrybC[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]: exit :=

ic; exit

endproc

process ExitbC[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]: exit :=

ec; exit

endproc

process EntrybD[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]: exit :=

EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

endproc

(* ------------- processes definitions ------------- *)

process bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]:

noexit :=

((* DoTrans is empty *)

tm1; exit (* Time Out *)

[> (* Disabling Part *)

((b1; exit)

>> Complete[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1](b1)

>> bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

)

) (* After Time-Out *)

>> Complete[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1](tm1)

>> bC[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

endproc

process bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]:

noexit :=

(stop (* Time Out *)

[> (* Disabling Part *)

((a; exit)

>> Complete[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1](a)

>> bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

)

556 B. Hnatkowska and Z. Huzar

) (* After Time Out is empty *)

endproc

process bC[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]:

noexit :=

(stop (* Time Out *)

[> (* Disabling Part *)

((b2; exit)

>> Complete[putS,getS,syn,ia,ea,ib,eb,ic, ec,b1,b2,a,tm1](b2)

>> bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]

)

) (* After Time Out is empty *)

endproc

process bD[putS,getS,syn,ia,ea,ib,eb,ic,ec,b1,b2,a,tm1]:

noexit :=

stop (* root *)

endproc

endspec

Received: 17 April 2000
Revised: 12 December 2000

