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ROBUST IDENTIFICATION OF PARASITIC

FEEDBACK DISTURBANCES FOR LINEAR

LUMPED PARAMETER SYSTEMS

Vyacheslav MAKSIMOV∗, Luciano PANDOLFI∗∗

We study the problem of identification of an input to a linear finite-dimensional
system. We assume that the input has a feedback form, which is related to a
problem often encountered in fault detection. The method we use is to embed the
identification problem in a class of inverse problems of dynamics for controlled
systems. Two algorithms for identification of a feedback matrix based on the
method of feedback control with a model are constructed. These algorithms are
stable with respect to noise-corrupted observations and computational errors.

Keywords: input identification, feedback control, fault detection

1. Introduction

Our basic assumption throughout the paper is that we know the matrices C and A
of a given linear finite-dimensional system

ẋ = Ax + u, y = Cx, (1)

where x ∈ � q and A is a q× q matrix, y ∈ � p , and C is a p× q matrix. However,
the initial condition x0 = x(0) is unknown. The q-vector u describes a disturbance
which is unknown and which we want to estimate based on the measurements taken
during the evolution of the system. Moreover, we assume that the disturbance u has
a feedback form, i.e.

u = Fx, (2)

due to unmodelled components of systems, e.g. due to parasitic couplings or viscous
dampings. What is more, unknown inputs of the form (2) are encountered in the
problem of fault detection: it may happen that the nominal value of u is 0 while
u = Fx 6= 0 is due to a failure of an internal component of the system, e.g. an
interconnection which transforms to zero some component of the matrix A.
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We formulate the following problem: Let the values of y(t) be read on [0, T ] at
discrete time instants τi = iT/n. The measurements are affected by errors so that at
time τi we obtain a vector

ξi = Cx(τi) + zi, ‖zi‖ < h, (3)

where h is a prescribed tolerance. The aim of this paper is to propose a method for
the reconstruction of the input u(·) within a certain tolerance µ, i.e. we want to
construct a function v(·) on [0, T ] such that

‖u∗(t)− v(t)‖L2(0,T ) ≤ µ,

on the basis of the information (2). Here u∗(·) is a function which produces the same
output as u(·). We shall see that u∗(·) turns out to have a feedback form so that
v(·) is (within a certain tolerance) a feedback too.
Summarizing, the goal of this paper is to solve the identification problem for

unknown parameters of system (1), (2). The literature on this subject, for both con-
tinuous and discrete-time systems, is abundant, see, e.g. (Unbehauen, 1990) and the
references therein.

We shall present two algorithms for identification of the matrix F . The recon-
struction procedure that we use in the first case is inspired by the methods used
in (Osipov and Kryazhimskii, 1995) for input reconstruction when the input belongs
to a known convex bounded closed set of L2(0, T ;

� n). We note that our feedback
input u(t) = Fx(t) indeed belongs to a bounded subset of L2(0, T ;

� n), but this
subset is not known, since it depends on the initial datum x(0) and, what is most
important, on the unknown feedback F as well. Hence this set will not enter directly
into the reconstruction process until the proof of Theorem 9.

The second algorithm is based on constructions from (Blizorukova and Maksimov,
1997; Kryazhimskii, 1999; Kryazhimskii and Osipov, 1987; Kryazhimskii et al., 1997)
and, in essence, it also uses the principle of feedback control with a model. It assumes
that F belongs to a known set (which is not restrictive from the point of view of
fault detection) and that C = I .

2. The First Method

The presentation of the first identification method is split into several parts, each in
a subsection, whose results are of independent interest.

2.1. A Simplified Version of the Problem

As has already been stated, we assume that we know the q×q matrix A of the linear
system

ẋ = Ax+ u, u(t) = Fx(t), y = Cx, (4)
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while the feedback matrix F is unknown. Let us now observe that the matrices A
and F in (4) play similar roles. Hence, instead of (4), we can consider the simplified
problem

ẋ = ũ, y = Cx, (5)

ũ(t) = (A+ F )x(t). (6)

It is clear that, once ũ(·) is identified from (5), the quantity x̃(·) is known and we
can obtain F x̃(·) as ũ(·) − Ax̃(·). Thus it is not restrictive to assume that A = 0,
and we adopt this assumption in what follows.

We used ũ(·) to denote the special input (A + F )x(·) = Fx(·). For clarity, we
shall use the redundant symbol x̃(·) = x̃(·;x0) to denote the solution of the differential
equation (5), and ỹ = Cx̃.

We observe that the feedback control (6) is smooth and bounded. So, our first
step will be the study of a more general problem: we shall investigate the problem of
approximation of an input ũ(·) (equivalently, the approximation of dx̃(·)/dt) which
acts on system (5), on the assumption that it is bounded, differentiable and with
bounded derivative (the boundedness of the derivative is used in Section 2.3 in order to
obtain quantitative estimates) without any reference to its feedback form. This will be
outlined in Sections 2.2 and 2.3. In Sections 2.4 and 3, we shall make explicit use of the
assumption that ũ(·) has a feedback form, and we shall present two (non-recursive!)
procedures for the approximation of the matrix F (or, more general, A+ F ).

2.2. The Reconstruction Procedure

In this section we shall study the simplified problem described by (5) with bounded
input ũ(·). We associate the following auxiliary model to system (5):

ẇ = v, w(0) = w0, r = Cw. (7)

Moreover, we choose any w0 such that

‖Cx0 − Cw0‖ ≤ h.

The idea of the reconstruction process is as follows: We fix a number n and the
observation instants τi = iT/n. We assume that the input ũ(·) was estimated on
[0, τi). In order to estimate the input on the next interval [τi, τi+1), we feed a test
input v(·) to the auxiliary system (7) and we compare its output with the measured
output of the given system (5). Among all the possible inputs v(·) on [τi, τi+1), we
choose the one that reduces a certain functional of the error as much as possible, as
described below.

We introduce the functional

ε(t) = ‖r(t)− ỹ(t)‖2 + α
∫ t

0

[‖v(s)‖2 − ‖u∗(s)‖2] ds,

where w(t) = w(t; ξ0, v), and u∗(·) denotes the input of minimal L2-norm, which
gives the output ỹ(·). Clearly, u∗(t) is, for every t, the projection of ũ(t) on [kerC]⊥.
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Hence u∗(·) is bounded on [0, T ]. The values of ε(t) cannot be computed since they
depend on the unknown values of u∗(·) and x̃(·). We try to choose v(·) in such a
way that ε(τi) satisfies a difference equation of the following form:

ε(τi+1) = ε(τi) + O(δ
2) + O(δh).

If this can be achieved, then it will be possible to proceed as in (Osipov and
Kryazhimskii, 1995), in order to prove that the input v(·) so chosen approximates
u∗(·) = Fx(·), see Section 2.3.
Let us represent ε(τi+1) as follows:

ε(τi+1) =

∥
∥
∥
∥
r(τi)− ỹ(τi)+C

∫ τi+1

τi

[v(s)− u∗(s)] ds
∥
∥
∥
∥

2

+α

∫ τi

0

[‖v(s)‖2 − ‖u∗(s)‖2] ds

+ α

∫ τi+1

τi

[‖v(s)‖2 − ‖u∗(s)‖2] ds = ε(τi) +
∥
∥
∥
∥

∫ τi+1

τi

C[v(s)− u∗(s)] ds
∥
∥
∥
∥

2

+

{∫ τi+1

τi

{2〈C∗[r(τi)− ỹ(τi)], v(s)−u∗(s)〉+α[‖v(s)‖2−‖u∗(s)‖2]} ds
}

= ε(τi)+

∥
∥
∥
∥

∫ τi+1

τi

C[v(s) − u∗(s)] ds
∥
∥
∥
∥

2

+

∫ τi+1

τi

2〈C∗[ξi − ỹ(τi), v(s)−u∗(s)〉 ds

+

{∫ τi+1

τi

{2〈C∗[r(τi)− ξi], v(s)−u∗(s)〉+α[‖v(s)‖2−‖u∗(s)‖2]} ds
}

. (8)

Here and below the symbol 〈·, ·〉 stands for the scalar product in � q . We choose v(·)
on the interval [τi, τi+1) in such a way that the quantity in the last braces is negative.
Hence, we choose v(·) in such a way that

v|[τi,τi+1)(·) = argmin
∫ τi+1

τi

{2〈C∗[r(τi)− ξi], v(s)〉+ α‖v(s)‖2} ds.

It is easily seen that this minimum exists, since the quadratic functional is coercive,
and that

v|[τi,τi+1](s) = −
1

α
C∗[r(τi)− ξi], s ∈ [τi, τi+1]. (9)

This shows that the input v(·), a candidate approximation of u∗(·), is piecewise
constant on [0, T ].

As has already been stated, the procedure just described is thoroughly analyzed
in (Osipov and Kryazhimskii, 1995) and used in several papers, see, e.g. (Maksimov
and Pandolfi, 1995), but with an essential difference: in those papers a convex compact
set U∗ in which u∗(·) took its values was known a priori. In that case, the values of
v(·) were taken in the same set. (See (Fagnani and Pandolfi, 2000) for a (different)
approach, where boundedness is not used.) In turn, in the present setup the input
u∗(·) is bounded, but its norm is unknown. So we must give a priori estimates on
the norm of v(·), only on the basis of the minimization procedure described above.
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Lemma 1. Let u∗(·) be bounded. Then there exists a number N such that
‖x̃(t;x0)‖ ≤ N‖x0‖, ‖ξi‖ ≤ N‖x0‖+ h. (10)

Moreover, with δ = 1/n, we have

‖x̃(τi+1;x0)− x̃(τi;x0)‖ ≤ Nδ.

Note that as the number N depends on x0 and u∗(·), it cannot be computed
but it does exist.

The vector x0 is fixed, its norm being less than ||ξ1||+h, so that we can replace
N ||x0|| with a new constant N . In fact, the symbol N in the following will be used
to denote a number which may be unknown, and which may depend on x0 and u∗(·).
The important thing is its existence, and the fact that it does not depend on the
values of n, h and α.

In conclusion, we write the inequalities in (10) as ‖x(t;x0, ũ)‖ ≤ N and ‖ξi‖ ≤
N . Now we replace the expression that we found in (9) for v(·) in (7). With δ = 1/n
we obtain

w(τi+1) = w(τi)−
1

α

∫ τi+1

τi

C∗[r(τi)− ξi] ds = w(τi)−
δ

α
C∗[r(τi)− ξi],

so that

r(τi+1)− ξi+1 =
[

I − δ
α
CC∗
]

[r(τi)− ξi] + ξi − ξi+1.

An orthogonal coordinate transformation in the output space transforms CC∗

to the form CC∗ = diag[H, 0], where H is diagonal and its eigenvalues are larger
than a certain number ρ > 0. This transformation does not affect the norm of the
vectors ηi = r(τi)− ξi. We represent η = col[η′, η′′] in the same manner and get

η′(τi+1) =

(

1− δH
α

)

η′(τi) + ξ
′
i − ξ′i+1,

η′′(τi+1) = η
′′(τi) + ξ

′′
i − ξ′′i+1.

This implies

‖η′(τi+1)‖ ≤ ‖η′(0)‖+
i∑

k=0

(

1− ρδ
α

)i−k

‖ξ′k − ξ′k+1‖ ≤ h+Nα[1 + nh],

‖η′′(τi+1)‖ ≤ ‖η′′(0)‖+
i∑

k=0

‖ξ′k − ξ′′k+1‖ ≤ h+Nn(δ + h) ≤ h+N(1 + nh).

It follows that {η(τi)} is a bounded sequence uniformly with respect to n, h and α
if the reconstruction algorithm is chosen so as to satisfy the following rule:







We fix any M > 0 and, for any n,

choose h = hn > 0 such that nh < M .

Moreover, we impose the restriction h/α < 1.

(11)



840 V. Maksimov and L. Pandolfi

Lemma 2. Let (11) hold. Then there exists a number N (independent of h, n and
α as long as the condition nh < M holds) such that

‖r(τi+1)− ξi‖ ≤ N, ‖C∗[r(τi)− ξi]‖ ≤ h+Nα.
Lemma 3. Let (11) hold. The input v(·) constructed from (9) satisfies the following
inequality on [0, T ]:

‖v(s)‖ ≤ N, (12)

where N does not depend on n, h and α.

Lemma 4. Let (11) hold. Then there exists a constant N such that for all t ∈ [0, T ]
we have

‖v(t)‖ ≤ N, ‖w(t)‖ ≤ N, ‖w(t)− w(t′)‖ ≤ N |t− t′|.
Now we complete our estimate of ε(t). For that purpose, we go back to (8). The

control v(·) was chosen such that the expression braces is negative. Hence we have

ε(τi+1) ≤ ε(τi) +
∥
∥
∥
∥

∫ τi+1

τi

C[v(s)− u∗(s)] ds
∥
∥
∥
∥

2

+

∫ τi+1

τi

{2〈C∗[ξi − ỹ(τi), v(s)− u∗(s)〉 ds.

We use estimate (12), condition (11) and the pointwise boundedness of u∗(·) (hence
that of u∗(·) too). It follows that the first integral is less than const ·δ2. In turn, the
last term is less than const ·δh. This gives the required estimate of ε(t) for t = τi.
Consequently, as in (Maksimov and Pandolfi, 1995), we have the following result:

Lemma 5. There exist positive numbers c and d such that ε(τi) ≤ cδ + dh. These
numbers do not depend on n, h and α as long as (11) holds.

Now, we extend the previous inequality from the numbers τi to every t ∈ [0, T ].
Theorem 1. Let (11) hold. Then there exist constants c and d which do not depend
on n, α and h such that ε(t) ≤ cδ + dh.
Proof. We estimate ε(t) for t ∈ [τi, τi+1) as follows:

ε(t) = ‖r(t)− ỹ(t)‖2 + α
∫ t

0

[‖v(s)‖2 − ‖u∗(s)‖2] ds

≤ ε(τi) + ‖
∫ t

τi

C[v(s)− u∗(s)] ds‖2

+ 2
〈

r(τi)− ỹ(τi),
∫ t

τi

C[v(s) − u∗(s)] ds
〉

+ α

∫ t

τi

[‖v(s)]‖2 − ‖u∗(s)‖2] ds.

The conclusion follows from the boundedness of v(·) and u∗(·).
Now we have a certain function v(·). We have presented it as an ‘approximant’ of

u∗(·), but we have not justified this claim yet. This will be done in the next section.
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2.3. Input Identification

In the previous section we have constructed a certain input v(·) and asserted that it
is an ‘approximation’ of u∗(·). Now we justify this claim. We maintain our assump-
tion (11) so that we can use all the estimates obtained in the previous section. In par-
ticular, we know that v(·) satisfies the estimate (12). From (11) we get the existence of
a constant N , which does not depend on n, h and α, such that ‖v(t)‖ ≤ N , see Lem-
ma 4, and that u∗(·) is bounded too. Hence the integral

∫ t

0 [‖v(t)‖2−‖u∗(t)‖2] dt ≥ −e
(where e ≥ 0) does not depend on n, h and α, so that we have the following result:

Theorem 2. Let the algorithm satisfy (11). Then, for each t ∈ [0, T ], we have

‖r(t) − ỹ(t)‖2 ≤ cδ + dh+ eα, (13)

∫ t

0

{‖v(s)‖2 − ‖u∗(s)‖2} ds ≤ (cδ + dh)α−1.

The previous formulae can be used as in (Maksimov and Pandolfi, 1995) in order
to prove that if α = αn → 0 and h = hn → 0, then vn(·) = v( · ; 1/n, hn, αn)
converges to u∗(·) in L2(0, T ), provided that the algorithm satisfies the additional
condition

(δ + hn)αn
−1 → 0. (14)

But we want to obtain some quantitative estimates. Thus, at this point, we use the
further property that u∗(·) is continuously differentiable with bounded derivatives.
This is clearly satisfied if ũ(·) is of class C1, since the regularity of ũ(·) is inherited by
its projection u∗(·) on [kerC]⊥. We note explicitly that this regularity assumption on
ũ(·) has not been used yet. Of course, the assumption of differentiability is satisfied
when the input has a feedback form.

As we are looking for convergence estimates, we can work on any suitable basis in
both the state and output spaces. In fact, invertible changes of coordinates correspond
to the use of different but equivalent norms. Hence we use new reference systems
in the state and output spaces such that the output operator C takes the form
C = [ I 0 ], and we recall that both v(·) and u∗(·) take values in [kerC]⊥ so that,
in the coordinate systems just described, we have ‖Cv(t)‖ = ‖v(t)‖ and ‖Cu∗(t)‖ =
‖u∗(t)‖.
Now we estimate ‖v(·)−u∗(·)‖2L2(0,T ). We use the same argument as in (Maksimov

and Pandolfi, 1995, Sec. 5) and the following lemma, which is a special instance of
(Osipov and Kryazhimskii, 1995; Maksimov, 1994):

Lemma 6. Let f(·) and g(·) be two vector-valued functions defined on [0, T ]. Let ν
be a number such that

∥
∥
∥
∥

∫ t

0

f(s) ds

∥
∥
∥
∥
≤ ν.



842 V. Maksimov and L. Pandolfi

Assume that g(·) is continuously differentiable, with ‖g(t)‖ ≤ N and ‖g′(t)‖ ≤ N
on [0, T ]. Then we have

∥
∥
∥
∥

∫ t

0

g∗(s)f(s) ds

∥
∥
∥
∥
≤ 2Nν.

We use this lemma in order to estimate ‖Cv(·)− Cu∗(·)‖L2(0,T ). We obtain

‖Cv(·)−Cu∗(·)‖2L2(0,T ) = ‖Cv(·)‖2L2(0,T )+‖Cu∗(·)‖2L2(0,T )−2
∫ T

0

[Cu∗(s)]
∗Cv(s) ds

≤ 2‖Cu∗(·)‖2L2(0,T )−2
∫ T

0

[Cu∗(s)]
∗Cv(s) ds+(cδ + dh)α−1

≤ 2
∫ T

0

[Cu∗(s)]
∗C[u∗(s)− v(s)] ds+(cδ + dh)α−1.

The function u∗(·) is bounded and continuously differentiable, with bounded deriva-
tive. Moreover,

∫ t

0

C[u∗(s)− v(s)] ds = [ỹ(t)− r(t)] − [Cx(0)− Cw(0)].

We use (13) and obtain
∥
∥
∥
∥

∫ t

0

C[u∗(s)− v(s)] ds
∥
∥
∥
∥
≤ ‖ỹ(t)− r(t)‖ + ‖y(0)− r(0)‖ ≤

√
cδ + dh+ eα+ h.

Applying Lemma 6 with g(s) = u∗(s) and f(s) = u∗(s)− v(s), we get the existence
of a constant N which does not depend on n, h and α, such that

∥
∥
∥
∥
∥

∫ T

0

[u∗(s)− v(s)]∗u∗(s) ds
∥
∥
∥
∥
∥
≤ N{

√
cδ + dh+ eα+ h},

see (Osipov and Kryazhimskii, 1995). We write

σ2 =
√
cδ + dh+ eα+ h+

cδ + dh

α
. (15)

Combining the previous inequalities, we get the following result:

Theorem 3. Let the algorithm satisfy conditions (11) and (14), and let ũ(·) be of
class C1. There exists a constant N which does not depend on n, h and α such
that the input v(·) constructed in the previous section satisfies

‖v(·)− u∗(·)‖L2(0,T ) ≤ Nσ.

The previous result holds under the regularity assumption that ũ(·) is a C1
function (even a function of bounded variation would do). The fact that ũ(·) has a
feedback form has not been used in its full strength. Now we observe that if ũ(·)
is a feedback, then u∗(·), being the pointwise projection of ũ(·) on [kerC]⊥, has a
feedback form too. Hence we obtain the following result:
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Theorem 4. Let u(t) = Fx(t) and the chosen algorithm satisfy the prescribed com-
patibility conditions (11) and (14). Under these conditions, v0(·) = lim v(·) exists in
L2(0, T ) as n → +∞, h → 0 and α → 0. Moreover, v0(·) is a feedback control,
v0(t) = u∗(t) = PFx(t), where P is the orthogonal projection on [kerC]

⊥.

2.4. The First Algorithm of Reconstructing the Feedback Matrix

In the previous sections we have presented a recursive algorithm that identifies the
input of a linear finite-dimensional system, on the assumption that the input signal
is in a feedback form, see Theorem 4. In this case the identified input is in a feedback
form too. The algorithm is based on a fixed evolution of the system, as produced
by a fixed (and only partially known) initial condition. Of course, different initial
conditions produce different evolutions of the system, so that if it happens that the
initial condition x0 is an eigenvector of the matrix (A + F ) in (5), then in fact
we identify the ‘input’ eλtx0, where λ is the corresponding eigenvalue. In order to
identify as many coefficients of the feedback matrix as possible, we need to have the
possibility of performing several experiments on the system. Hence, in this section, we
assume that this is possible, make explicit use of the fact that the input u∗(·) has a
feedback form, u∗(t) = F x̃(t), and present an identification procedure for the matrix
F . (In this section we use F for the general feedback matrix. It will be, for example,
u∗(t) = P (A+ F )x̃(t), where P projects on [kerC]

⊥, and A, F are the matrices of
Section 2.1)

We keep the assumptions (11) and (14) so that we can use the estimates presented
in the previous sections. We recall them explicitly as

hn → 0, αn → 0, hn/αn → 0, 1/nαn → 0.

These conditions imply that σn → 0, see its definition (15).
We denote by wn(·) and vn(·) the functions which are constructed at iteration

n. Later on, we must also explicitly indicate the initial value, say w0, of wn(·). We
shall thus write wn(·;w0) and vn(·;w0).
For simplicity, we proceed in two steps and, as in the previous sections, we perform

coordinate transformations in the state and output spaces, which reduces the matrix
C to the form C = [ I 0 ]. In this way, the system can be represented as

d

dt

[

x′

x′′

]

=

[

F ′ F ′′

G′ G′′

] [

x′

x′′

]

, y = x′, x′(0) = x′0, x
′′(0) = x′′0

for suitable matrices F ′, F ′′, G′, G′′. Clearly, we cannot hope to identify every entry
of the matrix F . Hence we represent the first component of the system in the form

ẋ′ = F ′x′ + g(t;x′0, x
′′
0), y = x′

and, correspondingly,

ẇ′ = v′, r = w′.
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We prove first of all that if it happens that F ′′ = 0, then we can approximate F ′.
The analysis of this case is equivalent to that of a system with full-state observation.
For notational simplicity, we suppress the primes and denote it as

ẋ = Fx, y = x.

2.4.1. Full State Observation

Recall the L2-convergence of {vn(·)} to u∗(·). Moreover, there exists a number N ,
independent of n, hn and αn, and a sequence {χn} which converges to 0 such that

‖Fwn(·)− vn(·)‖L2(0,T ) ≤ χn. (16)

This follows from the estimate

‖Fwn(·)− vn(·)‖L2(0,T )
≤ ‖F [wn(·)− x̃(·)]‖L2(0,T ) + ‖F x̃(·)− vn(·)‖L2(0,T )

≤ ‖F [wn(·)− x̃(·)]‖L2(0,T ) + ‖u∗(·)− vn(·)‖L2(0,T )
≤ N{σn + cδ + dh+ eα} = χn,

from (13), Theorem 3 and the fact that we know u∗(·) = ũ(·), since we consider
C = I .

Remark 1. Observe that χn = χn(x0) depends on the initial condition x0.

Now we present the reconstruction of the matrix F . We note that the set of the
q × q matrices can be considered as a normed space in many equivalent ways. We
choose to consider it as the Euclidean space

� q×q .

We compute the matrix Φ = Φn which is the element of minimal norm in the
set of those matrices Φ which satisfy (for example)

‖Φwn(·)− vn(·)‖L2(0,T ) ≤
√
χn. (17)

The set of the matrices which satisfy (17) is not empty, it is convex and closed in
� q×q

so that the element Φn of minimal norm exists and is unique. Moreover, from (16),
we have ‖Φn‖ ≤ ‖F‖ so that the sequence {Φn} is bounded.

Theorem 5. Let {Φnk} be a subsequence of {Φn} which converges to Φ0. We have
Φ0x̃(t) = F x̃(t) = ũ(t) = u∗(t) a.e. on [0, T ].

Proof. Indeed, we have

Φ0x̃(t)− u∗(t) = [Φ0 − Φnk ]x̃(t) +
{
Φnk [x̃(t)− wnk (t)]

+ [Φnkwnk (t)− vnk(t)] + [vnk (t)− u∗(t)]
}
.

Each of the four terms tends to zero (the last one in L2-norm, the previous ones
uniformly), which establishes the desired conclusion.
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The previous result can be interpreted as the assertion that the matrix Φ0 acts
as the matrix F on the trajectory x̃(·) whose initial condition is x0.
Of course, the sequence {Φn} will not be convergent in general, and we cannot

assert that Φ0 = F on the basis of the reconstruction procedure presented above,
which uses only one trajectory of the system. We shall need several experiments in
order to reconstruct the matrix F as follows: we fix a basis e(r), r = 1, . . . , q of

� q

and we repeat the previous construction, i.e. we define Φn as the matrix of minimal
norm which satisfies the conditions

‖Φnwn( · ; ξ(r))− vn( · ; ξ(r))‖L2(0,T ) ≤
√

χ̃n, r = 1, . . . , q,

where ξ(r) is the measure taken on the vector e(r) at time t = 0,

‖ξ(r) − e(r)‖ ≤ hn
(the vectors ξ(r) are linearly independent if n is large enough), wn( · ; ξ(r)) and
vn( · ; ξ(r)) denote the vectors obtained when the initial condition of x̃(·) is e(r), χ̃n
is the maximum of the numbers χn = χn(e

r).

The existence of the matrix Φn and the boundedness of the sequence {Φn} are
seen as above.

Theorem 6. The sequence {Φn} constructed above with reference to the basis e(r)
converges to F .

Proof. We consider a limit point Φ0(·) of the sequence {Φn}. We see, as in the proof
of Theorem 5, that

Φ0x̃(t; e
(r)) = ũ(t; e(r)) = u∗(t; e

(r)) a.e. t ∈ [0, T ] and for every r.
It follows that

Φ0x̃(t; e
(r)) = u∗(t; e

(r)) = F x̃(t; e(r))

for each r. Hence Φ0 = F since the vectors x̃(t; e
(r)), r ≥ 1 are linearly independent.

In particular, the sequence {Φn} (is bounded and) has the unique limit point F . Thus
it converges to F .

Remark 2:

� The unicity of the feedback matrix F is explicitly used in this proof.

� Let us discuss the rule (17) for the choice of Φn. We choose the condition
‘≤ √χn’ because we have asymptotically

√
χn ≤ Mχn for every number M .

Hence an exact value of χn is not required. If we know a number N such that
‖F‖ ≤ N , then we can choose equally well 2χn in place of

√
χn.

We explicitly note that it is not necessary that each previous experiment be
performed starting at time t = 0, i.e. that we work with several copies of the same
system which evolve in the same interval of time. If we have independent access to
the system throughout an additional input, we can leave the system evolving freely
on a first interval [0, T1], starting from condition e

(1); then we can use the additional
input as a control, and we can transfer the state reached at T1 to the new ‘initial’
condition e(2) and observe the evolution on a subsequent interval, and so on.



846 V. Maksimov and L. Pandolfi

2.4.2. The General Case

In this section we study the general case of partial state observation. In order to treat
this case, we must have some additional information, which we state as follows:

Assumption 1. We assume that we know the initial condition x0 with a tolerance
h, i.e. we assume that we know a vector ξ0 such that ‖x0 − ξ0‖ ≤ h. Moreover, we
assume that we know a number N̂ such that ‖F‖ ≤ N̂ .

Remark 3. The assumption that N̂ is known is introduced from the beginning of this
section only for simplicity of exposition. It is not needed until the proof of Theorem 9,
also see Remarks 5 and 6.

After a coordinate transformation as above, it is easily seen that the problem is
equivalent to the following one: We have full state observation, y = x, but the system
has the form

ẋ = Fx+ g(t;x′0, x
′′
0 ), x(0) = x′0, y = x.

The initial condition x′0 is directly observed while the vector x
′′
0 is known, with

a tolerance h, owing to the previous assumption. We consider it as an addition-
al parameter. The function g(t;x′0, x

′′
0 ) is linear in x

′
0 and x

′′
0 , g(t;x

′
0, x
′′
0 ) =

G′(t)x′0 +G
′′(t)x′′0 . So, the unknown is now the pair consisting of the matrix F and

an L2 matrix-valued function [ G′(·) G′′(·) ]. We treat the unknowns as elements
of

� q×q × L2(0, T ; � q×q × � q×q ). The norm in this space is denoted by ‖ · ‖H .
The aim of this section is to identify matrices Φ (constant), H ′(t) and H ′′(t)

such that

if η̇ = Φη +H ′(t)x′0 +H
′′(t)x′′0 , η(0) = x

′
0 then η(t) = y(t) = x(t), (18)

‖Φ‖ ≤ N̂ , where N̂ satisfies ‖F‖ ≤ N̂ . (19)

For clarity and consistency with the previous sections, we use x̃ to denote the solution
of

ẋ = Fx+G′(t)x′0 +G
′′(t)x′′0 , (20)

and write ỹ = x̃ for the observation. Moreover, for simplicity, we put now

ũ = Fx+G′(t)x′0 +G
′′(t)x′′0 .

The model system is

ẇ = v.

The algorithm in the previous sections identifies a sequence {vn(·)} which converges
in L2(0, T ) to ũ(·) = F x̃(·)+G′(·)x′0+G′′(·)x′′0 . The corresponding sequence {wn(·)}
converges uniformly to x̃(·).
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Lemma 7. There exists a sequence {χn} which converges to zero such that

‖Fwn(·) +G′(·)x′0 +G′′(·)x′′0 − vn(·)‖L2(0,T ) ≤ χn. (21)

Proof. In fact, we have

‖Fwn(·) +G′(·)x′0 +G′′(·)x′′0 − vn(·)‖L2(0,T )

≤ ‖(Fwn(·) +G′(·)x′0 +G′′(·)x′′0 )− (F x̃(·) +G′(·)x′0 +G′′(·)x′′0 )‖L2(0,T )
+ ‖(F x̃(·) +G′(·)x′0 +G′′(·)x′′0 )− vn(·)‖L2(0,T )

≤ ‖F‖ ‖wn(·)− x̃(·)‖L2(0,T ) + ‖(F x̃(·) +G′(·)x′0 +G′′(·)x′′0 )− vn(·)‖L2(0,T )
= ‖F‖ ‖wn(·)− x̃(·)‖L2(0,T ) + ‖ũ(·)− vn(·)‖L2(0,T )

≤ M
{
‖wn − x̃(·)‖L2(0,T ) + ‖ũ(·)− vn(·)‖L2(0,T )

}
.

Each term in the last part of the inequality converges to zero, as desired (cf. the
analogous proof of (16)).

Remark 4. We see from above that χn ≥ ‖ũ− vn‖L2(0,T ). Moreover, χn depends on
the initial condition.

Now we choose an element (Φn, [ H ′n(·) H ′′n(·) ]) of minimal norm in
� q×q ×

L2(0, T ;
� q×q ), which satisfies

‖(Φwn(·) +H ′(·)x′0 +H ′′(·)x′′0 )− vn(·)‖L2(0,T ) ≤
√
χn, (22)

‖Φ‖ ≤ N̂ . (23)

We use Lemma 7 to deduce the boundedness of the sequence {(Φn, [H ′n(·) H ′′n(·)])}
so that we can find a subsequence (for simplicity denoted with the same symbol)

such that Φn → Φ0 in
� q×q , [ H ′n(·) H ′′n(·) ] → [ H ′0(·) H ′′0 (·) ] weakly in

L2(0, T ;
� q×q ). We can prove that

Φ0x̃(t) +H
′
0(t)x

′
0 +H

′′
0 (t)x

′′
0 = F x̃(t) +G

′(t)x′0 +G
′′(t)x0.

In fact (cf. the analogous proof of Theorem 5), we have

Φ0x̃(·)+H ′0(·)x′0+H ′′0 (·)x′′0−ũ(·)=(Φ0−Φn)x̃(·)+[Φnx̃(·)+H ′nx′0+H ′′nx′′0−ũ(·)]

Each term on the right-hand side tends to zero (the quantity in the braces only
weakly), while the left-hand side does not depend on n. Hence it is zero.

Remark 5. The boundedness of {‖Φn‖} follows from the ‘artificial’ condition (23).
We observe, however, that we have the boundedness of {‖Φn‖} directly from (21)
and (22), even if condition (23) is not imposed.
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Summarizing, we can recover the right-hand side of (20), for the moment only as
the limit of a weakly convergent sequence. Now we prove that we have in fact norm
convergence as follows. We know that {vn(·)} converges to ũ(·) in norm. Hence, we
compute

‖(H ′k(·)x′0 + H ′′k (·)x′′0 )− (H ′s(·)x′0 +H ′′s (·)x′′0 )‖L2(0,T )

≤ ‖Φkwk(·) +H ′k(·)x′0 +H ′′k (·)x′′0 − vk‖L2(0,T )
+ ‖Φsws(·) +H ′s(·)x′0 +H ′′s (·)x′′0 − vs‖L2(0,T )

+ ‖vk(·)− ũ(·)‖L2(0,T ) + ‖vs(·)− ũ(·)‖L2(0,T )
+ ‖Φkwk(·)− Φsws(·)‖L2(0,T ).

Each term on the right-hand side converges to zero strongly so that the sequence
{H ′k(·)x′0+H ′′k (·)x′′0} is Cauchy in the L2-norm. Hence we can formulate the following
analog of Theorem 5:

Theorem 7. Let the initial condition x0 be known (with a certain tolerance h). It is

possible to construct a subsequence {(Φn, [ H ′n(·) H ′′n(·) ])} which strongly converges
to {(Φ0, [ H ′0(·) H ′′0 (·) ])} such that (18) holds, i.e. such that

Φ0x̃(t) +
[

H ′0(·)x′0 H ′′0 (·)x′′0
]

= F x̃(t) +
[

G′0(·)x′0 G′′0 (·)x′′0
]

= ũ(·). (24)

As in the previous section, we deduce that it is possible to mimic the evolution
of a system along a fixed trajectory. Now we investigate the properties of the element
{(Φ0, [ H ′0(·) H ′′0 (·) ])} just constructed.

Theorem 8. The element {(Φ0, [H ′0(·) H ′′0 (·)])} constructed by the previous proce-
dure is the element of minimal norm among those which satisfy condition (22).

Proof. The weak semicontinuity of the norm implies that

ν =
∥
∥
∥

(

Φ0,
[

H ′0(·) H ′′0 (·)
])∥
∥
∥
H
≤ lim inf

∥
∥
∥

(

Φn,
[

H ′n(·) H ′′n(·)
])∥
∥
∥
H
.

Let {(Φ̃0, [H̃ ′0(·) H̃ ′′0 (·)])} have a norm less than ν and satisfy (18), i.e. (24). In this
case we have

‖Φ̃0wn+ H̃ ′0(·)x′0 + H̃ ′′0 (·)x′′0 − vn(·)‖L2(0,T )

≤ ‖Φ̃0x̃(·)+H̃ ′0(·)x′0+H̃ ′′0 (·)x′′0−ũ(·)‖L2(0,T )+‖ũ(·)−vn(·)‖L2(0,T )

= ‖Φ̃0‖‖x̃(·)− wn(·)‖L2(0,T ) + ‖ũ(·)− vn(·)‖L2(0,T ) ≤ χn.

Hence we also have
∥
∥
∥

{(

Φn,
[

H ′n(·) H ′′n(·)
])}∥
∥
∥
H
≤
∥
∥
∥

{(

Φ̃0,
[

H̃ ′0(·) H̃ ′′0 (·)
])}∥
∥
∥
H
.
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We pass to the limit and get a contradiction.

Finally, we investigate convergence when repeated experiments, with independent
initial conditions e(r), are available. The proof of Theorem 6 cannot be repeated
because now it is not true that the matrices F , G′(·) and G′′(·) are uniquely identified
by the evolutions of the system. However, let χ̃n be the minimum of the numbers
χn(e

(r)), as in the previous section, and {(Φn, [H ′n(·) H ′′n(·)])} be the element of
minimal norm which satisfies inequalities (22) for every initial condition e(r). We
consider a convergent subsequence. We see that this subsequence fulfills the properties
required in Theorem 8, for every initial condition e(r). It follows that this subsequence
converges to that element {(Φ0, [H ′0(·) H ′′0 (·)])} which satisfies (18) for every initial
condition and which has minimal norm. This element is unique and this proves the
convergence of the original sequence to the same element. Hence we can formulate, in
place of Theorem 6, the following result:

Theorem 9. Let Assumption 1 hold. The sequence {(Φn, [H ′n(·) H ′′n(·)])} converges
to the element {(Φ, [H ′(·) H ′′(·)])} of minimal norm which satisfies conditions (18)
and (19).

Remark 6. We arrive at the same conclusion, without the minimality property, even
if the number N̂ in Assumption 1 is unknown.

3. The Second Algorithm for Reconstructing

the Feedback Matrix

The identification algorithm presented in the previous sections does not assume any a
priori information on the matrix F . In this section we adapt ideas from (Blizorukova
and Maksimov, 1997; Kryazhimskii, 1999; Kryazhimskii and Osipov, 1987; Kryazhim-
skii et al., 1997) in order to obtain a second identification algorithm which can be
used when the feedback F is an element of a known compact convex set F∗ ⊂

� q×q .
We shall deal with the case when all coordinates are observed, i.e. y(t) = x(t), and
system (1), (2) is of the form

ẋ(t) = Fx(t), t ∈ [0, T ]. (25)

We introduce a family of linear continuous operators S(xT (·)) depending on
elements xT (·) ∈ C(0, T ;

� q ) and acting from
� q×q into L2(0, T ;

� q ). Namely, we
define for every u ∈ � q×q

(S(xT (·)))(t)u = A(x(t))u for a.e. t ∈ [0, T ].
Here A(x(t)) is a (q × q)× q matrix of the following structure:

A(x(t)) =











︷ ︸︸ ︷

x′(t) 0 . . . 0

0 x′(t) . . .
...

...
. . .

...

0 0 . . . x′(t)

















q × q columns

q rows.
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Primes denote transposition (i.e. the symbol x′(t) means the vector-row correspond-
ing to a vector-column x(t)). The symbol xT (·) is used to recall that the function is
defined on the interval [0, T ].

We introduce the one-to-one mapping Q:
� q×q
M → � q×q which transforms every

matrix

F =












a11 a12 . . . a1q

a21 a22 . . . a2q

...
...
. . .

...

aq1 aq2 . . . aqq












(26)

into the vector-column uF = QF = (a11, . . . , a1q , a21, . . . , a2q , . . . , aq1, . . . , aqq)
′. It is

evident that the mapping Q preserves the norm, i.e. ‖uF ‖ = ‖F‖.
Equation (25) may be written in the form

ẋ(t) = S(xT (·))(t)uF , t ∈ [0, T ],

which can be written as a functional equation in the space L2(0, T ;
� q ):

x(·)− x0 = S∗(xT (·))(·)uF . (27)

The family of linear continuous operators S∗(xT (·)):
� q×q → L2(0, T ; � q ) is defined

by the rule

S∗(xT (·))(t)w =
( t∫

0

S(xT (·))(τ) dτ
)

w for a.e. t ∈ [0, T ], (w ∈ � q×q ).

Hence (27) amounts to

x(t)− x0 =
( t∫

0

S(xT (·))(τ) dτ
)

uF for a.e. t ∈ [0, T ].

For notational brevity, we introduce

b(t) = x(t)− x0 for a.e. t ∈ [0, T ].

Let

U1 =
{
u ∈ QF∗ : ẋ(t) = S(xT (·))(t)u, t ∈ [0, T ]

}
.

It is easily seen that this set is convex, bounded and closed. Therefore the set

U∗ = argmin{‖u‖ : u ∈ U1}

contains only one element, U∗ = {u0}.
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To solve the problem, we introduce the dynamical control system

ż(ρ) = v(ρ), z(0) = 0, z, v ∈ � q×q (28)

acting on the time interval
�
+ = [0,+∞). Here ρ is an ‘artificial’ time. Our goal

now is to compute an input function v(·) such that for the corresponding trajectory
z(·) of system (28), the ratio z(ρ)/ρ is close to u0 for a ‘sufficiently large’ ρ.
Inputs v(ρ) to system (28) will have a feedback form. Formally, a feedback is

identified with a function V :
�
+ ×

� q×q → F∗. For every γ > 0, we define the
γ-trajectory zγ(·) under the action of feedback U(ρ, z) by

zγ(0) = 0, zγ(ρ) = zγ(ρj) + v
γ
j (ρ− ρj), ρ ∈ [ρj , ρj+1),

ρj = jγ, v
γ
j = V (ρj , zγ(ρj)).

We introduce the functional

Λα(ρ|zγ(·)) = ‖S∗(xT (·))(·)zγ(ρ)− ρb(·)‖2L2(0,T )

+ α

ρ∫

0

‖żγ(τ)‖2 dτ − αρJ0, (29)

J0 = ‖u0‖2.
Here and below the symbol ‖ · ‖L2 stands for the norm in the space of bounded
linear operators acting from

� q×q into L2(0, T ;
� q ), and the symbol 〈·, ·〉L2 is the

corresponding scalar product. The functional Λα is analogous to the functional ε (see
Section 2.2). We shall specify such a rule for choosing the feedback control U(ρ, z)
so that the following inequality holds:

Λα(ρ|zγ(·)) ≤ Λα(ρj |zγ(·)) + c1(ρ− ρj)
{

(ρ− ρj) + ρj(h+
1

n
)

}

(30)

for ρ ∈ [ρj , ρj+1). Here c1 is a constant which may be explicitly computed.
Introduce

R = sup{‖F‖ : F ∈ F∗}, ξT (t) = ξi for t ∈ [τi, τi+1), τi =
iT

n
. (31)

Since the function ξT (·) is piecewise constant, we have

(S∗(ξT (·)))(t) = δ
i(t)−1
∑

i=0

A(ξi) + (t− τi(t))A(ξi(t)), t ∈ [0, T ],

where

i(t) = [t/δ], τi(t) = i(t)T/n ([a] denotes the integer part of a).

We introduce the function

bh,n(t) = ξi − ξ0 for t ∈ [τi, τi+1).
It depends on h since, by virtue of (3), ξi = ξ

h
i .
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Lemma 8. The following inequality is valid:

‖b(·)− bh,n(·)‖L2(0,T ) ≤ d1(h, 1/n) =
√
T (2h+RCT/n),

where C = ‖x0‖(1 +RT exp(RT )).

Proof. From ‖F‖ ≤ R we obtain

‖x(t)‖ ≤ ‖x0‖+
t∫

0

‖Fx(τ)‖ dτ ≤ ‖x0‖+R
t∫

0

‖x(τ)‖ dτ, t ∈ [0, T ].

Using Gronwall’s lemma, we get

‖x(t)‖ ≤ C, ‖ẋ(t)‖ ≤ RC, t ∈ [0, T ]. (32)

Note that for t ∈ [τi, τi+1) we have

‖x(t)− ξi‖ ≤ h+
t∫

τi

‖ẋ(τ)‖ dτ ≤ h+RCT/n. (33)

Therefore, by virtue of (32) and (33), we get

‖b(·)− bh,n(·)‖2L2(0,T ) =
n−1∑

i=0

τi+1∫

τi

‖x(t)− x0 − ξi + ξ0‖2 dt

≤
n−1∑

i=0

τi+1∫

τi

(2h+RCT/n)2 dt

=
n− 1
n
T (2h+RCT/n)2 ≤ T (2h+RCT/n)2.

The lemma is thus proved.

Lemma 9. The following inequality is valid:

‖S∗(xT (·)) − S∗(ξT (·))‖L2 ≤ d2(h, 1/n) = T
√

qT

3
(h+RCT/n).

Here the symbol ξT (·) means a function ξ(t), t ∈ [0, T ], defined according to (31).

Proof. By (33) we get

‖(S(xT (·)) − S(ξT (·)))(τ)uF ‖ ≤
√
q(h+RCT/n)‖uF‖, τ ∈ [0, T ].

Therefore

‖S∗(xT (·)) − S∗(ξT (·))‖L2
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=

(

sup
‖uF ‖≤1

T∫

0

∥
∥
∥

t∫

0

(S(xT (·))− S(ξT (·)))(τ) dτuF
∥
∥
∥

2

dt

)1/2

≤
(
T∫

0

∥
∥
∥

t∫

0

√
q(h+RCT/n) dτ

∥
∥
∥

2

dt
)1/2

≤ √q(h+RCT/n)
(
T∫

0

t2 dt
)1/2

≤ T
√

qT

3
(h+RCT/n).

This is our claim.

Let V (ρ, z) be defined by the rule

V (ρ, z)=Vα(ρ, z)

=argmin{2〈S∗(ξT (·))(·)z−ρbh,n(·), S∗(ξT (·))(·)u〉L2+α‖u‖2 : u∈QF∗}. (34)

Theorem 10. The feedback input V (t, z) in (34) satisfies inequality (30).

Proof. For ρ = 0, we have

Λα(0|zγ(·)) = 0, (35)

and (30) is true. Suppose that (30) is true for all ρ ∈ [0, ρj ]. Take ρ ∈ [ρj , ρj+1] and
prove (30). We have

‖zγ(ν)‖ ≤ νR ν ≥ 0.

Introduce the notation

sj(x, zγ) = S∗(xT (·))(·)zγ(ρj)− ρjb(·) ∈ L2(0, T ;
� q ).

Using Lemmas 17 and 18, we deduce that

‖sj(x, zγ) − sj(ξ, zγ)‖L2(0,T )

≤ ‖S∗(xT (·))(·) − S∗(ξT (·))‖L2‖zγ(ρj)‖

+ ρj‖b(·)−bh,n(·)‖L2(0,T )≤ρj(d1(h, 1/n)+Rd2(h, 1/n)), (36)

where

sj(ξ, zγ) = S∗(ξT (·))(·)zγ(ρj)− ρjbh,n(·).

Referring to (29), we get

Λα(ρ|zγ(·)) = Λα(ρj |zγ(·)) + µj + νj + α(‖vγj ‖2 − J0)(ρ− ρj), (37)
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where

µj = 2(ρ− ρj)〈sj(x, zγ), S∗(xT (·))(·)vγj − b(·)〉L2 ,

νj = ‖S∗(xT (·))(·)vγj − b(·)‖2L2(0,T )(ρ− ρj)2.

Taking into account

S∗(xT (·))(·)u0 − b(·) = 0

and using (37), we obtain

Λα(ρ|zγ(·)) = Λα(ρj |zγ(·)) + νj

+2(ρ−ρj)
{[

〈sj(x, zγ), S∗(xT (·))(·)vγj −b(·)〉L2+α‖v
γ
j ‖2
]

−
[

〈sj(x, zγ), S∗(xT (·))(·)u0 − b(·)〉L2 + α‖u0‖2
]}

.

Then we have

‖sj(x, zγ)‖L2(0,T ) ≤ (d0R+ b0)ρj , (38)

‖S∗(xT (·))(·)vγj − b(·)‖L2(0,T ) ≤ d0R+ b0.

Here

d0 = ‖S∗(xT (·))(·)‖L2 , b0 = ‖b(·)‖L2(0,T ).

Consequently, by virtue of (36) and (38), we get

Λα(ρ|zγ(·)) ≤ Λα(ρj |zγ(·))

+ νj + 2(ρ− ρj)
{[

〈sj(ξ, zγ), S∗(xT (·))(·)vγj − b(·)〉L2 + α‖v
γ
j ‖2
]

−
[

〈sj(ξ, zγ), S∗(xT (·))(·)u0 − b(·)〉L2 + α‖u0‖2
]}

+ 2(ρ− ρj)ρjd3(h, 1/n), (39)

where

d3(h, 1/n) = (d1(h, 1/n) +Rd2(h, 1/n))(d0R+ b0).

From (38) and (36) it follows that

‖sj(ξ, zγ)‖L2(0,T ) ≤ τjd4(h, 1/n), (40)

d4(h, 1/n) = b0 + d0R+ d1(h, 1/n) +Rd2(h, 1/n).

It is clear that

νj ≤ (ρ− ρj)2(b0 + d0R)2.
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Using again Lemmas 17 and 18, from (39) and (40) we obtain

Λα(ρ|zγ(·)) ≤ Λα(ρj |zγ(·))

+ 2(ρ− ρj)
{[

〈sj(ξ, zγ), S∗(ξT (·))(·)vγj 〉L2α‖v
γ
j ‖2
]

−
[

〈sj(ξ, zγ), S∗(ξT (·))(·)u0〉L2 + α‖u0‖2
]}

+ 2(ρ− ρj)ρjd5(h, 1/n) + (ρ− ρj)2(b0 + d0R)2,
where

d5(h, 1/n) = d3(h, 1/n) + d4(h, 1/n)d2(h, 1/n)R ≤ c0
(

h+
1

n

)

,

c0 being a constant which may be explicitly written.

The result follows since the expression in the braces is negative when vγj satisfies
condition (34).

Lemma 10. The inequalities

‖S∗(xT (·))(zγ(ρj)/ρj)− b(·)‖2L2(0,T ) ≤ c2(γ/ρj + hn + 1/n) + 2αR2/ρj , (41)

‖zγ(ρ)/ρ‖2 ≤ c1(γ/α+ ρj(hn + 1/n)/α) + J0 (42)

are valid.

Proof. From (30) and (35) we deduce that

Λα(ρj |zγ(·)) ≤ c1 (γρj + ρj(hn + 1/n)) .
Thus the inequalities

‖S∗(xT (·))(·)zγ(ρj)− ρjb(·)‖2L2(0,T ) ≤ c1
(
γρj + ρ

2
j (hn + 1/n)

)
+ 2αR2ρj , (43)

ρj∫

0

‖żγ(τ)‖2 dτ ≤ c1
(
γρj
α
+ ρ2j
hn + 1/n

α

)

+ ρjJ
0 (44)

are valid. Dividing both the sides of (43) by ρ2j , we obtain (41). The convexity of the
norm implies

1

ρ

∫ ρ

0

‖żγ(τ)‖2 dτ ≥
∥
∥
∥
∥

1

ρ

∫ ρ

0

żγ(τ) dτ

∥
∥
∥
∥

2

= ‖zγ(ρ)/ρ‖2 ∀ρ > 0.

Hence, using (44), we get (42). The lemma is proved.

Let sequences of positive numbers {αn}, {hn}, {γn} and {jn} be chosen in
such a way that

αn → 0, hn → 0, jn → +∞, (45)

αn/ρjn → 0, γn/αn → 0, ρjn(hn + 1/n)/αn → 0 as n→∞.



856 V. Maksimov and L. Pandolfi

Lemma 11. If conditions (45) are fulfilled, then we have

lim
n→+∞

zγn(ρjn)/ρjn = u0 . (46)

Proof. The convergence (46) follows from (41), (42) and equality ρjn = γjn.

Let

Φ = Q−1u0.

From Lemma 11 we obtain the following result:

Theorem 11. If conditions (45) are fulfilled, then we have

lim
n→+∞

Q−1zγn(ρjn)/ρjn = Φ.

4. Conclusion

In this paper we have studied an identification problem which is of strong interest
in the context of fault detection. Namely, we have assumed that the nominal system
ẋ = Ax was affected by an unwanted disturbance u = Fx which could model a
failure of a component. For example, a failure of an interconnection may set to zero
the value of an entry of the matrix A.

The identification problem amounts to the solution of the equation

y(t) = Cx(t) = Ce(A+F )tx0, t ∈ [0, T ].
The unknown is F , so this problems seems very difficult. But we observe a very simple
case: if T = +∞ and if we know exactly the function y(t), then we can equivalently
solve

C(λI −A− F )−1x0 = ŷ(λ)
where ˆ denotes the Laplace transform. This is a much simpler problem, being affine
in the unknown (λI −A− F )−1.
What is more, if we can identify or approximately identify both x(t) and u(t) =

Fx(t) on [0, T ], then the identification problem is reduced to a linear problem directly
in the unknown matrix F :

Fx(t) = u(t).

This is the point of view adopted in this paper.

We have presented two identification algorithms which have a common feature:
structural a-priori information on the feedback to be identified is not assumed. In
other words, we have assumed that we have no a-priori information on the component
of the system whose integrity we would like to check. An interesting extension of
the results in this paper, reserved for future work, is the case when we do have
such information, so that we can make use of the powerful structure theory of finite-
dimensional linear systems.
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