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APPROXIMATION OF LARGE-SCALE

DYNAMICAL SYSTEMS: AN OVERVIEW†

Athanasios C. ANTOULAS∗, Dan C. SORENSEN∗∗

In this paper we review the state of affairs in the area of approximation of large-
scale systems. We distinguish three basic categories, namely the SVD-based, the
Krylov-based and the SVD-Krylov-based approximation methods. The first two
were developed independently of each other and have distinct sets of attributes
and drawbacks. The third approach seeks to combine the best attributes of the
first two.
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1. Introduction and Problem Statement

Differential equations are one of the most successful means of modeling dynamical
systems. In this paper we will deal with the problem of simplification or model re-
duction of dynamical systems described by differential equations. Model reduction
has a long history in the systems and control literature. In fact, the general topic of
dimension reduction in dynamical systems is pervasive in the applied mathematics
literature. The systems we will consider will be denoted by Σ, and will be modeled
by means of a set of first-order coupled differential equations, together with a set of
algebraic equations:

Σ :







dx(t)

dt
= f

(

x(t), u(t)
)

,

y(t) = h
(

x(t), u(t)
)

.

(1)

For simplicity, we will use the following notation:

Σ = (f, h), u(t) ∈ � m , x(t) ∈ � n , y(t) ∈ � p .

In this setting, u is the input or excitation function, x is the state, and the function
f describes the dynamics of Σ; on the other hand, y is the output or the set of
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observations and h describes the way in which the observations are deduced from the
state and the input. The complexity of Σ is defined as the number of states n.

The problem that will be addressed is to simplify or approximate Σ with another
dynamical system Σ̂,

Σ̂ = (f̂ , ĥ), u(t) ∈ � m , x̂(t) ∈ � k , ŷ(t) ∈ � p .

The first requirement is that the number of states (i.e. the number of first-order
differential equations) of the approximant be smaller (or much smaller) than that of
the original system, i.e., k � n. Obviously, in the absence of additional ones, this
requirement is easy to satisfy by mere elimination of equations and state variables. The
difficulty arises when imposing additional constraints; one set of constraints usually
attached to such an approximation problem is the following:

1. The approximation error should be small (the existence of a global error bound),

2. Stability and passivity should be preserved,

3. The procedure is to be computationally efficient,

4. The procedure must be automatic, i.e., based on the error tolerance.

The first constraint above is to be understood as follows. Let the input function u be
fed into both Σ and Σ̂, and let the corresponding responses be y and ŷ, respectively.
A small approximation error means that y is close to ŷ in an appropriately defined
sense and for a given set of inputs; in the sequel we will use the following criterion
in coming up with reduced-order approximants: the worst error ‖y − ŷ‖ should be
minimized for all u (this gives rise to the so-called H∞ error criterion). In this regard
it should be noted that reduced-order systems are often abstract representations which
loose physical meaning.

An important special case is that of linear dynamical systems:

Σ :







dx(t)

dt
= Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).

(2)

For simplicity, we will use the notation:

Σ =

(

A B

C D

)

∈ � (n+p)×(n+m) . (3)

The problem in this case consists in approximating Σ with

Σ̂ =

(

Â B̂

Ĉ D̂

)

∈ � (k+p)×(k+m) , (4)

where, as before, k < n (or k � n) and the four conditions above are satisfied.
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2. Motivating Examples

Models of dynamical systems are useful primarily for two reasons: simulation and
control. We will illustrate these reasons with two examples, namely, modeling of VLSI
circuits, where the effect of interconnections needs to be simulated, and control of the
International Space Station (ISS), where low-order controllers are necessary.

A. High-frequency, sub-micron VLSI circuits. The scaling trends in today’s
VLSI circuits are a decrease in the feature size (by more than 10% per year) and an
increase in the chip size (by more than 10% per year); this results in an overall increase
in chip complexity (by more than 50% per year). One consequence of these trends is
the multi-layered design (currently a chip may consist of up to 10 layers). Furthermore,
there is an increase in operating frequency, which has reached the gigahertz range.
These developments have had an impact on physical parameters, the most important
being the increase in interconnect length. What used to be a piece of wire linking
two components on the chip now needs to be modeled. In current sub-micron designs
(a feature size in the sub-micron range), the interconnect length is of the order of
several kilometers, the number of transistors approaches one billion and the operating
frequency surpasses 1 GHz.

In conclusion, before settling on a particular design, it is important to be able
to quickly simulate the particular chip layout and check that the signal delays, for
instance from an input to a logic gate, do not exceed certain limits. Thus, intercon-
nections must be modeled. The resulting models are very high-order: n ≈ 105 up to
106. The usual simulation tool SPICE turns out to be inadequate for such complex
circuits. For an account of intertconnect issues see (Stroobandt, 2000). Model reduc-
tion was introduced into this area by Rohrer; see (Pillage and Rohrer, 1990; Gallivan
et al., 1994a).

B. ISS: International Space Station. This is a complex structure composed of
many modules (it is estimated that more than 40 Shuttle flights will be required to
complete the assembly). Furthermore, each module is described in terms of n ≈ 103
state variables.

In this case controllers will be needed, for instance, to reduce oscillatory motion
or to fix the orientation of the space station with respect to some desired direction. It
is well-known that generically a controller of a given plant has the same dimension as
the plant. Since these controllers have to be implemented on-board, they must have
low complexity due to hardware, radiation, throughput or testing limitations. Thus,
reduced-order models are very useful for the development of reduced-order controllers.

C. In general: Systems described by PDEs. Approximate finite-element (FE)
equations are obtained through spatial discretization of certain time-dependent sys-
tems which are described by PDEs, such as parabolic equations subject to boundary
control. These equations are of high complexity. One such case is presented later as
an example.

Conclusion. In all these cases, any realistic model will have high complexity, i.e., it
will require many state variables to be adequately described. The resulting complexity
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Fig. 1. ISS: Evolution of the frequency response as more
components are added (Data: Draper Labs).

expressed in the number of first-order differential equations is such that a simplifi-
cation or model reduction will be needed in order to perform a simulation in an
amount of time which is acceptable for the application at hand, or for the design
of a low-order controller which achieves desired objectives. Thus in all these cases
reduced-order models are needed. The issues with large-scale systems are:

� Storage,

� Computational speed,

� Accuracy: large-scale problems are likely to be ill-conditioned,

� In addition, we need global error bounds and preservation of stability/passivity.

Due to the third item above, what works for dense computations involving low-
dimensional systems may not work in a large-scale setting.

3. Approximation Methods

Approximation methods can be cast into three broad categories: (a) SVD-based meth-
ods, (b) Krylov-based methods, (c) iterative methods combining aspects of both the
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SVD and Krylov methods. We will analyze them in the sequel and point out their
strengths and weaknesses.

The SVD-based approximation methods have their roots in the Singular Value
Decomposition and the resulting solution of the approximation of matrices by means
of matrices of lower rank, which are optimal in the 2-norm (or more generally, in
unitarily invariant norms). The quantities which are important in deciding to what
extent a given finite-dimensional operator can be approximated by one of a lower rank
are the so-called singular values; these are the square roots of the eigenvalues of the
product of the operator and its adjoint. What is important is that the ensuing error
satisfies an a-priori computable upper bound.

The question which arises is whether this result can be applied or extended to
the case of dynamical systems. One straightforward way of applying it to a dynami-
cal system described by (1) is as follows. Choose an input function and compute the
resulting trajectory; collect samples of this trajectory at different times and compute
the SVD of the resulting collection of samples. Then apply the SVD to the result-
ing matrix. This is a method which is widely used in computation involving PDEs;
it is known as Proper Orthogonal Decomposition (POD). The problem, however, in
this case is that the resulting simplification heavily depends on the initial excitation
function chosen and the time instances at which the measurements are taken. Con-
sequently, the singular values obtained are not system invariants. The advantage of
this method is that it can be applied to high-complexity linear as well as nonlinear
systems.

A different approach results in the case of linear systems (2). First, we observe
that a linear time-invariant dynamical system Σ can be represented by means of
an integral (convolution) operator; if, in addition, Σ is finite-dimensional, then this
operator has finite rank and is hence compact. Consequently, it has a set of finitely
many non-zero singular values. Thus, in principle, the SVD approximation method
can be used to simplify such dynamical systems.

Indeed, there is a set of invariants called the Hankel singular values which can
be attached to every linear, constant, finite-dimensional system. These invariants
play the same role for dynamical systems as the singular values play for constant
finite-dimensional matrices. In other words, they determine the complexity of the
reduced system and at the same time they provide a global error bound for the
resulting approximation. This gives rise to two model reduction methods, namely,
balanced model reduction and Hankel norm approximation. Many have observed that
the Hankel singular values of many systems decay extremely rapidly. Hence very low
rank approximations are possible and accurate low-order reduced models will result.

The first decisive results in this direction were obtained by Adamjan et al. (1971;
1978). The theory as it is used today is due to Glover (1984). Independently, Moore
(1981) developed the concept of balancing; this led to the very popular method of
approximation by balanced truncation.

The limitation of this approach comes from the fact that the computation of the
Hankel singular values involves the solution of two linear matrix equations, the Lya-
punov equations. Subsequently, the eigenvalues of the product of two positive definite



1098 A.C. Antoulas and D.C. Sorensen

matrices are required; these are the reachability and observability grammians. The ex-
act solution of such equations requires dense computations and therefore can, roughly
speaking, be carried out for systems of a modest dimension (n ≈ a few hundred).

A modification of this method has been developed for nonlinear systems. It is
the method of empirical grammians. Its goal is to remedy the issues arising in POD
methods, at the expense of added computational complexity (Lall et al., 1998).

Table 1. Overview of approximation methods.

Approximation methods for dynamical systems

SVD Krylov

Nonlinear Systems Linear Systems

• POD methods • Balanced truncation • Realization
• Empirical grammians • Hankel approximation • Interpolation

• Lanczos
• Arnoldi

SVD-Krylov

A different set of approximation methods has been developed. They are itera-
tive in nature and hence can be applied to very high-order systems. These are the
Krylov-based approximation methods, which do not rely on the computation of sin-
gular values. Instead, they are based on moment matching of the impulse response
of Σ. Two widely used methods fall under this category, namely, the Lanczos and the
Arnoldi procedures, which were put forward in (Lanczos, 1950) and (Arnoldi, 1951),
respectively. These methods have been very influential in iterative eigenvalue compu-
tations and more recently in model reduction. Their drawbacks are that the resulting
reduced-order systems have no guaranteed error bound, stability is not necessarily
preserved and some of them are not automatic.

Two leading efforts in this area are Padé via Lanczos (PVL) (Bai et al.,
1997; Freund, 1999; Feldmann and Freund, 1995), and multipoint rational interpola-
tion (Grimme, 1997). The PVL approach exploits the deep connection between the
(nonsymmetric) Lanczos process and classical moment matching techniques, i.e., the
fundamental connection of Krylov subspace projection methods in linear algebra to
the partial realization problem in system theory as laid out in (Gragg, 1972; Gragg and
Lindquist, 1983); see also (Boley and Golub, 1984; Feldmann and Freund, 1995; Galli-
van et al., 1994b; Grimme, 1997; Jaimoukha and Kasenally, 1997; Van Dooren, 1995).
A closely related approach which has been applied to VLSI circuits can be found in
(Kamon et al., 2000); see also (Li et al., 1999).
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The multipoint rational interpolation approach utilizes the rational Krylov
method of (Ruhe, 1984) to provide the moment matching of the transfer function
at selected frequencies and hence to obtain an enhanced approximation of the trans-
fer function over a broad frequency range. These techniques have proven to be very
effective. PVL has enjoyed considerable success in circuit simulation applications. Ra-
tional interpolation achieves a remarkable approximation of the transfer function with
very low-order models. Nevertheless, there are shortcomings to both the approaches.
In particular, since the methods are local in nature, it is difficult to establish global er-
ror bounds. Heuristics have been developed that appear to work, but no global results
exist. Secondly, the rational interpolation method requires selection of interpolation
points. At present, this is not an automated process and relies on ad-hoc specification
by the user.

This brings us to the third class of methods which seek to combine the best
features of the SVD- and the Krylov-based methods. We will refer to these as the
SVD-Krylov-based approximation methods. The essential feature of the former is the
solution of Lyapunov equations and the essential feature of the latter is the use of
Krylov spaces (also known in systems theory as reachability-observability subspaces).
In particular, it uses an iterative computation of projections onto these spaces. This
gives rise to various approaches which have iterative Lyapunov solvers at their center.

The first approach in the third category makes use of a recent advance in the com-
putation of eigenvalues of large matrices called implicit restarting (Sorensen, 1992).
This has been applied with some success to the construction of stable reduced mod-
els to known stable LTI systems (Grimme et al., 1995). The approach proposed in
(Jaimoukha and Kasenally, 1997) uses an implicitly restarted dual Arnoldi approach.
The dual Arnoldi method runs two separate Arnoldi processes, one for the controlla-
bility subspace and the other for the observability subspace, and then constructs an
oblique projection from the two orthogonal Arnoldi basis sets. The basis sets and the
reduced model are updated using a generalized notion of implicit restarting. The up-
dating process is designed to iteratively improve the approximation properties of the
model. Essentially, the reduced model is reduced further, keeping the best features,
and then expanded via the dual Arnoldi processes to include new information. The
goal is to achieve approximation properties related to balanced realizations. Other
related approaches (Boley, 1994; Li et al., 1999; Penzl, 2001) work directly with pro-
jected forms of the two Lyapunov equations (5) to obtain low-rank approximations
to the system grammians.

One problem in working with the two Lyapunov equations separately and then
applying dense methods to the reduced equations is consistency. One cannot be certain
that the two separate basis sets are the ones that would have been selected if the full
system grammians had been available. We are not aware of a consistent implicit
restarting scheme that would be effective in converging the two separate processes
towards the balancing transformation corresponding to the largest Hankel singular
values.

This difficulty led to the approach described in (Antoulas and Sorensen, 2001a),
and makes use of a third type of grammian, called the cross-grammian. The primary
goal of this approach is to develop implicit restarting methods that will iteratively
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produce approximations of a specified rank k to controllability, observability, and
cross grammians that are best approximations of rank k to the full grammians.
These considerations lead to algorithms within the implicit restarting framework that
will iteratively improve a set of k leading singular values and the corresponding k-
dimensional Krylov basis instead of computing all the singular values and truncating.
This reduces computational costs from O(n3) to O(n · k2), and storage costs from
O(n2) to O(n · k).
A second approach along the same lines was developed in (Hodel et al., 1996).

It proposes an approximate power method for the iterative solution of the Lyapunov
equation.

In the sections that follow we will describe the methods mentioned above in
detail.

3.1. SVD-Based Approximation Methods

3.1.1. Singular Value Decomposition: SVD

Every matrix A ∈ �
n×m can be decomposed into a product of three matrices (Golub

and Van Loan, 1989):

A = UΣV ∗ ∈ � n×m ,

where U and V are unitary (orthogonal) and Σ = diag (σ1, . . . , σn) ∈
� n×m , is

diagonal with nonnegative diagonal entries called singular values: σi =
√

λi(A∗A) ≥
σi+1, and the 2-induced norm of A is σ1. The left singular vectors are U =
(u1 u2 · · · un), UU∗ = In, and the right singular vectors are V =
(v1 v2 · · · vm), V V ∗ = Im. Finally, the dyadic decomposition of A is

A = σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σnunv∗n.

Optimal approximation in the 2-norm. Given A ∈ �
n×m , find X ∈ �

n×m ,
rankX = k < rankA , such that an appropriate norm of the error E = A − X is
minimized. This problem can be solved explicitly if we take as norm the 2-norm or any
unitarily invariant norm. Although the problem is non-convex, it readily follows that
a special decomposition, namely, the singular value decomposition (SVD), provides
the solution. The theorem that follows is attributed to several people. Two surveys in
this regard are worth noticing, namely, (Chu et al., 1995) and (Hubert et al., 2000).

Theorem 1. (Schmidt-Mirsky, Eckart-Young). The solution of the above problem is:

min
rankX≤k

‖A−X‖2 = σk+1(A).

A non-unique minimizer X# is obtained by truncating the dyadic decomposition of
A: X# = σ1u1v

∗
1 + σ2u2v

∗
2 + · · ·+ σkukv∗k.

Example 1. In Fig. 2 a supernova and the clown pictures from Matlab are considered.
They can be represented by means of a 406×406 and a 200×320 matrix, respectively,
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Fig. 2. Approximation of the “Supernova” and “Clown” by images of lower rank.

each entry (pixel) having a value between 0 (white) and 1 (black) in 64 gray levels.
Both the matrices have full rank, i.e. 404 and 200, respectively. Their numerical
ranks, however, are much lower. The singular values of these two images are shown
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in the top-left subplot on a log-log scale; both sets of singular values fall off rapidly,
and hence low-rank approximations with a small error (distortion) are possible. By
superimposing the two singular value plots, we can also draw conclusions on the
relative error for approximants of the same rank. Thus for approximants of rank
up to 10, the clown image is easier to approximate, while for approximants of rank
higher than 10, the converse is true. For the top plots, we have: the singular values,
the original, and approximants of rank 20 and 6, respectively. For the bottom plots,
clockwise from top: original, and approximants of rank 6, rank 20, and rank 12,
respectively.

�

3.1.2. Proper Orthogonal Decomposition (POD) Methods

Consider the nonlinear system given by (1). For a fixed input u, the state trajectory
at certain instances of time tk is measured:

X =
[

x(t1) x(t2) · · · x(tN )
]

∈ � n×N .

This is called a matrix of snapshots of the state. In general, N � n. Next, the singular
value decomposition of X is computed. If the singular values of this matrix fall off
rapidly, a low-order approximation of this system can be computed,

X = UΣV ∗ ≈ UkΣkV ∗k , k � n.

Equivalently, we can compute the eigenvalue decomposition of the grammian

XX ∗ =
∑

ti

x(ti)x(ti)
∗ = UΣΣ∗U∗ ≈ UkΣkΣ∗kU∗k , k � n.

Let x(t) ≈ Ukξ(t), ξ(t) ∈
�
k . Then Ukξ̇(t) = f(Ukξ(t), u(t)), which implies the

reduced-order state equation:

ξ̇(t) = U∗kf
(

Ukξ(t), u(t)
)

, y(t) = h
(

Ukξ(t), u(t)
)

.

Thus the approximation ξ(t) of the state x(t) evolves on a low-dimensional space
which is spanned by the k leading columns of U , i.e., by the leading left singular
vectors of X . For details, see (Berkooz et al., 1996; Romo et al., 1995; Volkwein,
1999). An improved version of this method is given in (Lall et al., 1998).

3.1.3. Approximation by Balanced Truncation

Consider the system Σ given by (3), with A stable. Following the POD method, we
consider the output to a particular input, namely, the impulse u = δ; in this case
the output is called the impulse response and is denoted by h(t) = CeAtB, t ≥ 0.
This can be decomposed into an input-to-state map x(t) = eAtB, and a state-to-
output map η(t) = CeAt. Thus the input δ(t) causes the state x(t), while the initial
condition x(0) causes the output y(t) = η(t)x(0). The grammians corresponding to
x and η are

P =
∑

t

x(t)x(t)∗ =

∫ ∞

0

eAtBB∗eA
∗t dt
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and

Q =
∑

t

η(t)∗η(t) =

∫ ∞

0

eA
∗tC∗CeAt dt.

Under the state transformation x̂ = Tx, the two grammians are transformed by
congruence: P̂ = TPT ∗, Q̂ = T−∗QT−1; thus λi(PQ) are input-output invariants
of Σ, called the Hankel singular values of Σ. These are fundamental invariants which
determine how well Σ can be approximated by a reduced-order Σ̂. They play the
same role for dynamical systems that the singular values play for finite-dimensional
matrices. Their computation is therefore of primary importance.

3.1.4. Computation of the Singular Values

The key for the computation of the Hankel singular values is the observation that
the grammians P and Q are the unique Hermitian positive definite solutions to the
following linear matrix equations, which are known as Lyapunov equations:

AP + PA∗ +BB∗ = 0, A∗Q+QA+ CC∗ = 0⇒ σi(Σ) =
√

λi(PQ). (5)

Then the Hankel singular values σi(Σ) of the system Σ are the square roots of the
eigenvalues of the product PQ.
Numerically stable algorithms to solve these equations are well known (see, e.g.,

(Varga, 1999)). One can directly compute an upper triangular U with P = UU ∗
and a lower triangular L with Q = LL∗. If A, B, C are real, then so are U and L.
The Hankel singular values are computed as the singular values of the product U ∗L
and, with care, this may be computed directly without actually forming the product
(Bartels and Stewart, 1972; Heath et al., 1986; Laub et al., 1987).

Denoting the SVD of U∗L by U∗L = ZΣY ∗, a balanced realization can be
constructed through a balancing transformation Tb defined by

Tb = Σ
1
2Z∗U−1 = Σ−

1
2 Y ∗L∗ and T−1b = UZΣ

− 1
2 = L−∗Y Σ

1
2 .

Thus, in order to avoid inverting possibly not so well conditioned matrices, the for-
mulas for Tb and T

−1
b involving only the inverse of Σ are used. Under this trans-

formation, the solutions to the two Lyapunov equations become equal and diagonal:
P = Q = Σ = diag (σ1, . . . , σn), and

AbΣ+ΣA
∗
b +BbB

∗
b = 0, A

∗
bΣ +ΣAb + C

∗
bCb = 0,

where Ab = TbAT
−1
b , Bb = TbB, Cb = CT

−1
b . Model reduction is now possible

through simple truncation. Let Σ2 contain the small Hankel singular values and
partition (in the balanced basis)

Ab =

(

A11 A12

A21 A22

)

, B =

(

B1

B2

)

, C = (C1 | C2), Σ =
(

Σ1 0

0 Σ2

)

.



1104 A.C. Antoulas and D.C. Sorensen

The reduced-order model is obtained by simple truncation

Σ̂ =

(

A11 B1

C1

)

,

that is, by taking the k× k, k×m, p× k leading blocks of Ab, Bb, Cb, respectively;
this system satisfies k-th order Lyapunov equations with diagonal solution Σ1. This
truncation leads to a balanced reduced-order system. If this truncation is such that
the resulting grammians contain the largest k singular values σ1 through σk, then
the H∞-norm of the error system has the following upper (and lower) bound (Enns,
1984; Glover, 1984):

σk ≤ ‖Σ− Σ̂‖∞ ≤ 2(σk+1 + σk+2 + · · ·+ σn). (6)

The H∞ norm ‖Σ‖∞, of a system Σ is defined as the maximum of the highest peak
of the frequency response, i.e., as the largest singular value of the transfer function
evaluated on the imaginary axis (i.e., of the frequency response) σmax[D + C(jω −
A)−1B]. This result provides the rigorous justification for using the reduced-order
model to predict behavior and enact control of the full system. The upper bound
for the error system given above translates to an upper bound for the energy of the
output error signal.

3.1.5. Other Types of Balancing

Besides the balancing based on Lyapunov equations, there are others. The principle is
to find a transformation which would make solutions to appropriate Lyapunov and/or
Riccati equations equal and diagonal (Ober, 1991). Here is a short description of each
of them:

� Lyapunov balancing. Solution to Lyapunov equations equal and diagonal:
AP + PA∗ + BB∗ = 0, A∗Q + QA + C∗C = 0. Reduced model: preserves
stability; there exists an error bound.

� LQG balancing. Solution to Riccati equations equal and diagonal: AP+PA∗+
BB∗ − PC∗CP = 0, A∗Q+QA∗ + C∗C − QBB∗Q = 0. It can be applied to
unstable systems. Reduced system: leads to feedback design for a full system.

� Stochastic balancing. Solution to Lyapunov-Riccati equations equal and di-
agonal: AP + PA∗ + BB∗ = 0, A∗Q + QA + C∗WCW = 0, where CW =
D−1(C −B∗WQ) and BW = PC∗ +BD∗. This leads to model reduction which
belongs to those satisfying a relative error bound. Truncation preserves the
minimum-phase property; if σi’s denote the singular values obtained in this
case, the relative error bound is

‖H−1(H −Hk)‖∞ ≤
n
∏

i=k+1

[

1 + σi
1− σi

]

− 1.
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� Positive real balancing. The (smallest) positive definite solution to two Ric-
cati equations below, equal and diagonal: A∗Q+QA+(C∗−QB)(D+D∗)−1(C−
B∗Q) = 0, AP+PA∗+(PC∗−B)(D+D∗)−1(CP−B∗) = 0. Passivity: σi < 1.
Reduced model: preserves passivity.

3.1.6. Hankel Norm Approximation

A similar method is Hankel norm approximation. This is a direct generalization of
the Schmidt-Mirsky, Eckart-Young result regarding integral operators resulting from
LTI (linear, time-invariant) systems. We will briefly outline the construction method
in what follows. For details we refer to (Adamjan et al., 1971; 1978; Glover, 1984);
also see (Antoulas, 1998; 1999a) as well as the books (Antoulas, 2002; Obinata and
Anderson, 2000).

Construction of Hankel norm approximants:

1. Find Σ̃ such that Σ− Σ̃ is all-pass1 with norm σk.

2. Project Σ̃ onto its stable part Σ̃+; the optimal approximant is Σ̂ = Σ̃+. As in
the balanced truncation case, a Hankel norm approximation has the following
guaranteed properties:

(a) stability is preserved, and

(b) the global error bound (6) holds.

Its drawbacks are

� dense computations, since matrix factorizations/inversions are required; these
properties imply that the computations may be ill-conditioned.

� The whole transformed system is needed in order to truncate the desired sub-
system. This leads to a number of operations of the order O(n3) and storage
of the order O(n2).

Σ̃ �

�

�

�

�
��

� �
−

+

Σ

Fig. 3. Construction of Hankel norm approximations.

1 A system Σ is all-pass or unitary if for all input/output pairs u, y the ratio ‖y‖/‖u‖ is
constant.
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We conclude this subsection with a series of remarks concerning balanced and Hankel
norm approximations.

Remark 1.

(a) To enhance accuracy, one can obtain the balanced reduced-order model without
explicitly computing the balancing transformation; this was first introduced in (Varga,
1991).

(b) Due to the importance of the Lyapunov or, more generally, of the Sylvester equa-
tion in systems theory many authors have studied various aspects of the solution of this
equation in detail. For some sample papers we refer besides the classical paper (Lan-
caster, 1970) to more recent works (Avrachenkov and Lasserre, 2000; Ghavimi and
Laub, 1996; Simoncini, 1996); the Sylvester and Lyapunov equations were also studied
in the papers (Datta and Saad, 1991; de Souza and Bhattacharyya, 1981; Ghavimi and
Laub, 1996; Hodel and Misra, 1997; Hodel et al., 1996; Hu and Reichel, 1992; Penzl,
2001; Saad, 1990).

(c) Ill-conditioning in balanced truncation. In (Roth, 1952) the following equivalence
was developed:

AX +XA∗ +Q = 0⇔
(

A Q

0 −A∗

)(

I X

0 I

)

=

(

I X

0 I

)(

A 0

0 −A∗

)

.

Thus with V ∗1 V1 + V
∗
2 V2 = I , det V2 6= 0, H = −V −12 A∗V2 and

(

A Q

0 −A∗

)(

V1

V2

)

=

(

V1

V2

)

H ⇒ X = V1V −12 .

This means that the solution can be computed by determining the eigenspace of the
composite matrix belonging to A. This requires the decoupling of the spectra of A
and −A∗. The conclusion is that ill-conditioning occurs when A has eigenvalues close
to the imaginary axis, i.e., Σ has dominant poles close to the imaginary axis.

(d) Canonical form. There is a canonical form associated with balanced representa-
tions. In the single-input single-output (SISO) case, with distinct singular values, the
three matrices have the form

Ai,j = −
bibj

sisjσi − σj
, Bi,1 = bi, C1,i = sibi,

where si are ±1, bi > 0 and σi are the Hankel singular values. For details see (Ober,
1991).

(e) Interpretation of balanced basis. Given the state x, let Er denote the minimal
amount of the input energy needed to steer 0 → x. Let also Eo be the maximal
output observation energy obtained by observing the output caused by the initial
condition x: x → 0. It follows that E2o = x∗Qx, E2r = x∗P−1x, and in a balanced
basis the product is equal to one: Er · Eo = 1.
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(f) As has already been mentioned, balancing for linear systems is equivalent to POD
on the impulse response.

(g) Model reduction of unstable or descriptor systems can be carried out by various
means, e.g., LQG balancing, frequency domain grammians (Zhou, 1999), or normal-
ized coprime factorizations (Varga, 1998).

(h)Weighted approximation is also possible: for instance, frequency weighted balanced
truncation with explicit L∞ error bounds, or a weighted Hankel approximation with
anti-stable weighting (Enns, 1984; Kim et al., 1995; Zhou, 1995).

(i) We conclude these remarks with a comment on the tightness of the bound (6). In
fact, equality holds for systems Σ having zeros which interlace the poles; an example
of such systems are electric circuits which are composed of resistors and capacitors
(RC circuits).

3.2. Krylov-Based Approximation Methods

The moments associated with the linear system Σ (3), at some point s0 ∈
�
, are

defined as the moments of its impulse response h weighted by the exponential es0t,
namely,

ηk =

∫ ∞

0

(−t)kh(t)e−s0t dt = d
k

dsk
H(s) |s=s0 .

These numbers can be expressed in terms of the series expansion of the transfer
function H(s) = D + C(sI − A)−1B of Σ around s0 ∈

�
; the transfer function is

the Laplace transform of the impulse response:

H(s) = η0 + η1(s− s0) + η2(s− s0)2 + η3(s− s0)3 + · · · .

The problem now consists in finding Σ̂ of (4), with

Ĥ(s) = η̂0 + η̂1(s− s0) + η̂2(s− s0)2 + η̂3(s− s0)3 + · · · ,

such that for appropriate `

ηj = η̂j , j = 1, 2, . . . , `.

The key to the success of these methods is that they can be implemented iteratively.
These implementation methods are closely related to iterative eigenvalue computa-
tions (Sorensen, 1999). Thus there is a strong interaction between model reduction
for large-scale systems and large-scale eigenvalue computations; this is explored in
(Antoulas, 2002).

If the expansion is around infinity, the moments are known asMarkov parameters,
and the problem is known as partial realization; its solution is computed through the
Lanczos and Arnoldi procedures. If the expansion is around zero, the problem becomes
Padé approximation. In general, for arbitrary s0 ∈

�
, we have the problem of rational

interpolation, which amounts to matching moments at the specified point s0. This



1108 A.C. Antoulas and D.C. Sorensen

interpolation is obtained indirectly using the so-called rational Lanczos procedure
which operates with (A− s0I)−1 in place of A. The inverse operation is applied by
solving triangular systems obtained from an initial LU decomposition (using a sparse
direct method if A is sparse).

It should be noted that the computation of moments is numerically problematic,
because the powers of eigenvalues of A grow exponentially fast in general (the eigen-
values of A have negative real parts, many of them are larger in magnitude than
one). Thus the key fact for numerical reliability is that if Σ is given by means of
(A,B,C), Krylov methods allow moment matching without explicit computation of
moments. For an overview as well as details on the material presented in this section
we refer to (Antoulas et al., 1996; Gallivan et al., 1994b; 1995; Gragg, 1972; Gragg and
Lindquist, 1983; Gutknecht, 1994; Grimme, 1997; Ruhe, 1984; Sorensen, 1999; Van
Dooren, 1995).

3.2.1. Lanczos and Arnoldi Processes

In this section we will briefly review the Lanczos and Arnoldi processes. For simplicity,
we will do so in the SISO (Single-Input Single-Output) case, i.e., no block versions will
be considered. There are two ways of looking at these algorithms: the conventional
one and the system-theoretic one, the latter of which is less common.

Conventional representation. Given A ∈ �
n×n and vectors B,C∗ ∈ �

n , the two-
sided Lanczos and the Arnoldi processes construct at each step matrices Wk, Vk ∈

�
n×k such that the following relationships are satisfied:

Lanczos and Arnoldi algorithms

Lanczos Arnoldi

Initialization

V1=
1

√

|CB|
B, W1=

sign(CB)
√

|CB|
C∗ V1 =

1

‖B‖ B

t-th step

AVt = VtTt + rte
∗
t AVt = VtHt + gte

∗
t

A∗Wt =WtT
∗
t + qte

∗
t

W ∗t Vt = It, t = 2, 3, . . . , V ∗t Vt = It, t = 2, 3, . . . ,

where et ∈
�
n is the t-th unit vector. The columns of Vt in the Arnoldi case

are orthogonal, while in the Lanczos case the columns of Vt and Wt are called bi-
orthogonal. Furthermore, in the Lanczos case Tt is tridiagonal and in the Arnoldi
case Ht is upper Hessenberg.
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System theoretic representation. We will first define the t×n observability matrix
Ot, the n × t reachability matrix Rt, and the t × t Hankel matrix Ht associated
with Σ:

Ot =













C

CA
...

CAt−1













, Rt =
[

B AB · · · At−1B
]

,

Ht :=













η1 η2 · · · ηt

η2 η3 · · · ηt+1
...

. . .

ηt ηt+1 · · · η2t−1













.

It is well-known that Ht = OtRt . The key step in the Lanczos procedure is to
compute the LU factorization of Hk:

Ht = LU = OtRt,

where L is lower triangular and U is upper triangular, with L(i, i) = ±U(i, i). Such
a factorization exists provided that detHt 6= 0, for all t. We now define the projection
πRπL, where

πL = L
−1Ot, πR = RtU−1.

Similarly, the key step in the Arnoldi algorithm is the computation of the QR factor-
ization of Rt:

Rt = V U,

where V ∈ �
n×t , V ∗V = It, and U is upper triangular. This yields the projection

πRπL, where πR = π
∗
L = V . These two projections are used to define reduced order

systems Σ̂:

Σ̂ =

(

Â B̂

Ĉ

)

, Â := πLAπR, B̂ = πLB, Ĉ = CπR.

Properties: (a) πLπR = 1, and (b) πRπL is a projection. In the Lanczos case for the
reduced system, let the number of moments matched be 2k. Then: (i) Σ̂ matches 2k
Markov parameters; (ii) Â is tridiagonal; (iii) B̂, Ĉ∗ are multiples of the unit vector
e1. In the Arnoldi case, let the number of moments matched be k; the reduced system
(i) matches k Markov parameters, (ii) Â is in upper Hessenberg form, and (iii) B̂
is a multiple of e1.
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Lanczos/Arnoldi: Iterative Implementation

Two-sided Lanczos algorithm The Arnoldi algorithm

1. β1 :=
√

|B∗C∗|, γ1 := sgn (B
∗C∗)β1,

v1 := B/β1, w1 := C
∗/γ1

2. For j = 1, . . . , k, set
(a) αj := w

∗
jAvj

(b) rj := Avj − αjvj − γjvj−1,
qj := A

∗wj − αjwj − βjwj−1

(c) βj+1 =
√

|r∗j qj |,
γj+1 = sgn (r

∗
j qj)βj+1

(d) vj+1 = rj/βj+1, wj+1 = qj/γj+1

1. v1 :=
v

‖v‖
, w := Av1; α1 := v

∗
1w

f1 := w − v1α1; V1 := (v1); H1 := (α1)

2. For j = 1, 2, . . . , k

βj := ‖fj‖, vj+1 :=
fj
βj

Vj+1 := (Vj vj+1), Ĥj =
(

Hj

βje
∗
j

)

w := Avj+1, h := V
∗
j+1w,

fj+1 = w − Vj+1h, Hj+1 :=
(

Ĥj h
)

The results quoted above are based on the following result.

Lemma 1. (Degree Lemma).

Arnoldi process. Consider V ∈ �
n×k and H ∈ �

k×k , which are generated at the
k-th step of the Arnoldi process. For any polynomial φ of degree less than or equal to
k, there holds

φ(A)V e1 = V φ(H)e1, degφ < k,

φ(A)V e1 = V φ(H)e1 + fγ, degφ = k, γ ∈
�
.

Lanczos process. Consider V,W ∈ � n×k , T ∈ � k×k , which are generated at the
k-th step by the Lanczos process. For any polynomial φ of degree less than or equal
to k, there hold:

φ(A)V e1 = V φ(T )e1, φ(A∗)We1 =Wφ(T
∗)e1, deg φ < k,

φ(A)V e1 = V φ(T )e1 + rγ, φ(A
∗)We1 =Wφ(T

∗)e1 + qη, deg φ = k, γ, η ∈
�
.

From this simple property it follows that

cAjb = cAjv1 = cVkH
j
ke1 = e

∗
1H
j
ke1, 1 ≤ j < k

for the Arnoldi process, and

cA`+jb = w∗1A
`Ajv1 = (e

∗
1T
`
kW

∗
k )(VkT

j
ke1) = e

∗
1T
`+j
k e1, 0 ≤ ` ≤ k − 1, 0 ≤ j ≤ k

for the Lanczos process. Thus, Arnoldi matches k moments while Lanczos matches 2k
moments. In the following table we summarize the three different moment matching
methods, together with the moments matched, the points in the complex plane where
they are matched, and the number of moments matched.
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Krylov methods

Method Moments matched Points in
�
Number of moments

1. k steps Arnoldi/Lanczos cAjb ∞ k/2k

2. Shift-Invert c(A− σ0I)−j−1b σ0 k/2k

3. Rational Krylov c(A− σiI)−j−1b σ1, . . . , σi k = `1 + · · ·+ `i

Implicitly restarted Arnoldi and Lanczos procedures. The issue here is to
get a better approximation of some desired set of preferred eigenvalues, e.g., those
eigenvalues that have largest modulus or largest/smallest positive/negative real part.
An idea due to Sorensen (Sorensen, 1992; Lehoucq et al., 1998) is to accomplish this by
projecting onto the space of desired features, by restarting Lanczos and Arnoldi, while
staying in the Lanczos/Arnoldi framework. An overview of applications of implicit
restarting can be found in (Sorensen, 1995).

Remark 2.

(a) In the Arnoldi algorithm, if A is symmetric, then Hj is tridiagonal, and the
Arnoldi algorithm coincides with the one-sided or symmetric Lanczos algorithm.

(b) The realization and partial realization problems were introduced by Kalman
(1979). Their generalization is a rational interpolation. A general version of this prob-
lem was solved in (Antoulas et al., 1990), and with stability constraint in (Antoulas
and Anderson, 1989). The recursive interpolation problem is studied in (Antoulas,
1993; Antoulas and Willems, 1993). For connections of these results with Lanczos,
see (Antoulas et al., 1996). A generalization of the tridiagonal form of A for MIMO
systems is described in (Antoulas and Bishop, 1987). The connection between par-
tial realizations and the Lanczos algorithm was studied in (Gragg, 1972; Gragg and
Lindquist, 1983).

(c) In (numerical) linear algebra the terminologyKrylov subspace Kt is used to denote
the space spanned by the first t columns of the reachability (or the observability) ma-
trices Kt = span col Rt. In systems theory these subspaces are known as reachability
and observability subspaces, respectively.

(d) The residual in the Arnoldi case is fj = Avj − Vjhj , where hj is chosen so that
the norm ‖fj‖ is minimized. It turns out that V ∗j hj = 0 and hj = V ∗j Avj , that is,
fj = (I − VjV ∗j )Avj .
(e) Comparison between Lanczos and Arnoldi algorithms. These two algo-
rithms are similar but have important differences. While Lanczos yields a Padé-type
approximation, this is not true for Arnoldi. Then Arnoldi is numerically stable, while
Lanczos is not. The number of operations needed to compute a k-th order approxi-
mant is O(k2n) for both (as opposed to O(n3) operations required for SVD-based
methods). The storage required is 2kn in both the cases. The basic operation is
w = Av and v̂ = Av, ŵ = A∗w, respectively, and the cost is 2k; this is followed by



1112 A.C. Antoulas and D.C. Sorensen

v+ = (I − V V ∗)w, and v+, w+ which have a cost of nO(k2). Finally, it should be
mentioned that the Lanczos process satisfies a three-term recurrence relation, while
Arnoldi does not. This implies the definition of orthogonal polynomials associated
with Lanczos.

(f) An implementation of Krylov methods requires matrix-vector multiplications ex-
clusively, and no matrix factorizations and/or inversions are needed. Furthermore,
there is no need to compute the transformed n-th order model and then truncate.
This means the absence of ill-conditioning.

(g) Drawbacks:

� There is no global error bound; for a local result, see (Bai and Ye, 1998).

� Σ̂ may not be stable, even if Σ is stable. Remedy: implicit restart (Grimme et
al., 1995).

� Lanczos breaks down if detHi = 0. Remedy: look-ahead methods (Gutknecht,
1994).

� Σ̂ tends to approximate the high frequency poles of Σ. Hence the steady-state
error may be significant.
Remedy: match expansions around other frequencies (rational Lanczos) (Ruhe,
1984; Gallivan et al., 1995; Grimme, 1997).

3.3. SVD-Krylov-Based Approximation Methods

Up to this point we have briefly reviewed the merits and difficulties associated with two
fundamental ways of carrying out model reduction. We reached the conclusion that
SVD-based approximation methods have a number of desirable properties, namely,
there exists a global error bound and stability is preserved. The drawback, however,
is that applicability is restricted to relatively low dimensions. On the other hand, the
Krylov-based methods remedied the last issue (i.e., applicability) but had a number
of important drawbacks, namely, no guaranteed stability preservation and no global
error bound. These considerations give rise to the SVD-Krylov-based approach, which
aims at combining the best attributes of the two previously described approximation
methods.

The basic ingredients of SVD-based methods which give rise to all the nice proper-
ties of this approach are the two Lyapunov equations used to compute the grammians.
On the other hand, the basic ingredients of the Krylov-based methods are precisely
the Krylov subspaces, i.e., the span of the columns of the reachability and observabili-
ty matrices, and the iterative way of computing projections onto these subspaces. The
SVD-Krylov methods thus aim at combining these two sets of attributes by seeking
iterative solutions of Lyapunov or, more generally, of Sylvester equations. In doing so
the hope is that there will be devised a method which combines the best attributes of
the SVD and Krylov methods. Such a method does not exist yet. The quest, however,
continues.
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Two methods in this category are (Antoulas and Sorensen, 2001a; Hodel et al.,
1996; Jaimoukha and Kasenally, 1997). In the sequel we will briefly describe the
approach in the former reference.

The difficulty (pointed out earlier) of working with two Lyapunov equations sep-
arately, as proposed in (Jaimoukha and Kasenally, 1997), has led to the consideration
of a different approach which is based upon the notion of a cross-grammian that was
introduced in (Fernando and Nicholson, 1983). The cross-grammian X is defined for
square systems (m = p) as the solution to the Sylvester equation AX+XA+BC = 0.
In the SISO (Single-Input Single-Output) case, the solution X is similar to a Her-
mitian matrix and the eigenvalues of X are actually signed singular values of Σ. In
fact, it is possible to show in this case that X2 = PQ . Our approach consists es-
sentially in constructing low-rank k approximate solutions to this system by setting
X = V X̂W ∗ with W ∗V = Ik and projecting using W and V as the reduced basis.
This uses an implicit restart mechanism that allows the computation of the best-rank
k approximation to X . This solution leads to an error estimate.

The primary goal of (Antoulas and Sorensen, 2001a) is to develop implicit restart-
ing methods that will iteratively produce approximations of a specified rank k to
controllability, observability, and cross grammians that are best approximations of
rank k to the full grammians. We observe that the Hankel singular values of such
systems decay extremely rapidly. Hence very low-rank approximations to the sys-
tem grammians are possible and accurate low-order reduced models will result. The
approach consists in investigating a non-Krylov method related to the recently de-
veloped Jacobi-Davidson method to the large scale eigenvalue problem. This has the
advantage of admitting a wider variety of restarting options. However, the advan-
tage is gained at the expense of giving up the Krylov properties which provide deep
connections with the fundamental systems theory. Nevertheless, our method will be
based on a quantity called the cross-grammian and because of this some important
system theoretic properties are indeed retained which are not necessarily related to
moment matching.

This method uses subspace projection techniques combined with variants of im-
plicit restarting to compute a partially balanced realization directly. Instead of com-
puting all the Hankel singular values and then casting out the smallest ones, an
implicit restarting mechanism is used to compute just the largest ones and thereby
greatly reduces the computational and storage costs required to produce a k-th order
reduced model. Thus computational costs are reduced from O(n3) to O(n · k2), and
storage costs from O(n2) to O(n · k).
We conclude this section by summarizing in the table below the salient features

of each one of the three methods. The features of the third column form a wish list,
as there is currently no method which fulfills all of them.

Remark 3.

• An approximation method which has been popular is model reduction by modal
approximation (Varga, 1995). This method works well when the dominant eigenfre-
quencies of the original system are of interest and have to be preserved.
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SVD methods Krylov methods SVD-Krylov methods

1. preservation of stability 1. numerical efficiency 1. preservation of stability

2. global error bound 2. applicability: n� 100 2. global error bound
3. applicability n � 100 3. numerical efficiency

4. applicability: n� 100

• All systems which can be well approximated using SVD-based methods have Hankel
singular values which drop off rapidly. Therefore an important issue in model reduction
is to determine the rate of decrease in the singular values. Few results in this direction
are known, and this remains an open problem (Antoulas, 1999b).

• We would like to draw the readers’ attention to two new books, one of which
is already available (Obinata and Anderson, 2000), and the other is in preparation
(Antoulas, 2002; Antoulas and Van Dooren, 2000).

• SVD-based model reduction has been extended to time-varying systems; for an
overview, see (Van Dooren, 2000; Varga, 2000).

4. Numerical Experiments

Matlab codes implementing all of the methods mentioned above have already been
developed; furthermore, a new software library called SLICOT has been developed
for control and contains a package which implements all the dense model reduction
methods; for details, we refer to (Varga, 1999). A package which is used for large-scale
eigenvalue computation is ARPACK (Lehoucq et al., 1998). It should be mentioned
that one of the largest examples computed involves the determination of stability of
a matrix resulting from the discretization of a 3D Navier Stokes equation. The size
is several million (Lehoucq and Salinger, 2001). This is relevant to the paper at hand
because the techniques used are the same as those outlined above.

Most of the problems we have seen exhibit the behavior that is indicative of
the success for this approach. Namely, the singular values of Σ decay very rapidly
indicating that Σ is typically approximated well with a reduced order system of very
low dimension. In the following example we show the results of computing Σ̂, where
its dimension k is determined by a cut off. We determine k by taking the first k
such that

σk+1 < τσ1.

A typical value of τ is τ =
√
machine precision . The important point is that the

specification of this single tolerance determines everything in the SVD-based meth-
ods. The order of the reduced model and the eigenvalue placement are completely
automatic. Moreover, the value of τ directly determines the error of approximation
for ‖y − yk‖ over the entire frequency range. As has already been noted, the key
parameters for model reduction are the Hankel singular values.
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Fig. 4. Hankel singular values for four examples and results for clamped beam displacements.
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In Fig. 4, the top plot side compares the Hankel singular values of four sys-
tems: a finite-element discretization of a heat plate, a finite-element discretization of
a clamped beam, the model of a component of a CD player, and a model of the flex
modes of the 1r module of the ISS (International Space Station). It follows from this
plot that for a give tolerance the ISS model is the hardest to approximate, as its
Hankel singular values decay the least rapidly.

The bottom plot shows results for a finite-element calculation of the displacement
and stress in the clamped beam with Rayleigh (or proportional) damping. The input
is a force at the unclamped end, while the output is the displacement. The figure
shows a Bode plot of the response of the original system which is of order 348 (solid
line) and the response of the reduced-order model of order 48 (dashed line). The
order of the reduced model is automatically determined once the error requirement is
specified.

5. Unifying Features and Conclusions

The unifying feature of all model reduction methods is that the main operation is
projection. Given Σ in (3) and a projection π = πLπR (i.e., πRπL = Ik), a reduced-
order model Σ̂ is obtained by projecting Σ as follows:

Σ̂ =

(

πLAπR πLB

CπR

)

:
dx̂

dt
= [πLAπR]x̂+ [πLB]u, y = [CπR]x̂.

The quality of the reduced model is measured in terms of the frequency response

H(jω) = D + C(jωI −A)−1B.

Choices of projectors for the reduction methods discussed above are:

1. Balanced truncation: Project onto the dominant eigenspace of PQ, where P ,
Q are the grammians.

2. Optimal Hankel norm approximation: Solve for grammians. Embed in a lossless
transfer function and project onto its stable eigenspace.

3. Krylov-based approximation: Project onto controllability and/or observability
spaces, i.e., R and O.

4. New method (Antoulas and Sorensen, 2001a): Project onto the dominant
eigenspace of the best rank-k approximant Xk of the cross-grammian X .

Complexity issues (Antoulas and Van Dooren, 2000). The major costs associated
with computing balanced and Hankel norm approximants are approximately 30n3

for computing the grammians and approximately 25n3 for performing the balancing.
For rational Krylov at k points, 23kn

3 operations are needed. Of course, various
iterative methods (sign, disc, Smith) can accelerate the computation of grammians,
in particular on parallel machines. For approximate or sparse decompositions, we need
c1αkn operations to compute the grammians and O(n3) operations for embedding
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or balancing. The corresponding number for rational Krylov is c2kαn, where k is the
number of expansion points and α is the average number of non-zero elements per
row in A.

6. Conclusions

We have outlined the current trends in the computation of reduced-order models for
large-scale systems. The SVD-based methods and the Krylov-based methods each en-
joy disjoint sets of advantages. Therefore a third approach referred to as SVD-Krylov,
which aims at combining the best attributes of these two methods, has emerged.
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dynamic systems with Lanczos methods. — Proc. 33rd IEEE Conf. Decision and Control,
Lake Buena Vista, FL.

Gallivan K., Grimme E. and Van Dooren P. (1995): A rational Lanczos algorithm for model
reduction. — CSRD Rep. No.1411, University of Illinois at Urbana-Champaign, IL.



Approximation of large-scale dynamical systems: An overview 1119

Ghavimi A.R. and Laub A.J. (1996): Numerical methods for nearly singular constrained
matrix Sylvester equations. — SIAM J. Matrix Anal. Appl., Vol.17, pp.212–221.

Glover K. (1984): All optimal Hankel-norm approximations of linear multivariable systems
and their L∞-error bounds. — Int. J. Contr., Vol.39, pp.1115–1193.

Golub G.H. and Van Loan C.F. (1989): Matrix Computations. — Baltimore, London: The
Johns Hopkins University Press.
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