
Int. J. Appl. Math. Comput. Sci., 2001, Vol.11, No.6, 1361–1378 1361

J-ENERGY PRESERVING WELL-POSED

LINEAR SYSTEMS

Olof J. STAFFANS∗

The following is a short survey of the notion of a well-posed linear system.
We start by describing the most basic concepts, proceed to discuss dissipative
and conservative systems, and finally introduce J-energy-preserving systems,
i.e., systems that preserve energy with respect to some generalized inner prod-
ucts (possibly semi-definite or indefinite) in the input, state and output spaces.
The class of well-posed linear systems contains most linear time-independent
distributed parameter systems: internal or boundary control of PDE’s, integral
equations, delay equations, etc. These systems have existed in an implicit form in
the mathematics literature for a long time, and they are closely connected to the
scattering theory by Lax and Phillips and to the model theory by Sz.-Nagy and
Foiaş. The theory has been developed independently by many different schools,
and it is only recently that these different approaches have begun to converge.
One of the most interesting objects of the present study is the Riccati equation
theory for this class of infinite-dimensional systems (H2- and H∞-theories).
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1. Well-Posed Linear Systems

Many infinite-dimensional linear time-independent continuous-time systems can be
described by the equations

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), t ≥ 0,

x(0) = x0

(1)

on a triple of Hilbert spaces, namely, the input space U , the state space X , and
the output space Y . We have u(t) ∈ U , x(t) ∈ X and y(t) ∈ Y . The operator A
is supposed to be the generator of a strongly continuous semigroup t 7→

�
t. The
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generating operators A, B and C are usually unbounded, whereas D is always
bounded.

By modifying this set of equations slightly we get the notion of a well-posed
linear system. In the sequel, we think about the block matrix S = [ A BC D ] as one
single (unbounded) operator from X × U to X × Y , and write (1) in the form

[
ẋ(t)

y(t)

]
= S

[
x(t)

u(t)

]
, t ≥ 0, x(0) = x0. (2)

The operator S completely determines the system. Thus we may identify the system
with such an operator, which we call the node of the system.

There are some necessary conditions which a node S must satisfy in order to
generate a well-posed linear system. First of all, S must be closed and densely defined
as an operator from X × U into X × Y . Let us denote the domain of X by D(S).
Then S can be split into S =

[
S1
S2

]
, where S1 maps D(S) into X and S1 maps

D(S) into Y . By analogy to the finite-dimensional case, let us set S1 = A&B and
S2 = C&D, so that S =

[
A&B
C&D

]
(the reader who finds this notation confusing may

throughout replace A&B by S1 and C&D by S2). It is not true, in general, that
A&B and C&D (defined on D(S)) can be decomposed into A&B = [A B] and
C&D = [C D]; this is possible only in the case where D(S) can be written as
the product of one subset of X times another subset of U . However, as we shall see
below, certain extended versions of A&B and C&D can be decomposed as indicated
above, so that A&B and C&D are respectively the restrictions to D(S) of [A B]
and [C D] for suitably defined operators A, B, C and D. The first of these two
decompositions is more fundamental than the second, so we have incorporated it in
the following definition of a system node (the second decomposition is commented on
after Definition 3).

Definition 1. We call S a system node on the three Hilbert spaces (U,X, Y ) if it
satisfies condition (S) below:

(S) S :=
[
A&B
C&D

]
: X × U ⊃ D(S) → X × Y is a closed linear operator. Here

A&B is the restriction of [A B] to D(S), where A is the generator of a C0
semigroup, which has been extended to an operator in L(X ;X−1), where X−1
is the completion of X under the norm ‖x‖X

−1
:= ‖(αI − A)−1x‖X (α is an

arbitrary number in the resolvent set of A). The operator B is an arbitrary
operator in L(U ;X−1), and C&D is an arbitrary linear operator from D(S)
to Y . In addition, we require that

D(S) =

{[
x

u

]
∈ X × U | Ax +Bu ∈ X

}
.

In the sequel, we shall simply write S =
[
A B
C&D

]
and ignore the fact that [A B]

is defined on all of X × U (with values in X−1) and not just on D(S) (with values
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in X). Often X−1 is defined in a different but equivalent way as the dual of D(A∗)
(we identify the dual of X with X itself). Let us also remark that we can replace the
assumption that S is closed by the equivalent assumption that C&D is continuous
from D(S) (with the graph norm) to Y .

As the following lemma shows, every system node induces a “dynamical system”
of a certain type:

Lemma 1. Let S be a system node on (U,X, Y ). Then, for each x0 ∈ X and
u ∈ W 2,1( � + ;U) with

[ x0
u(0)

]
∈ D(S), the equation

[
ẋ(t)

y(t)

]
= S

[
x(t)

u(t)

]
, t ≥ 0, x(0) = x0 (3)

has a unique solution (x, y) satisfying
[
x(t)
u(t)

]
∈ D(S) for all t ≥ 0, x ∈ C1( � + ;X),

and y ∈ C( � + ;Y ).

Definition 2. By the linear system Σ generated by a system node S we understand
the family Σ of maps defined by

Σt0

[
x0

π[0,t]u

]
:=

[
x(t)

π[0,t]y

]
,

parametrized by t ≥ 0, where x0, x(t), u, and y are as in Lemma 1, and π[0,t]u and
π[0,t]y are respectively the restrictions of u and y to [0, t]. The transfer function of
Σ is defined by

̂� (z) := C&D
[
(zI −A)−1B

I

]
, z ∈ ρ(A).

By taking Laplace transforms in (3) we find that if u is Laplace transformable
with transform û, then the output y is also Laplace transformable with transform

ŷ(z) = C(zI −A)−1x0 + ̂
�
(z)û(z)

for <z large enough. Here

Cx := C&D

[
x

0

]
for x ∈ D(A).

Thus, our definition of the transfer function is equivalent to the standard definition
in the classical case.

So far we have defined Σt0 only for the class of smooth data given in Lemma 1.
In order to extend Σt0 to a larger class of data we need an extra well-posedness
assumption.
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Definition 3. A system Σ generated by a system node S is well-posed if the follow-
ing additional condition holds:

(WP) For some t > 0 there is a finite constant K(t) such that the solution (x, y)
in Lemma 1 satisfies

‖x(t)‖2 + ‖y‖2L2(0,t) ≤ K(t)
(
‖x0‖

2 + ‖u‖2L2(0,t)
)
.

�
t � t

0
� t
0

� t
0

�
x0

� x(t)

� y

�

u

Fig. 1. Input/state/output diagram of Σ.

It is not difficult to show that if this condition holds for one t > 0, then it holds
of all t > 0. If a system is well-posed, then Σ can be extended by continuity to a
family of operators

Σt0 :=

[ �
t � t

0
� t
0

� t
0

]

from X×L2([0, t];U) to X×L2([0, t];Y ). (We still denote the extended family by Σ.)

As is shown in (Staffans and Weiss, 2002a), the system node S of a well-posed
system can be always split into

S =

[
A B

C D

]
,

where A : X → X−1, B : U → X−1, C : W → Y , and D : U → Y . Here

D(A) =: X1 ⊂W ⊂ X ⊂ X−1

and W = (αI−A)−1(X+BU) where α ∈ ρ(A). The operators A and B are unique,
but C and D are not always unique (only the restriction of C to X1 = D(A) is
unique). The operators A, B and C may be unbounded, but D is always bounded. If

Σ is well-posed, then ̂� is bounded on some right half-plane, and ̂� can be written
in the familiar form

̂� (z) = C(zI −A)−1B +D, z ∈ ρ(A).

For more details, explanations and examples we refer the reader to (Adamajan
and Arov, 1970; Arov, 1979; 1999, Arov and Nudelman, 1996; Curtain and Weiss,
1989; Salamon, 1987; 1989; Staffans, 1997; 1998a; 1998b; 1998c; 1999a; 2002; Staffans
and Weiss, 2002a; 2002b; Weiss, 1989a; 1989b; 1989c; 1991; 1994a; 1994b; Weiss and
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Weiss, 1997) and the references therein. Note that different groups of authors use
different notations. For example, in an alternative set of notations (introduced by
George Weiss) the system itself and the transfer function are denoted by

Σt :=

[ �
t Φt

Ψt � t

]
:=

[ �
t � t

0
� t
0

� t
0

]
, G(s) := ̂� (s),

respectively. In the notation of Grabowski and Callier (2001) the system node and
the transfer function are respectively denoted by

[
A Ad

c] 0

]
:= S, ĝ(s) := ̂� (s).

Translating the notation used by Arov and Nudelman (1996) to our notation we
obtain

α := Σ, � − := U, � + := Y,
[
B L

M K

]
:=

[
A B

C D

]
, N := C&D, θα(s) := ̂

�
(−is).

In addition to the references mentioned above, there is a large range of relevant
literature that we do not cite explicitly. This applies, in particular, to most of the
Russian literature, represented by Adamjan, Arov, Brodskĭı, Krĕın, Livšic, Nudelman,
Potapov, and Šmulijan, among others. Another large block of relevant results is found
in the western operator theory and scattering theory group, represented by Ball, de
Branges, Douglas, Lax, Fuhrman, Helson, Helton, Phillips, Rosenblum, and Rovnyak.
A third group of missing results are those that have been developed in stochastic
identification theory, represented by Byrnes, Georgiou, Gilliam, Lindquist, and Picci.
(The above lists of researchers are far from being complete.)

2. Lax-Phillips Scattering

A generalized Lax–Phillips scattering model is a semigroup � defined on

Y ×X × U = L2( � − ;Y )×X × L2( � + ;U)

with certain additional properties. We call U the incoming subspace, X the central
state space, and Y the outgoing subspace. In the classical cases treated in (Lax and
Phillips, 1967; 1973), � is required to be unitary (the conservative case) or to be a
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contraction semigroup (the dissipative case). Below we use the following notation:

(πJu)(s) :=

{
u(s), s ∈ J,

0, otherwise.

(π+u)(s) :=

{
u(s), s ∈ � + ,
0, s ∈ � − ,

(τ tu)(s) := u(t+ s), s, t ∈ � .

τ t+ := π+τ
t, t ≥ 0,

Theorem 1. Let Y = L2( � − ;Y ) and U = L2( � + ;U). For all t ≥ 0 we define on
Y ×X × U the operator � t by

� t =




τ t 0 0

0 I 0

0 0 τ t+







I
� t
0

� t
0

0
�
t � t

0

0 0 I


 . (4)

Then � is a strongly continuous semigroup. If x respectively y are the state tra-
jectory and the output function of Σ with initial state x0 ∈ X and input function
u0 ∈ U , and if we define y(t) = y0(t) for t < 0, then for all t ≥ 0




τ t 0 0

0 I 0

0 0 τ t






π(−∞,t]y

x(t)

π[t,∞)u0


 = � t




y0

x0

u0


 . (5)

Formula (5) shows that at any time t ≥ 0 the first component of � t
[
y0
x0
u0

]

represents the past output, the second component represents the present state, and
the third component represents the future input.

The preceding theorem is taken from (Staffans and Weiss, 2002a), and it is also
found in (Staffans, 2002). Special cases of this result (where either the input or the
output is missing) appear in (Engel, 1998; Grabowski and Callier, 1996). The roots
of Theorem 1 are very old, and the preceding references represent only a fraction
of all the relevant ones. The setting which we describe above corresponds to the one
found in orthogonal scattering theory. Non-orthogonal scattering has also been studied
intensively. This case is important, for example, in the state space construction in
stochastic identification theory.

3. Dissipative and Conservative Systems

Below we shall interpret the words “dissipative” and “conservative” in a rather re-
stricted sense. Many authors use these words to represent (some subclass of) the
more general classes of (R,P, J)-dissipative and (R,P, J)-conservative systems that
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we define in Section 5. In particular, the following definition is a special case of the
definitions in the two classical papers (Willems, 1972; 1972b).

Definition 4. A system Σ generated by a system node S is dissipative if the fol-
lowing energy inequality holds:

(D) For all t > 0, the solution (x, y) in Lemma 1 satisfies

‖x(t)‖2 + ‖y‖2L2(0,t) ≤ ‖x0‖
2 + ‖u‖2L2(0,t).

Thus every dissipative system is well-posed : The dissipativity inequality (D) im-
plies the well-posedness inequality (WP). Physically, dissipativity means that there
are no internal energy sources.

Theorem 2. The following conditions are equivalent:

1. Σ is dissipative.

2. The corresponding Lax–Phillips model is a contraction semigroup.

3. For all t > 0, the operator Σt0 =
[ �

t � t
0�

t

0

�
t

0

]
is a contraction from X×L2([0, t);U)

to X × L2([0, t);Y ).

Dissipativity can also be characterized by some algebraic operator inequalities
involving the system node S = [ A BC D ] (which are Linear Matrix Inequalities in the
finite-dimensional case). See (Staffans and Weiss, 2002a) for the general case and
(Willems, 1972b) for the matrix case.

Definition 5. A system Σ generated by a system node S is energy-preserving if the
following energy balance equation holds:

(E) For all t > 0, the solution (x, y) in Lemma 1 satisfies

‖x(t)‖2 + ‖y‖2L2(0,t) = ‖x0‖
2 + ‖u‖2L2(0,t).

Note that every energy-conserving system is dissipative, hence well-posed. Phys-
ically, a system is energy-preserving if there are no internal energy sources or sinks.

Definition 6. A system Σ generated by a system node S is conservative if both the
original system and the dual system are energy-preserving.

The dual system is the one generated by S∗. (If S is a system node, then so is
S∗.) A finite-dimensional system is conservative if and only if it is energy-preserving
and U = Y . Some related (but more complicated) results are also true in infinite-
dimensions.

Theorem 3. The following conditions are equivalent:
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1. Σ is conservative.

2. The corresponding Lax–Phillips model is a unitary semigroup.

3. For all t > 0, the operator Σt0 =
[ �

t � t
0�

t

0

�
t

0

]
is a unitary operator from X ×

L2([0, t);U) to X × L2([0, t);Y ).

The preservation of energy can also be characterized by some algebraic operator
identities involving the system node S = [ A BC D ]: differentiating the energy balance
equation with respect to t (by Lemma 1, this is possible) we find that, for all [ xu ] ∈
D(S) =

{
[ xu ] ∈ X × U

∣∣ Ax+Bu ∈ X
}
,

〈Ax+Bu, x〉X + 〈x,Ax +Bu〉X + 〈Cx +Du,Cx+Du〉Y = 〈u, u〉U . (6)

(Here we have used the fact that we can write C&D [ xu ] = Cx+Du for [
x
u ] ∈ D(S)

since Σ is well-posed.) In the finite-dimensional case this set of equations decouples
into the three independent equations

A+A∗ + C∗C = 0,

B + C∗D = 0,

(B∗ +D∗C = 0, )

D∗D = I.

(7)

(The third equation above is the adjoint of the second.) In the infinite-dimensional
case such a decoupling is much more difficult. This problem is discussed further in
Section 6. The results presented in this section are taken from (Arov and Nudelman,
1996; Malinen et al., 2002; Staffans and Weiss, 2002a; Weiss et al., 2001), and they
are also found in (Staffans, 2002).

4. The Universal Model of a Contraction Semigroup

There is a classical problem in mathematics:

Let
�
be an arbitrary contraction semigroup on some Hilbert space X. Is it

always possible to find a unitary dilation ˜� of �
defined on some larger space X̃?

By this we meant the following: X is a subset of X̃, ˜� is a unitary semigroup
on X̃ , and for all t ≥ 0 and x ∈ X ,

� tx = πX ˜
� tx,

where πX is the orthogonal projection of X̃ onto X . We also say that
�
is a

compression of X̃. The answer to this question is:

Theorem 4. Given an arbitrary contraction semigroup
�
on a Hilbert space X,

it is always possible to find a conservative system Σ whose semigroup is the given
semigroup

�
. The corresponding Lax-Phillips semigroup is a unitary dilation of

�
.

The system Σ is unique (modulo unitary similarity transformations in the input and

output spaces) if we require ̂� to be strictly contractive.
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Strict contractivity of ̂� means that there is no nontrivial subspace of U on
which ̂� reduces to an isometric constant. This additional restriction on the transfer
function is a minimality requirement : by factoring out N (B) from U and R(C)⊥

from Y we can always reduce a conservative system to a system whose transfer
function is strictly contractive. The corresponding Lax-Phillips semigroup is then a
minimal unitary dilation of

�
.

The preceding theorem also has a “converse”:

Theorem 5. Every contractive causal shift invariant operator
�
from L2( � + ;U)

to L2( � + ;Y ) has a conservative realization, i.e., there exists a conservative system
Σ with this input/output map. The system Σ is unique (modulo unitary similarity
transformations in its state space) if we require

�
to be completely non-unitary.

Complete non-unitarity of the semigroup
�
means that there is no nontrivial

reducing subspace on which
�
is unitary. Again the requirement that

�
is completely

non-unitary is a minimality requirement : We can always reduce a conservative system
to a system with a completely non-unitary semigroup by factoring out the intersection
of the unreachable and unobservable subspaces.

By combining the preceding results with a further representation result for the
Lax-Phillips semigroup corresponding to a conservative system we arrive at the fol-
lowing universal model of a completely non-unitary contraction semigroup:

Theorem 6. Every completely non-unitary contraction semigroup
�
on some Hilbert

space X is unitarily equivalent to a compression of the (bilateral) shift operator on

some subspace X̃ of L2( � ;Z) (and there are formulas for how to find the space Z
and the subspace X̃).

The results presented in this section are taken from the book (Sz.-Nagy and
Foiaş, 1970), and the same book also contains a wealth of additional material on
conservative systems, including results on strong stability, controllability, observability,
and transfer functions being inner (or co-inner or bi-inner). This book is written
primarily in discrete time, but the results apply equally well in continuous time. Recall
that well-posedness does not cause any problems when the systems are dissipative.
The Cayley transform maps a well-defined subclass of all discrete time dissipative
(or conservative) systems one-to-one onto the class of continuous time dissipative
(or conservative) linear systems, and it preserves controllability, observability, strong
stability, inner transfer functions, etc. In other words, it preserves almost all the
important properties of a system. The only exceptions are exponential stability and
all properties related to the behavior of the system over a finite time interval (such
as exact controllability/observability in finite time).

Of course, there is also a fair amount of additional literature on this subject, in
particular, a huge Russian literature. See (Weiss and Tucsnak, 2001) for a detailed
description of a particular case of the general construction presented in Theorem 4.
Theorem 5 is also found in (Arov and Nudelman, 1996) (in continuous time). Theo-
rem 6 is given in (Sz.-Nagy and Foiaş, 1970) (both in discrete and continuous time). A
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modern presentation of the results presented up to now (in continuous time) appears
in the book manuscript (Staffans, 2002).

5. (R,P ,J)-Energy Preserving Systems

The standard energy inequality of a dissipative system can also be written with the
help of inner products:

〈x(t), x(t)〉X +

∫ t

0

〈y(s), y(s)〉Y ds ≤ 〈x0, x0〉X +

∫ t

0

〈u(s), u(s)〉U ds.

We can make this equation more general by introducing self-adjoint cost operators:
the input cost operator R : U → U , the state cost operator P : X → X , and the
output cost operator J : Y → Y .

Definition 7. A system Σ generated by a system node S is (R,P, J)-dissipative if
the following (R,P, J)-energy inequality holds:

(JD) For all t > 0, the solution (x, y) in Lemma 1 satisfies

〈x(t), Px(t)〉X +

∫ t

0

〈y(s), Jy(s)〉Y ds ≤ 〈x0, Px0〉X +

∫ t

0

〈u(s), Ru(s)〉U ds.

The system Σ is (R,P, J)-energy preserving if the above inequality holds as an
equality:

(JE) For all t > 0, the solution (x, y) in Lemma 1 satisfies

〈x(t), Px(t)〉X +

∫ t

0

〈y(s), Jy(s)〉Y ds = 〈x0, Px0〉X +

∫ t

0

〈u(s), Ru(s)〉U ds.

Finally, Σ is (R,P, J)-conservative if both Σ and the dual system Σd are (R,P, J)-
energy preserving.

It is important to observe that in the above cases well-posedness is neither guar-
anteed, nor necessarily relevant. This possible lack of well-posedness causes some
additional difficulties, but it is still possible to extend some of the results mentioned
in Section 3 to the class of systems described in Definition 7. For simplicity, let us
restrict the discussion to the case where the system is (R,P, J)-energy-preserving.
Differentiating the (R,P, J)-energy balance equation with respect to t (and using
Lemma 1), we obtain the following Lyapunov equation:

〈Ax+Bu, Px〉X +
〈
x, P (Ax +Bu)

〉
X

+

〈
C&D

[
x

u

]
, J [C&D]

[
x

u

]〉

Y

= 〈u,Ru〉U ,
(8)
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valid for all [ xu ] ∈ D(S). In the finite-dimensional case this set of equations decouples
into the three independent equations

A∗P + PA+ C∗JC = 0,

PB + C∗JD = 0,

(B∗P +D∗JC = 0, )

D∗JD = R.

(9)

Again, in the infinite-dimensional case such a decoupling is much more difficult (see
the discussion in Section 6).
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(R,P, J)-energy-preserving systems appear in optimal control, for example, in
minimization problems (H2-optimal control) and in minimax problems (H∞-optimal
control). The operator J is known, but the original system is not energy-preserving
in any sense. Instead, we want to find a feedback operator K, an input cost opera-
tor R, and a state cost operator (Riccati operator) P such that the corresponding
closed loop system is (R,P, J)-energy-preserving. By this we mean the following: We
add another combined observation/feedthrough operator K&L to the bottom of the
system node S (similar to the original C&D), and we then feed this output back into
the system, i.e., we take u to be of the form

u = v +K&L

[
x

u

]
,

where v is the closed loop input. To simplify the discussion, let us assume that we
can split K&L into K&L = [K L], and that we can take L = 0 (and let us also
ignore the fact that the splitting of K&L into [K L] need not be unique). Then
K&L [ xu ] = Kx, so that

u = v +Kx.

As we have mentioned above, the operator K should be chosen in such a way
that the closed loop system is (R,P, J)-energy-preserving for some (unknown) cost
operators R and P . By replacing u in the Lyapunov equation (8) by v = u −Kx
we get the Riccati equation

〈Ax+Bu, Px〉X +
〈
x, P (Ax +Bu)

〉
X

+

〈
C&D

[
x

u

]
, J [C&D]

[
x

u

]〉

Y

=
〈
u−Kx,R(u−Kx)

〉
U
,
(10)

which is valid for all [ x
u−Kx ] ∈ D(S). In the finite-dimensional case this set of equa-

tions decouples into the three equations

A∗P + PA+ C∗JC = K∗RK,

PB + C∗JD = −K∗R,

(B∗P +D∗JC = −RK, )

D∗JD = R.

(11)

It is especially in the case of the positive real lemma (which will be discussed
below) that the system (11) is often referred to as the Popov-Kalman-Szegö-Yakubovic
system. In the infinite-dimensional case the interpretation of these equations raises
some serious questions.

By appropriately choosing R, P and J we get many of the standard one-block
and two-block “optimal control” results. This time we work with the extended system
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�
t � t

0
� t
0

� t
0

0 I

�
x0

� x(t)

� y

� u

�

u

Fig. 2. Input added to output of Σ.

in Fig. 2, where we have added a copy of the input to the output (in addition, the
system used in the full information H∞ problem has two inputs instead of one):

1. y := [ yu ], C := [
C
0 ], D := [

0
I ], J := [

I 0
0 R ]. This is the standard LQR Riccati

equation. Here R ≥ 0 is the same operator which appears in the definition of
J , and both R ≥ 0 and J ≥ 0. We further require P ≥ 0, and (11) becomes

A∗P + PA+ C∗C = K∗RK,

RK = −B∗P.

Usually R is assumed to be invertible, in which case we can eliminate K to
get the standard regulator Riccati equation

A∗P + PA+ C∗C = PBR−1B∗P.

2. y := [ yu ], C := [
C
0 ], D := [

D
I ], J := [

I 0
0 I ]. This is the normalized coprime

factorization problem. We still have J ≥ 0, P ≥ 0, R ≥ 0, and (11) becomes

A∗P + PA+ C∗C = K∗RK,

RK = −(B∗P +D∗C),

R = I +D∗D.

Clearly, R is invertible, and we may eliminate R and K to get the normalized
coprime factorization Riccati equation

A∗P + PA+ C∗C = (PB + C∗D)(I +D∗D)−1(B∗P +D∗C).

3. y := [ yu ], C := [
C
0 ], D := [

D
I ], J :=

[
I 0
0 −γ2I

]
. This is the bounded real lemma.

Here J is indefinite, and (11) becomes

A∗P + PA+ C∗C = K∗RK,

RK = −(B∗P +D∗C),

R = D∗D − γ2I.



1374 O.J. Staffans

Usually γ is chosen so that R ≤ 0 is invertible and P ≥ 0. Eliminating R and
K from the above system we get the bounded real lemma Riccati equation

A∗P + PA+ C∗C = −(PB + C∗D)(γ2I −D∗D)−1(B∗P +D∗C).

4. y := [ yu ], C := [
C
0 ], D := [

D
I ], J := − [

0 I
I 0 ]: This is the positive real lemma.

The operator J is again indefinite, and (11) becomes

A∗P + PA = K∗RK,

RK = −B∗P + C,

R = −(D +D∗).

Clearly, R ≤ 0, and we require that P ≥ 0. If D +D∗ is invertible, then we
can eliminate R and K to get the positive real lemma Riccati equation

A∗P + PA+ C∗C = −(PB − C)(D +D∗)−1(B∗P − C).

5. u := [wu ], y := [
y
u ], B :=

[
B1 B2

]
, C := [C0 ], D :=

[
D11 D12
0 I

]
, J :=

[
I 0
0 −γ2I

]
.

This is the H∞ full information problem. In this problem P ≥ 0, but J and
R are indefinite. In the special case where D12 = 0, the system (11) becomes
(the feedback operator K has two components K =

[
K1
K2

]
since we now have

two inputs)

A∗P + PA+ C∗C =
[
K∗1 K

∗
2

]
R



K1

K1


 ,

R

[
K1

K1

]
= −

(

B∗1

B∗2


P +



D∗11

D∗12


C

)
,

R =



D∗11D11 0

0 −γ2I


 .

(If D12 6= 0, then the solution contains an additional feed-forward term from
the disturbance to the control input.) For further comments on this example we
refer the reader to standard textbooks on H∞ control.

One important problem which is missing from the above list is the Nehari prob-
lem. It is related to the full information H∞-problem discussed above, but it does
not quite fit into the general framework of this section (a minimax approach to this
problem is presented in (Staffans and Mikkola, 1998)). Another related problem is the
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computation of the n-th singular value of the Hankel operator. In the last problem
even the appropriate Riccati operator P is indefinite.

6. Open Questions and Some Solutions

Presently research is going on to extend the finite-dimensional Riccati equation theory
to the setting of an infinite-dimensional well-posed linear system. Much has been
done, but even more remains to be done. There are several problems which make
the infinite-dimensional theory significantly more difficult than the finite-dimensional
one. The first question to ask is: What do we really want out of the Riccati equation?
Depending on the answer (optimal control, spectral factorization, computation of
invariant subspaces, optimal identification, etc.), the “correct formulation” of the
problem might be different. Once we have decided on the purpose of the Riccati
equation, we are faced with the problem that the closed loop system may not be a
system, or it may not be well-posed. If it is a system, then what is the “correct form”
of the Riccati equation? For example, to compute the feedback operator K from
the equation K = −R−1(B∗P + D∗JC) we need to know for which x ∈ D(C)
it is true that Px ∈ D(B∗). In addition, the non-uniqueness of the splitting of the
observation/feedthrough operators C&D into [C D] and K&L into [K L] comes
into play. All the operators A, B, C, D, and K appear in the Riccati equation
(L is supposed to be zero), but which are the “correct” versions of these operators?
Can we always take L = 0? Is there always a “correct splitting” of C&D and K&L
which makes the Riccati equation valid? Such a splitting does not depend only on the
system itself, but also on the given cost operator J .

The difficulties described above have been approached in different ways. Some
results on the “correct splitting” of C&D into [C D] (i.e., a splitting which makes
the Riccati equation valid with L = 0) are found in (Flandoli et al., 1988) (this

reference does not require the optimal closed loop system to be well-posed). If ̂� (∞) =
limλ→+∞ ̂

�
(λ) exists, then the system is called regular, and it is possible to take

D = ̂� (∞). In general, this splitting is not compatible with the Riccati equation, and
we have to add some correction terms to the Riccati equation, similar to those seen in
the discrete time theory. In particular, the formula for R becomes more complicated.
See (Mikkola, 2002; Staffans, 1995; 1996; 1997; 1998b; 1998c; 1998d; 1999b; Weiss
and Weiss, 1997). These results are largely based on spectral factorization, and so
are those in (Callier and Winkin, 1990; 1992; 1999; Grabowski, 1991; 1993; 1994).
When the closed loop system is not well-posed, then we can use the (non-well-posed)
compensators with internal loop introduced in (Curtain et al., 1997) (see (Mikkola,
2002)). Another approach is to use the Cayley transform to map the continuous time
system into a discrete time system and use the discrete time Riccati equation theory
(joint work with Malinen is in progress). In discrete time all the operators become
bounded, but some extra correction terms enter the Riccati equations. In many cases
additional smoothing properties have been used (Pritchard-Salamon and parabolic
cases); see, e.g., (Curtain and Ichikawa, 1996; Curtain and Oostveen, 1998; Lasiecka
and Triggiani, 2000; van Keulen, 1993; Oostveen, 2000; Sasane and Curtain, 2001;
2001; Weiss, 1997).
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