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We study a mathematical problem modelling the antiplane shear deformation of a viscoelastic body in frictional contact
with a rigid foundation. The contact is bilateral and is modelled with a slip-dependent friction law. We present the classical
formulation for the antiplane problem and write the corresponding variational formulation. Then we establish the existence
of a unique weak solution to the model, by using the Banach fixed-point theorem and classical results for elliptic variational
inequalities. Finally, we prove that the solution converges to the solution of the corresponding elastic problem as the viscosity
converges to zero.
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1. Introduction

The contact between deformable bodies is a phenomenon
frequently found in industry and in everyday life. The
contact of the braking pads with the wheel, of the tire
with the road and the piston with the skirt are just sim-
ple examples. Because of the importance of this process,
a considerable effort has been made in its modelling and
numerical simulations, and the engineering literature con-
cerning this topic is extensive. In the applied mathematics
literature, general models for dynamic or quasistatic con-
tact processes are recent. The reason is that, owing to the
inherent complicated nature, contact phenomena are mod-
elled by difficult nonlinear problems, which explains the
slow progress in their mathematical analysis.

When two surfaces come into contact, a rearrange-
ment of the surface asperities takes place. The surface
asperities become more compliant and the slip becomes
smoother. Clearly, these changes affect the friction pro-
cess and we expect that the friction bound will decrease.
Therefore, when we describe the physical setting, there
is a need to allow for the resulting change or evolution
of the contact boundary conditions. An important step
in modelling the friction phenomenon was made in (Ra-
binowicz, 1965), where it was pointed out that the co-
efficient of friction varies with the tangential displace-
ment. In this way a part of the elastic-plastic deforma-
tion of the interface is captured in the model. Other au-
thors (see, e.g., (Ohnaka, 1996) for a review) performed

a series of experiments in which it was possible to mea-
sure directly the interdependence between the different lo-
cal variables on the contact surface. These experiments
show that the friction depends mostly on the slip. Follow-
ing these experiments, slip-weakening type friction laws
were considered by many authors, see, e.g., (Campillo
and Ionescu, 1997; Ionescu and Paumier 1996; Kuttler and
Shillor, 1999). The changes in the current friction with the
slip reflect mainly the elastic deformation on the surface
asperities and possible chemical bonding.

In this paper, as in (Mateiet al., 2001), we consider
a quasistatic contact problem between a rigid foundation
and a cylinder. This problem is considered to be antiplane,
i.e. the displacement is parallel to the generators of the
cylinder and is independent of the axial coordinate. In
recent years considerable attention has been paid to the
analysis of antiplane shear deformations within the con-
text of elasticity theory (see, e.g., (Horgan, 1995; Hor-
gan, 1995; Horgan and Miller, 1994) and the references
therein). The variational analysis including the existence
of entropy solutions for a class of antiplane frictional
problems was obtained recently in (Andreuet al., 2000).
The novelties in the present paper are connected with the
fact that the friction bound is assumed to be historical de-
pendent and the process is quasistatic, leading to an in-
teresting and nonstandard variational problem. Moreover,
whereas in (Mateiet al., 2001) the case of linear elas-
tic materials is considered, here we deal with linear vis-



T.-V. Hoarau-Mantel and A. Matei52

coelastic materials. Also, notice that the corresponding
three-dimensional problem with slip dependent-friction
was studied in (Chauet al., 2001), using a similar tech-
nique to that employed in the present paper.

The first objective of this paper is to provide the vari-
ational analysis of the viscoelastic quasistatic antiplane
contact problem including the existence of a unique weak
solution to the model. The second objective is to obtain
a convergence result as the coefficient of viscosity con-
verges to zero.

The paper is structured as follows. In Section 2 we
present the mechanical model for the quasistatic antiplane
contact problem. In Section 3 we list the assumptions on
the data, derive the variational formulation of the problem
and state our main existence and uniqueness result, i.e.
Theorem 1. The proof of this result is carried out in sev-
eral steps in Section 4 and is based on the argument of Ba-
nach’s fixed point. In Section 5 we obtain a convergence
result. More exactly, we consider an elastic quasistatic an-
tiplane contact problem for which we justify the existence
and the uniqueness of the weak solution using an abstract
result recently obtained in (Motreanu and Sofonea, 1999).
Then we prove that the solution of the viscoelastic prob-
lem converges to the solution of the elastic problem as the
viscosity coefficient converges to zero.

2. The Model of the Antiplane Contact
Problem

We consider a bodyB identified with a region inR3 it
occupies in a fixed and undistorted reference configura-
tion. We assume thatB is a cylinder with generators par-
allel to thex3-axes with a cross-section which is a regular
region Ω in the x1, x2-plane, Ox1x2x3 being a Carte-
sian coordinate system. The cylinder is assumed to be
sufficiently long so that end effects in the axial direction
are negligible. ThusB = Ω× (−∞,+∞). Let ∂Ω = Γ.
We assume thatΓ is divided into three disjoint measur-
able partsΓ1, Γ2 and Γ3 such that the one-dimensional
measure ofΓ1, denoted bymeas Γ1, is strictly positive.
Let T > 0 and let [0, T ] denote the time interval of in-
terest. The cylinder is clamped onΓ1 × (−∞,+∞) and
is in contact with a rigid foundation onΓ3 × (−∞,+∞)
during the process. Moreover, the cylinder is subjected
to time-dependent volume forces of densityf0 on B
and to time-dependent surface tractions of densityf2 on
Γ2 × (−∞,+∞). We assume that

f0 = (0, 0, f0) (1)

with f0 = f0(x1, x2, t): Ω× [0, T ] → R, and

f2 = (0, 0, f2) (2)

with f2 = f2(x1, x2, t): Γ2 × [0, T ] → R. The body
forces (1) and the surface tractions (2) would be expected
to give rise to a deformation of the elastic cylinder whose
displacement, denoted byu, is of the form

u = (0, 0, u) (3)

with u = u(x1, x2, t): Ω × [0, T ] → R. Such a kind of
deformation is called anantiplane shear.

The infinitesimal strain tensor, denoted byε(u) =
(εij(u)), is defined by

εij(u) =
1
2
(ui,j + uj,i), i, j = 1, 2, 3, (4)

where the index that follows a comma indicates a partial
derivative with respect to the corresponding component of
the spatial variable. Moreover, in the sequel, the conven-
tion of summation upon a repeated index is used. From (3)
and (4) it follows that, in the case of the antiplane prob-
lem, the infinitesimal strain tensor becomes

ε(u) =


0 0

1
2
u,1

0 0
1
2
u,2

1
2
u,1

1
2
u,2 0

 . (5)

Let σ = (σij) denote the stress field. We consider
the linear constitutive law for a viscoelastic material

σ = 2θε(u̇) + λ(tr ε(u))I + 2µε(u), (6)

where λ > 0 and µ > 0 are the Lamé coefficients,θ >
0 is the coefficient of viscosity, trε(u) = εii(u) and I
is the unit tensor inR3. Here and below the dot above
represents the derivative with respect to the time variable.
In the case of the antiplane problem, from (5) and (6), the
stress field becomes

σ =


0 0 θu̇,1 + µu,1

0 0 θu̇,2 + µu,2

θu̇,1 + µu,1 θu̇,2 + µu,2 0

 . (7)

We neglect the inertial term in the equation of motion
and obtain the quasistatic approximation for the process.
Thus, keeping in mind (1), (3) and (7), we deduce that
the equation of equilibrium reduces to the following scalar
equation:

θ∆u̇ + µ∆u + f0 = 0 in Ω× (0, T ). (8)

Recall that, since the cylinder is clamped onΓ1 ×
(−∞,+∞) × (0, T ), the displacement field vanishes
there. Thus (3) implies

u = 0 on Γ1 × (0, T ). (9)
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Let ν denote the unit normal onΓ × (−∞,+∞).
We have

ν = (ν1, ν2, 0) (10)

with νi = νi(x1, x2): Γ → R, i = 1, 2. For a vector
v we denote byvν and vτ its normal and tangential
components on the boundary, given by

vν = v · ν, vτ = v − vνν, (11)

respectively. In (11) and everywhere in this paper ‘· ’ rep-
resents the inner product on the spaceRd (d = 2 or 3).
Moreover, for a given stress fieldσ, we denote byσν

and στ thenormaland thetangentialcomponents on the
boundary, respectively, i.e.

σν = (σν) · ν, στ = σν − σνν. (12)

From (7) and (10) we deduce that the Cauchy stress
vector is given by

σν = (0, 0, θ ∂ν u̇ + µ∂νu). (13)

Here and subsequently we use the notation∂νu = u,1ν1+
u,2ν2. Keeping in mind the traction boundary condition
σν = f2 onΓ2 × (0, T ), it follows from (2) and (13)
that

θ ∂ν u̇ + µ∂νu = f2 on Γ2 × (0, T ). (14)

We now describe the frictional contact condition on
Γ3 × (−∞,+∞). Everywhere in this paper the notation
| · | is used to denote the Euclidean norm onRd (d = 1
or 3). First, we remark that from (3), (10) and (11) we
obtain uν = 0, which shows that the contact isbilateral,
i.e. there is no loss of contact during the process. Using
again (3), (10) and (11), we find

uτ = (0, 0, u). (15)

Similarly, from (7), (10) and (12) we obtain

στ = (0, 0, στ ), (16)

where
στ = θ ∂ν u̇ + µ∂νu. (17)

We assume that the friction is invariant with respect
to the x3 axis and for allt ∈ [0, T ] it is modelled by the
following conditions onΓ3:

|στ (t)| ≤ g
( ∫ t

0

|u̇τ (s)|ds
)
,

|στ (t)| < g
( ∫ t

0

|u̇τ (s)|ds
)
⇒ u̇τ (t) = 0,

|στ (t)| = g
( ∫ t

0

|u̇τ (s)|ds
)
⇒ ∃β ≥ 0

such thatστ = −βu̇τ .

(18)

Here g : Γ3 × R → R+ is a given function andu̇τ

denotes the tangential velocity on the contact boundary.
This is a version of Tresca’s friction law where the fric-
tion bound g is assumed to depend on the accumulated
slip of the surface. From the mechanical point of view,
this dependence models the changes in the contact surface
structure that resulted from sliding. In the previous for-
mula, when the friction boundg : Γ3 → R+ was a given
function, we obtained the classical Tresca friction law. In
(18) the strict inequality holds in thestick zone and the
equality in theslip zone.

Using now (15)–(18), it is straightforward to see that

|θ ∂ν u̇(t) + µ∂νu(t)| ≤ g
( ∫ t

0

|u̇(s)|ds
)
,

|θ ∂ν u̇(t) + µ∂νu(t)|

< g
( ∫ t

0

|u̇(s)|ds
)
⇒ u̇(t) = 0,

|θ ∂ν u̇(t) + µ∂νu(t)|

= g
( ∫ t

0

|u̇(s)|ds
)
⇒ ∃β ≥ 0

such thatθ ∂ν u̇(t) + µ∂νu(t) = −βu̇(t),

(19)

on Γ3 for all t ∈ [0, T ].

Finally, we prescribe the initial displacement

u(0) = u0 in Ω, (20)

whereu0 is a given function inΩ.

Now, the mechanical model of the antiplane contact
problem is complete and can be stated as follows.

Problem P : Find a displacement fieldu : Ω× [0, T ] →
R such that(8), (9), (14), (19) and (20) hold.

Note that when the displacement fieldu which
solves ProblemP is known, the stress tensor can be cal-
culated using (7).

3. Variational Formulation and Main Result

In this section we derive the variational formulation of
ProblemP and state our main existence and uniqueness
result, Theorem 1. To this end, we introduce the closed
subspace ofH1(Ω) defined by

V = {v ∈ H1(Ω) | v = 0 on Γ1}.

Since meas Γ1 > 0, the Friedrichs-Poincaré inequality
holds, i.e. there existsCP > 0 which depends only onΩ
and Γ1 such that

‖u‖H1(Ω) ≤ CP ‖∇u‖L2(Ω)2 ∀u ∈ V. (21)
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Using (21), we can introduce onV the inner product
given by

(u, v)V =
∫

Ω

∇u · ∇v dx, ∀u, v ∈ V, (22)

and let‖ · ‖V be the associated norm, i.e.

‖v‖V = ‖∇v‖L2(Ω)2 , ∀v ∈ V. (23)

From (21) and (23) it follows that‖ · ‖H1(Ω) and ‖ · ‖V

are equivalent norms onV and therefore(V, ‖ · ‖V ) is a
real Hilbert space. By the Sobolev trace theorem and (21),
there existsC0 > 0 depending only onΩ and Γ such
that

‖v‖L2(Γ) ≤ C0‖v‖V , ∀v ∈ V. (24)

Here and subsequently, we still writev for the traceγv
of v on Γ, for all v ∈ V .

In the study of the mechanical ProblemP, we as-
sume that the forces and tractions have the regularity

f0∈L∞(0, T ;L2(Ω)), f2∈L∞(0, T ;L2(Γ2)). (25)

We suppose that thefriction bound function g satisfies
the following properties:

(a) g : Γ3 × R −→ R+;

(b) ∃ Lg > 0 such that|g(x, r1)− g(x, r2)|
≤ Lg|r1 − r2|,∀ r1, r2 ∈ R a.e.x ∈ Γ3;

(c) ∀ r ∈ R, g(·, r) is Lebesgue measurable onΓ3;

(d) g(·, 0) ∈ L2(Γ3).
(26)

The initial data are chosen such that

u0 ∈ V. (27)

For everyt ∈ [0, T ] we need to consider the operator
St defined by

St : L∞(0, T ;V ) → L2(Γ),

St(v) =
∫ t

0

|v(s)|ds a.e. onΓ.
(28)

From (28) and (24) it follows that for allv1, v2 ∈
L∞(0, T ;V ) the following inequality holds:

‖St(v1)−St(v2)‖L2(Γ)≤C

∫ t

0

‖v1(s)−v2(s)‖V ds. (29)

Here and belowC represents a positive constant whose
value may change from line to line.

We define now the functionalj : L2(Γ)× V → R+

given by

j(ξ, v)=
∫

Γ3

g(ξ) |v|da, ∀ ξ∈L2(Γ), ∀ v∈V. (30)

Using the conditions (26), we deduce that the integral
in (30) is well defined.

Let f : [0, T ] → V be given by

(f(t), v)V =
∫

Ω

f0(t)v dx +
∫

Γ2

f2(t)v da,

∀v ∈ V a.e. t ∈ (0, T ). (31)

The definition of f in (31) is based on the Riesz repre-
sentation theorem, and we note that conditions (25) imply

f ∈ L∞(0, T ;V ). (32)

The variational formulation of ProblemP is based
on the following result.

Lemma 1. If u is a smooth solution to ProblemP, then
u(t) ∈ V and

θ(u̇(t), v − u̇(t))V + µ (u(t), v − u̇(t))V

+ j(St(u̇), v)− j(St(u̇), u̇(t))

≥ (f(t), v − u̇(t))V , ∀v ∈ V a.e. t ∈ (0, T ).

Proof. Let u denote a smooth solution to ProblemP. We
have u(t), u̇(t) ∈ V a.e. t ∈ (0, T ) and, from (8), (9)
and (14), we deduce that

θ

∫
Ω

∇u̇(t) · ∇(v − u̇(t)) dx

+ µ

∫
Ω

∇u(t) · ∇(v − u̇(t)) dx

=
∫

Ω

f0(t)(v − u̇(t)) dx +
∫

Γ2

f2(t)(v − u̇(t)) da

+
∫

Γ3

(θ ∂ν u̇(t) + µ∂νu(t))(v − u̇(t)) da,

∀ v ∈ V a.e.t ∈ (0, T ).

Thus, from (22) and (31) we obtain

(θ u̇(t) +µu(t), v − u̇(t))V

−
∫

Γ3

(θ ∂ν u̇(t) + µ∂νu(t))(v − u̇(t)) da

= (f(t), v−u̇(t))V , ∀v∈V a.e. t∈(0, T ). (33)

Using (19) and (30), we deduce that for allt ∈ [0, T ],

j(St(u̇), u̇(t))=−
∫

Γ3

(θ ∂ν u̇(t)+µ∂νu(t))u̇(t) da, (34)
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and

j(St(u̇), v) ≥ −
∫

Γ3

(θ ∂ν u̇(t) + µ∂νu(t))v da,

∀v ∈ V. (35)

The inequality in Lemma 1 follows now from (33)–
(35).

Lemma 1 and (20) lead us to consider the following
variational problem:

Problem PV : Find a displacement fieldu : [0, T ] → V
such that

θ (u̇(t), v− u̇(t))V + µ (u(t), v − u̇(t))V

+ j(St(u̇), v)− j(St(u̇), u̇(t))

≥ (f(t), v − u̇(t))V ,

∀v ∈ V a.e.t ∈ (0, T ), (36)

u(0) = u0. (37)

Our main existence and uniqueness result, which we
establish in Section 4, is the following:

Theorem 1. Assume that (25)–(27) hold. Then the vari-
ational problemPV possesses a unique solutionu ∈
W 1,∞(0, T ;V ).

Here, to end this section, we present an interpreta-
tion of our result. We note that ProblemPV represents
thevariational formulationof the viscoelastic quasistatic
antiplane frictional contact problemP and therefore its
solution may be interpreted as theweak solutionto prob-
lem P. Theorem 1 shows the unique solvability of Prob-
lem PV and therefore it shows that, under assumptions
(25)–(27), ProblemP has a unique weak solution.

4. Proof of Theorem 1

The proof of Theorem 1 will be carried out in several
steps and is based on fixed-point arguments, similar to
those used in (Chauet al., 2001) with, however, a different
choice of the operators since the settings in (Chauet al.,
2001) and here are different. Assume that (25)–(27) hold
and let η and ξ be two elements ofL∞(0, T ;V ). We
consider the following variational problem:

Problem PVηηηξξξ: Find vηξ : [0, T ] −→ V such that

θ(vηξ(t), v− vηξ(t))V + µ(η(t), v − vηξ(t))V

+ j(St(ξ), v)− j(St(ξ), vηξ(t))

≥ (f(t), v − vηξ(t))V ,

∀ v ∈ V a.e. t ∈ (0, T ). (38)

The unique solvability of the intermediate problem
PVηξ follows from the following result:

Lemma 2. There exists a unique solutionvηξ to Problem
PVηξ. Moreover,vηξ ∈ L∞(0, T ;V ).

Proof. It follows from classical results for elliptic vari-
ational inequalities that there exists a unique solution
vηξ(t) ∈ V that solves (38) a.e.t ∈ (0, T ).

Taking v = 0V in (38), we deduce that

θ‖vηξ(t)‖V ≤‖f(t)‖V +µ‖η(t)‖V a.e. t ∈ (0, T ). (39)

Keeping in mind (39), (32) and the regularityη ∈
L∞(0, T ;V ), we obtainvηξ ∈ L∞(0, T ;V ), which con-
cludes the proof.

We consider now the operatorΛη: L∞(0, T ;V )−→
L∞(0, T ;V ) defined for allη ∈ L∞(0, T ;V ) by

Ληξ = vηξ, ∀ ξ ∈ L∞(0, T ;V ). (40)

Lemma 3. For everyη ∈ L∞(0, T ;V ) the operatorΛη

has a unique fixed pointξη ∈ L∞(0, T ;V ).

Proof. Let η ∈ L∞(0, T ;V ) and ξi ∈ L∞(0, T ;V ), i =
1, 2. In order to simplify the notation, we denote byvi

the unique solution to ProblemPVηξi
for i = 12. Thus,

from (38) we can write

θ(vi(t), v − vi(t))V + µ(η(t), v − vi(t))V

+j(St(ξi), v)− j(St(ξi), vi(t))

≥ (f(t), v − vi(t))V ,

∀ v ∈ V a.e. t ∈ (0, T ). (41)

From (41), after some algebra, we find

θ‖v1(t)− v2(t)‖2V

≤ j(St(ξ1), v2(t))

− j(St(ξ2), v2(t)) + j(St(ξ2), v1(t))

− j(St(ξ1), v1(t)) a.e. t ∈ (0, T ). (42)

Using now (30), (26), (29) and (24), it follows that

j(St(ξ1), v2(t))− j(St(ξ2), v2(t))

+j(St(ξ2), v1(t))

−j(St(ξ1), v1(t))

≤ C

∫ t

0

‖ξ1(s)− ξ2(s)‖V ds

×‖v1(t)− v2(t)‖V a.e. t ∈ (0, T ). (43)
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From (42) and (43) we deduce that

‖v1(t)− v2(t)‖V

≤ C

∫ t

0

‖ξ1(s)− ξ2(s)‖V ds a.e. t ∈ (0, T ).

Now, the definition (40) implies

‖Ληξ1(t)− Ληξ2(t)‖V

≤ C

∫ t

0

‖ξ1(s)− ξ2(s)‖V ds a.e. t∈(0, T ). (44)

Set

‖v‖ζ = inf
{
M > 0 | e−ζt‖v(t)‖V ≤ M

a.e. t ∈ (0, T )
}
, ∀ v ∈ L∞(0, T ;V ),

with ζ > 0 to be determined later. Clearly,‖ · ‖ζ defines
a norm on the spaceL∞(0, T ;V ) which is equivalent to
the standard norm‖ · ‖L∞(0,T ;V ). Using now (44) and the
definition of ‖ · ‖ζ , we can write

e−ζt‖Ληξ1(t)− Ληξ2(t)‖V

≤ C e−ζt

∫ t

0

eζse−ζs‖ξ1(s)− ξ2(s)‖V ds

≤ C e−ζt‖ξ1 − ξ2‖ζ

∫ t

0

eζs ds

≤ C

ζ
‖ξ1 − ξ2‖ζ a.e. t ∈ (0, T ).

Consequently, we deduce that

‖Ληξ1 − Ληξ2‖ζ ≤
C

ζ
‖ξ1 − ξ2‖ζ .

Taking ζ such thatζ > C, we conclude that the operator
Λη is a contraction on the space(L∞(0, T ;V ), ‖ · ‖ζ).
By the Banach fixed point theorem, the operatorΛη has
a unique fixed-pointξη ∈ L∞(0, T ;V ).

In what follows, we continue to write

vη = vηξη
, ∀ η ∈ L∞(0, T ;V ). (45)

Keeping in mind thatξη is the unique fixed point of the
operatorΛη, from (40) and (45) we have

vη = ξη. (46)

Using (46) and the fact thatvη is the unique solution to
ProblemPVηξη , we can write

θ(vη(t), v − vη(t))V + j(St(vη), v)

−j(St(vη), vη(t))

≥ (f(t)− µη(t), v − vη(t)),

∀ v ∈ V a.e. t ∈ (0, T ). (47)

We define now the functionuη: [0, T ] −→ V by

uη(t) =
∫ t

0

vη(s) ds + u0, ∀ t ∈ [0, T ]. (48)

We also define the operatorΛ : L∞(0, T ;V ) −→
L∞(0, T ;V ) by the formula

Λη = uη, ∀ η ∈ L∞(0, T ;V ). (49)

Lemma 4. The operatorΛ has a unique fixed pointη∗ ∈
L∞(0, T ;V ).

Proof. Let η1, η2 ∈ L∞(0, T ;V ) and letvi = vηi
, ui =

uηi
, for i = 1, 2. Using (47) and arguments similar to

those used in the proof of Lemma 3, we obtain

‖v1(s)− v2(s)‖V

≤ C
(
‖η1(s)− η2(s)‖V

+
∫ s

0

‖v1(r)− v2(r)‖V dr
)

a.e. s ∈ (0, T ).

Integrating the previous inequality on[0, t] with a fixed
t and using a Gronwall-type argument, we obtain∫ t

0

‖v1(s)− v2(s)‖V ds

≤ C

∫ t

0

‖η1(s)− η2(s)‖V ds, ∀ t ∈ [0, T ]. (50)

The relations (48)–(50) give

‖Λη1(t)− Λη2(t)‖V

≤ C

∫ t

0

‖η1(s)− η2(s)‖V ds, ∀ t ∈ [0, T ].

Keeping in mind the definition of‖·‖ζ , Lemma 4 follows
from the previous inequality, after using a fixed-point ar-
gument similar to that presented in Lemma 3.

Now we have all the ingredients to prove Theorem 1.

Proof of Theorem 1.(Existence) Letη∗ ∈ L∞(0, T ;V )
be the unique fixed point of the operatorΛ and let
uη∗ ∈ W 1,∞(0, T ;V ) be the function defined by the rela-
tion (48) for η = η∗. We haveu̇η∗ = vη∗ and, from (47),
it follows that

θ(u̇η∗(t), v − u̇η∗(t))V + j(St(u̇η∗), v)

−j(St(u̇η∗), u̇η∗(t))

≥ (f(t)− µη∗(t), v − u̇η∗(t)),

∀ v ∈ V a.e. t ∈ (0, T ). (51)

The inequality (36) follows now from (51) and (49), us-
ing the fact thatη∗ is the fixed point of the operatorΛ.
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The definition (48) impliesuη∗(0) = u0 so that (37) is
fulfilled. We conclude now thatuη∗ is a solution to Prob-
lemPV.

(Uniqueness) Letui ∈ W 1,∞(0, T ;V ) be two solutions
to ProblemPV, i = 1, 2. Settingvi = u̇i, i = 1, 2, we
have

ui(t) =
∫ t

0

vi(s) ds + u0, ∀ t ∈ [0, T ]. (52)

From (36) it follows that

θ(vi(t), v − vi(t))V + j(St(vi), v)− j(St(vi), vi(t))

≥(f(t)− µui(t), v − vi(t))V a.e. t ∈ (0, T ).

Taking v = v2(t) (resp.v = v1(t)) when i = 1 (resp.
i = 2) and adding the two resulting inequalities, we obtain

θ‖v1(t)− v2(t)‖2V

≤ j(St(v1), v2(t))

−j(St(v2), v2(t)) + j(St(v2), v1(t))

−j(St(v1), v1(t)) + µ‖u1(t)− u2(t)‖V

×‖v1(t)− v2(t)‖V a.e. t ∈ (0, T ). (53)

Using (30), (26), (29) and (24), we deduce that

j(St(v1), v2(t))− j(St(v2), v2(t))

+ j(St(v2), v1(t))− j(St(v1), v1(t))

≤ Lg‖St(v1)− St(v2)‖L2(Γ3) ‖v1(t)− v2(t)‖L2(Γ3)

≤ C

(∫ t

0

‖v1(s)− v2(s)‖V ds

)
‖v1(t)− v2(t)‖V

a.e. t ∈ (0, T ).

Combining the last inequality and (53), for a.e.t ∈ (0, T )
we obtain

θ‖v1(t)− v2(t)‖2V

≤
(
C

∫ t

0

‖v1(s)− v2(s)‖V ds

+ µ‖u1(t)− u2(t)‖V

)
‖v1(t)− v2(t)‖V .

From this inequality and (52), we deduce that

‖v1(t)− v2(t)‖V

≤ C

∫ t

0

‖v1(s)− v2(s)‖V ds a.e. t ∈ (0, T ).

Using a Gronwall-type argument, we find thatv1 = v2.
Finally, from (52), we deduce thatu1 = u2, which con-
cludes the uniqueness part of Theorem 1.

5. A Convergence Result

In this section we assume that the friction bound does not
depend on the slip and we investigate the behaviour of
the solution as the coefficient of viscosity tends to zero.
Therefore, everywhere in the sequel we consider a given
function g which satisfies

g ∈ L∞(Γ3), g ≥ 0 a.e. onΓ3, (54)

and we denote byj the functional

j : V −→ R+, j(v) =
∫

Γ3

g|v|da, ∀ v ∈ V.

We assume that

f0 ∈ W 1,∞(0, T ;L2(Ω))

f2 ∈ W 1,∞(0, T ;L2(Γ2)),
(55)

and the initial datau0 satisfy

u0∈V, µ(u0, v)V+j(v)≥(f(0), v)V , ∀ v∈V, (56)

wheref is given by (31). We consider the following vari-
ational problems:

Problem PVθθθ: Find a displacement fielduθ : [0, T ] −→
V such that

θ(u̇θ(t), v − u̇θ(t))V + µ(uθ(t), v − u̇θ(t))V

+j(v)− j(u̇θ(t))

≥(f(t), v− u̇θ(t))V , ∀v∈V a.e. t∈(0, T ), (57)

uθ(0) = u0. (58)

Problem PVE : Find a displacement fieldu : [0, T ] →
V such that

µ (u(t), v − u̇(t))V + j(v)− j(u̇(t))

≥(f(t), v−u̇(t))V , ∀v∈V a.e. t∈(0, T ), (59)

u(0) = u0. (60)

Clearly, ProblemPVE represents the variational formu-
lation of the antiplane frictional contact problem for linear
elastic materials, i.e. the problem obtained when (6) is re-
placed by the elastic constitutive law

σ = λ(tr ε(u))I + 2µε(u).

It follows from Theorem 1 that ProblemPVθ has
a unique solution with regularityuθ ∈ W 1,∞(0, T ;V ).
Moreover, sincej: V −→ R+ is a continuous semi-
norm, keeping in mind (31), (55) and (56), it follows from
Corollary 2.2 in (Motreanu and Sofonea, 1999) that Prob-
lem PVE has a unique solutionu ∈ W 1,∞(0, T ;V ).
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Our main result in this section is the following:

Theorem 2. Assume that(54)–(56)hold. Then the solu-
tion uθ to ProblemPVθ converges to the solutionu to
ProblemPVE , i.e.

uθ → u in L∞(0, T ;V ) as θ ↘ 0. (61)

From this result we conclude that the weak solution
to the antiplane viscoelastic problem with Tresca’s fric-
tion law may be approached by the weak solution to the
antiplane elastic problem with Tresca’s friction law when
the coefficient of viscosityθ is small enough. In addition
to the mathematical interest in the convergence result (61),
this is of importance from a mechanical point of view, as
it indicates that the case of elasticity with friction may be
considered as a limit case of viscoelasticity with friction.

Proof. Let θ > 0. We setv = u̇(t) in (57) andv = u̇θ(t)
in (59). We add the corresponding inequalities to obtain

µ(u(t)− uθ(t), u̇(t)− u̇θ(t))V

≤ θ(u̇θ(t), u̇(t)− u̇θ(t))V a.e. t ∈ (0, T ),

which implies

1
2
µ

d
dt
‖u(t)− uθ(t)‖2V

≤ θ(u̇θ(t), u̇(t)− u̇θ(t))V a.e. t ∈ (0, T ).

Let s ∈ [0, T ]. We deduce from the previous inequality,
(58) and (60) that

µ‖u(s)− uθ(s)‖2V

≤ 2θ

∫ s

0

(
u̇θ(t), u̇(t)− u̇θ(t)

)
V

dt,

≤ 2θ

∫ s

0

(
(u̇(t), u̇(t)−u̇θ(t))V −‖u̇(t)−u̇θ(t)‖2V

)
dt,

≤ 2θ

∫ s

0

(
‖u̇(t)‖V ‖u̇(t)− u̇θ(t)‖V

− ‖u̇(t)− u̇θ(t)‖2V
)
dt.

We use now the inequality

a b ≤ a2

4
+ b2, ∀ a, b > 0

to obtain

µ‖u(s)− uθ(s)‖2V ≤ 2θ

∫ s

0

‖u̇(t)‖2V
4

dt.

Consequently, we have

µ ‖uθ(s)− u(s)‖2V ≤ θ

2

∫ T

0

‖u̇(t)‖2V dt,

which implies (61).
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