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The paper presents a short overview of the foundations of the Role-Based Access Control Modal Model and its properties.
In particular, the translation of these model formulae to the first-order logic formulae in a form of Horn’s clauses is analysed.
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1. Introduction

The aim of access control is protection of system re-
sources against unauthorised access. It is a process by
which the use of the system resources is regulated ac-
cording to the security policy (Shirey, 2000). In the con-
temporary information systems there are three main types
of access control: Discretionary Access Control (DAC),
Mandatory Access Control (MAC) and Role-Based Ac-
cess Control (RBAC). Discretionary Access Control is an
access control service that enforces a security policy based
on the identity of system entities and their authorisations
to access system resources. It is “discretionary” in the
sense that each entity might have access rights that permit
the entity, by its own preference, to enable another en-
tity to access some resources (NCSC, 1985). Mandatory
Access Control is an access control service that enforces
a security policy based on comparing (a) security labels
(which indicate how sensitive or critical system resources
are) with (b) security clearances (which indicate whether
system entities are eligible to access certain resources).
This type of access control is called “mandatory” because
an entity that has clearance to access a resource may not,
just by its own decision, enable another entity to access
that resource (NCSC, 1985). Finally, Role-Based Ac-
cess Control is a form of identity-based access control
where the system entities that are identified and controlled
are functional positions in an organisation (Sandhuet al.,
1994).

In the area of system security, as well as in access
control, an important topic is the global security and eval-
uation of security functions. The latest set of standards
for evaluating information technology products and sys-
tems is included in the document called “The Common

Criteria”. This document specifies seven evaluation assur-
ance levels, where the highest level of assurance is called
“formally verified designed and tested”. In the context of
“The Common Criteria”, the system should be supported
by formal tools that would guarantee the formal speci-
fication and verification of system security requirements
(CCIB, 1999).

Mandatory and Discretionary Access Control mech-
anisms are supported by several well-known and tested
formal models like Bell La-Padula (Denning, 1982;
Sandhu, 1992) while models for Role-Based Access Con-
trol are still being developed and verified. The existing
propositions are incomplete or do not provide the required
functionality (Barkleyet al., 1997; Chen and Sandhu,
1996; Ferraiolo and Barkley, 1997; Sandhu 1996; 1997;
1998; Sandhuet al.,1997; 1999).

The aim of this paper is to present the foundations
and properties of a new formal model for Role-Based Ac-
cess Control. The novelty of the proposition is the ap-
plication of deontic logic as a language for description of
access control policies. Its consequence is the ability to
automate implementation of the security policy.

2. Role-Based Access Control Modal Model

The first step required by all access control policies is the
identification of a set of entities that may be active within
the system and a set of activities. During the next steps, on
the basis of the system security policy, relations between
the elements of these two sets should be established.

Let us denote byE = {entity1, entity2, . . . ,
entityn} the set of entities, and byA = {action1,
action2, . . . , actionm} the set of their activities. There
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are three possibilities for eachactionk ∈ A in relation to
entities from the setE:

actionk is permitted, (1)

actionk is obliged, (2)

actionk is forbidden. (3)

In deontic logic it is possible to describe this relation
using the modal operators:P – it is permitted, O – it
is obligedand F – it is forbidden. According to these
operators, the sentences (1)–(3) can be formulated in the
following way:

P actionk, (4)

O actionk, (5)

F actionk. (6)

The formalism of deontic logic is useful for access
control because its basic notions are also fundamental for
the access control policy that describes what is permitted,
obligatory and forbidden for a particular entity within the
system area. The application of deontic logic in the pro-
cess of access control allows a formal description and a
formal analysis of the above-mentioned notions. The first
attempt to build a formal theory of normative concepts
(permission, obligation, prohibition) was made by Mally
(1926), but most of the contemporary interest in deontic
logic has been stimulated by von Wright’s paper ‘Deontic
Logic’ (von Wright, 1951).

The formal model using deontic logic for role-based
access control is composed of three parts (Kołaczek,
2001):

(a) Syntax of the model language. It is based on the first-
order logic syntax where three additional modal op-
erators are added:P , O, F .

(b) Semantic of the model language. It is based on the
Krippke semantic of possible world where the world
accessibility relation is serial.

(c) The language application rules:

– access permissions, obligations, prohibitions
and access request are formulated in the lan-
guage of the model,

– all the formulae used by the access control
mechanisms must be in the form of Horn’s
clauses,

– if Reg is a set of formulae describing permit-
ted, prohibited and obligatory activities and this
set is defined for a particular entity (entityk),
then this entity may perform all activities de-
scribed by the formulae that are the logical con-
sequences of the set Reg.

3. Translation of Modal Formulae
to Conjunctions of Horn Clauses

There are several tools that support the automation of rea-
soning in the first-order logic. One of them is PROLOG
that uses Horn’s clauses and the resolution method. This
means that the ability to translate formulae of the Role-
Based Access Control Modal Model into first-order for-
mulae in the form of Horn’s clauses would open the ap-
plication of PROLOG and the resolution method also for
access control and the access management process.

The following theorem states that it is possible to
translate a particular class of Role-Based Access Control
Modal Model formulae into a form of the first-order Horn
clauses. This theorem makes use of the definition of a
semi-functional translation.

The semi-functional translation (Tsf ) of a modal
logic is a projection that assigns modal formulae and pos-
sible worlds to formulae of the first-order logic in the fol-
lowing way (Bolcet al., 1995; 1998):

Tsf(φ, x) = P (x),

where φ is an atomic proposition andP is the corre-
sponding predicate;

Tsf(Oφ, x) = ∀ y
[
R(x, y) → Tsf(φ, y)

]
,

whereR is a possible world accessibility relation;

Tsf(Pφ, x) = ∃ f
[
Tsf(φ, f(x))

]
,

where f is a function corresponding to the relation of
possible world accessibility.

Theorem 1.Tsf(φ,w) is a conjunction of Horn’s clauses
iff a formula obtained after deleting all modal operators
from the formulaf is a conjunction of Horn’s clauses,
where: φ is a formula of the Role-Based Access Control
Modal Model,Tsf(φ,w) means a semi-functional trans-
lation of φ, and w stands for a world selected from a set
of possible worlds (the Krippke model).

Proof. The proof of this theorem is based on the struc-
tural induction. From the definition of the semi-functional
translation it is known that:

The semi-functional translationTsf(φ,w)
preserves all classical quantifiers and
conjunctions, e.g.Tsf(¬a, x) = ¬Tsf(a, x),
Tsf(a ∨ b, x), Tsf(a, x) ∨ Tsf(b, x), etc. (7)

The number of positive literals inTsf(φ, x)
is equal to the number of positive literals
in formula φ. (8)
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Step 1.The proof for the formulae of type:φ, Oφ, Pφ.

Let φ be a literal. Then:

• φ: it is the form of a conjunction of Horn’s clauses,

• Oφ: after deleting the modal operator, the formula
Oφ is reduced toφ and so it is in the form of a
conjunction of Horn’s clauses,

• Pφ: the same as in the case of the operatorO.

Lemma 1. If after deleting the modal operators the
formulae f , Oφ and Pφ are in the form of conjunc-
tions of Horn’s clauses, thenTsf(φ, x), Tsf(Oφ, x) and
Tsf(Pφ, x) are in the form of conjunctions of Horn’s
clauses.

Proof of Lemma 1.According to the definition of the semi-
functional translation, the following sentences are true:

(a) Tsf(φ, x) = P (x) is in the form of a conjunction of
Horn’s clauses,

(b) Tsf(Oφ, x) = ∀ y[R(x, y) → Tsf(φ, y)] =
∀ y[¬R(x, y) ∨ Tsf(φ, y)] = ∀ y[¬R(x, y) ∨ P (y)]
is in the form of a conjunction of Horn’s clauses,

(c) Tsf(Pφ, x) = ∃ f [Tsf(φ, f(x))] = ∃ fP (f(x)) is
in the form of a conjunction of Horn’s clauses.

Lemma 2. If after deleting the modal operators formu-
lae φ, Oφ and Pφ are not in the form of conjunc-
tions of Horn’s clauses, thenTsf(φ, x), Tsf(Oφ, x) and
Tsf(Pφ, x) are not in the form of conjunctions of Horn’s
clauses.

Proof of Lemma 2.Becauseφ is a literal, it is always
a Horn’s clause, so there is a contradiction and this case
need not be considered any further.

Step 2. The proof for the formulae of type:Oφ → ψ,
ψ → Oφ, ψ ∧ Oφ, ψ ∨ Oφ, Pφ → ψ, ψ → Pφ,
ψ ∧ Pφ, ψ ∨ Pφ.

Let ψ be a complex formula for which the following
is true:

Tsf(ψ, x) is in the form of a conjunction of Horn’s
clauses iff after deleting all modal operators fromψ,
it is in the form of a conjunction of Horn’s clauses.(9)

Furthermore, letφ be a literal. (10)

Lemma 3. If after deleting modal operators the for-
mulae Oφ → ψ, ψ → Oφ, . . . are in the form of
conjunctions of Horn’s clauses, thenTsf(Oφ → ψ, x),
Tsf(ψ → Oφ, x), . . . are in the form of conjunctions of
Horn’s clauses.

Let us assume that after deleting the modal operators
from the formulae

Oφ→ ψ, ψ → Oφ, ψ ∧Oφ, ψ ∨Oφ,

Pφ→ ψ, ψ → Pφ, ψ ∧ Pφ, ψ ∨ Pφ,
(11)

they are in the form of Horn’s clauses.

Proof of Lemma 3.

(a) After deleting the modal operators,ψ ∨ Oφ is
reduced to the formulaψ ∨ φ,

Tsf(ψ ∨Oφ, x) = Tsf(ψ, x) ∨ Tsf(Oφ, x)

= Tsf(ψ, x) ∨ ∀ y
[
¬R(x, y) ∨ P (y)

]
.

Let ψ be in a conjunction normal form, so that

ψ = K1 ∧K2 ∧ · · · ∧Kn, (12)

ψ ∨ φ = (K1 ∧K2 ∧ · · · ∧Kn) ∨ φ, (13)

ψ ∨ φ = (K1 ∨ φ) ∧ (K2 ∨ φ) ∧ · · · ∧ (Kn ∨ φ), (14)

whereK1,K2, . . . ,Kn are clauses.

According to (11), the formulae(K1 ∨ φ), (K2 ∨
φ), . . . , (Kn ∨ φ) must be Horn’s clauses. On the other
hand, from (7) it follows that

Tsf(ψ ∨Oφ, x) = Tsf(ψ, x) ∨ Tsf(Oφ, x)

= Tsf(K1 ∧K2 ∧ · · · ∧Kn, x) ∨ Tsf(Oφ, x)

=
(
Tsf(K1, x) ∧ Tsf(K2, x) ∧ · · · ∧ Tsf(Kn, x)

)
∨Tsf(Oφ, x)

=
(
Tsf(K1, x) ∨ Tsf(Oφ, x)

)
∧

(
Tsf(K2, x)

∨Tsf(Oφ, x)
)

∧ · · · ∧
(
Tsf(Kn, x) ∨ Tsf(Oφ, x)

)
. (15)

From (7), (8) and (12) we conclude that the formu-
lae Tsf(K1, x), Tsf(K2, x), . . . , Tsf(Kn, x) are clauses
with the same number of positive literals as the formulae
K1,K2, . . . ,Kn. BecauseTsf(Oφ, x) = ∀ y[¬R(x, y)∨
P (y)] is a clause with only one positive literal, from (15)
and (14) we get that (15) is also a conjunction of Horn’s
clauses and, finally, so isTsf(ψ ∨Oφ, x).

(b) After deleting the modal operators,ψ ∧ Oφ is
reduced to the formulaψ ∧ φ,

Tsf(ψ ∧Oφ, x) = Tsf(ψ, x) ∧ Tsf(Oφ, x)

= Tsf(ψ, x) ∧ ∀ y
[
¬R(x, y) ∨ P (y)

]
.

Because the semi-functional translation of the for-
mula ψ ∧Oφ is a conjunction of two elements and both
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of them are in the form of conjunctions of Horn’s clauses,
Tsf(ψ ∧ Oφ, x) is also in the form of a conjunction of
Horn’s clauses.

(c) After deleting the modal operators,Oφ → ψ is
reduced to the formulaφ→ ψ ≡ ψ ∨ ¬φ,

Tsf(Oφ→ ψ, x)

= Tsf(¬Oφ ∨ ψ, x)

= Tsf(P¬φ ∨ ψ, x)

= Tsf(P¬φ, x) ∨ Tsf(ψ, x)

= ∃ fTsf

(
¬φ, f(x)

)
∨ Tsf(ψ, x)

= ∃ f¬Tsf

(
φ, f(x)

)
∨ Tsf(ψ, x)

= ∃ f¬P
(
f(x)

)
∨ Tsf(ψ, x).

Since φ → ψ ≡ ψ ∨ ¬φ, this is an instance of an
alternative to Lemma 3.

Following the reasoning from Lemma 3, we can get
the equations

ψ∨¬φ = (K1∨¬φ)∧(K2∨¬φ)∧· · ·∧(Kn∨¬φ) (16)

and

Tsf(Oφ→ ψ, x)

= Tsf(ψ ∨ ¬Oφ, x)

=
(
Tsf(K1, x) ∨ ¬Tsf

(
φ, f(x)

))
∧

(
Tsf(K2, x)∨¬Tsf

(
φ, f(x)

))
∧· · · ∧

(
Tsf(Kn, x)∨¬Tsf

(
φ, f(x)

))
. (17)

According to (11), the formula (16) is a conjunction of
Horn’s clauses. Because each element of the conjunc-
tion in the formula (17) has the same number of positive
and negative literals as the elements of the formula (16),
Tsf(Oφ → ψ, x) is also in the form of a conjunction of
Horn’s clauses.

(d) After deleting the modal operators,ψ → Oφ is
reduced to the formulaψ → φ,

Tsf(ψ → Oφ, x) = Tsf(ψ, x) → Tsf(Oφ, x)

= Tsf(ψ, x) → ∀ y
[
¬R(x, y) ∨ P (y)

]
= ¬Tsf(ψ, x) ∨ ∀ y

[
¬R(x, y) ∨ P (y)

]
.

This case can be reduced to an alternative of formu-
lae according toψ → φ ≡ ¬ψ ∨ φ, cf. Lemma 3.

Lemma 4. If after deleting the modal operators the for-
mulae Oφ → ψ, ψ → Oφ, . . . are not in the form

of Horn’s clauses, thenTsf(Oφ → ψ, x), Tsf(ψ →
Oφ, x), . . . are not in the form of conjunctions of Horn’s
clauses.

Assume that after deleting the modal operators, the
formulae

Oφ→ ψ, ψ → Oφ, ψ ∧Oφ, ψ ∨Oφ,

Pφ→ ψ, ψ → Pφ, ψ ∧ Pφ, ψ ∨ Pφ
(18)

are not in the form of conjunctions of Horn’s clauses.

Proof of Lemma 4.

(a) After deleting the modal operators,ψ ∨ Oφ is
reduced to the formulaψ ∨ φ, and

Tsf(ψ ∨Oφ, x) = Tsf(ψ, x) ∨ Tsf(Oφ, x)

= Tsf(ψ, x) ∨ ∀ y
[
¬R(x, y) ∨ P (y)

]
.

Let ψ be in a conjunction normal form, so that

ψ = K1 ∧K2 ∧ · · · ∧Kn, (19)

ψ ∨ φ = (K1 ∧K2 ∧ · · · ∧Kn) ∨ φ, (20)

ψ ∨ φ = (K1 ∨ φ) ∧ (K2 ∨ φ) ∧ · · · ∧ (Kn ∨ φ), (21)

whereK1,K2, . . . ,Kn are clauses.

According to (18), at least one of the formulae(K1∨
φ), (K2 ∨ φ), . . . , (Kn ∨ φ) is not a Horn clause.

On the other hand, we have

Tsf(ψ ∨Oφ, x) = Tsf(ψ, x) ∨ Tsf(Oφ, x)

= Tsf(K1 ∧K2 ∧ · · · ∧Kn, x) ∨ Tsf(Oφ, x)

=
(
Tsf(K1, x) ∧ Tsf(K2, x)

∧ · · · ∧ Tsf(Kn, x)
)
∨ Tsf(Oφ, x)

=
(
Tsf(K1, x) ∨ Tsf(Oφ, x)

)
∧

(
Tsf(K2, x) ∨ Tsf(Oφ, x)

)
∧ · · · ∧

(
Tsf(Kn, x) ∨ Tsf(Oφ, x)

)
. (22)

From (7), (8) and (19) it follows that the formulae
Tsf(K1, x), Tsf(K2, x), . . . , Tsf(Kn, x) are clauses with
the same number of positive literals as the formulae
K1,K2, . . . ,Kn. Then from (22) and (21) we get that (22)
is not a conjunction of Horn’s clauses and, finally, neither
is Tsf(ψ ∨Oφ, x).

(b) After deleting the modal operators,ψ ∨ Oφ is
reduced to the formulaψ ∧ φ, and

Tsf(ψ ∧Oφ, x) = Tsf(ψ, x) ∧ Tsf(Oφ, x)

= Tsf(ψ, x) ∧ ∀ y
[
¬R(x, y) ∨ P (y)

]
.
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The formulaψ∧φ is not in the form of a conjunction
of Horn’s clauses iffψ is not in such a form. Because,
from (9), Tsf(ψ, x) is not in the form of a conjunction of
Horn’s clauses, neither isTsf(ψ ∧ Oφ, x) = Tsf(ψ, x) ∧
Tsf(Oψ, x).

(c) After deleting the modal operators,Oφ → ψ is
reduced to the formulaφ→ φ, and

Tsf(Oφ→ ψ, x)

= Tsf(¬Oφ ∨ ψ, x)

= Tsf(P¬φ ∨ ψ, x)

= Tsf(P¬φ, x) ∨ Tsf(ψ, x)

= ∃ fTsf

(
¬φ, f(x)

)
∨ Tsf(ψ, x)

= ∃ f¬Tsf

(
φ, f(x)

)
∨ Tsf(ψ, x)

= ∃ f¬P
(
f(x)

)
∨ Tsf(ψ, x).

Sinceφ→ ψ ≡ ψ∨¬φ, this is a particular instance of an
alternative to Lemma 4.

On the analogy of the reasoning from Lemma 4, we
get the equations

ψ∨¬φ = (K1∨¬φ)∧(K2∨¬φ)∧· · ·∧(Kn∨¬φ), (23)

Tsf(Oφ→ ψ, x)

=
(
Tsf(K1, x) ∨ ¬Tsf

(
φ, f(x)

))
∧

(
Tsf(K2, x) ∨ ¬Tsf

(
φ, f(x)

))
∧ · · · ∧

(
Tsf(Kn, x) ∨ ¬Tsf

(
φ, f(x)

))
. (24)

According to (18), the formula (23) is not a con-
junction of Horn’s clauses. Because each element of the
conjunction in the formula (24) has the same number of
positive and negative literals as the elements of the for-
mula (23),Tsf(Oφ → ψ, x) is not in the form of a con-
junction of Horn’s clauses.

(d) After deleting the modal operators,ψ → Oφ is
reduced to the formulaψ → φ, and

Tsf(ψ → Oφ, x)

= Tsf(ψ, x) → Tsf(Oφ, x)

= Tsf(ψ, x) → ∀ y
[
¬R(x, y) ∨ P (y)

]
= ¬Tsf(ψ, x) ∨ ∀ y

[
¬R(x, y) ∨ P (y)

]
.

This case can be reduced to an alternative of formu-
lae according to the equalityψ → φ ≡ ¬ψεφ, cf.
Lemma 4.

The proof of Theorem 1 for a dual modal operator
P is analogous to the proof presented above.

4. Applications of the Model

A complete access control system should support several
access control processes. In particular, it should support
access control policy derivation from a set of higher-level
procedures, verification of the policy consistency and val-
idation of access requests. Additionally, access control
systems should support mechanisms related to a particu-
lar access control method (Discretionary Access Control,
Mandatory Access Control, Role-Based Access Control).

In this context, the Role-Based Access Control
Modal Model constitutes a basis for description of access
control policies, and for evaluation and automation of ac-
cess control decisions.

The developers of Role-Based Access Control have
distinguished several mechanisms to control access ac-
cording to the system’s and organisational roles. There
are three main categories of these mechanisms, which are
responsible for:

• definitions of roles,

• definitions of role-entity relations, and

• definitions role-role relations.

The RBAC Modal Model described in this paper and
the related possibility of translating formulae from the de-
ontic language of the Role-Based Access Control Modal
Model into formulae of first-order logic in the form of
Horn’s clauses allow application of automated reasoning
methods for access control purposes. The proposed model
operates on the formulae in the form of Horn’s clauses, so
PROLOG is an appropriate tool for reasoning automation.

4.1. Example

The security policy in a system with RBAC is described by
an identified and defined set of roles. Each subject active
within the system area can be assigned to one or more
roles, and it gets the authorisation to the set of actions that
is a logical consequence of its set of roles.

In RMM the roles are defined by logical formulae.
For example, let the role Role_1 be assigned to the sub-
ject Subject_1. Role_1 is defined by the following two
formulae:

Role_1:

∀ pd ∀ pl Range(pl,Directory_A,Directory_B)

∧Plays(pd,Assistant) → PRead(pd,pl),

∀ pd Position(pd,Admin)

→ ¬PAdd_role(pd,Assistant).
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Apart from the role definition, logical values of sev-
eral system variables must be set for the current system
state. For example,

Range(File_a,Directory_A,Directory_B) ≡ TRUE,

Range(File_b,Directory_A,Directory_B) ≡ FALSE,

Position(Subject_1,Admin) ≡ FALSE,

Plays(Subject_1,Assistant) ≡ TRUE.

While the security policy is defined and the values of
the system variables are known, it is possible to verify the
access requests. For example, an answer to the question
about the possibility to access File_a by Subject_1 can be
looked for. To give an answer to this question, an appro-
priate logical program should be generated. The logical
program is a result of semi-functional translation of the
formulae defining roles and system variable values. In the
example considered, the logical program is as follows:

Range(x,File_a,Directory_A,Directory_B) ⇐

⇐ Range(x,File_b,Directory_A,Directory_B)

⇐ Position(Subject_1,Admin)

Plays(x,Subject_1,Assistant) ⇐

R(x, f(x)) ⇐

Read(f(x),pd,pl) ⇐ Range(x,pl,Directory_A,

Directory_B),Plays(x,pd,Assistant)

⇐ Position(x,pd,Admin),Add_role(f(x),pd,pl).

The formula describing an access request is also
translated and it is a question for the logical programThe
access requestafter semi-functional translation:

⇐ Read(y,Subject_1,File_a).

The final answer of the logical program in this exam-
ple will be “YES”. This means that the action requested
by Subject_1 in Role_1 to read from File_a is admissible
in the context of the present security policy definition.

In (Kołaczek, 2001) a precise way of the application
of the Role-Based Access Control Modal Model in the
process of role definitions, role-entity relations and def-
initions of role-role relations is indicated. Also, several
examples are given illustrating how the proposed model
can be used in the process of consistency verification of
the defined security policy or during the authorisation of
entities.

5. Conclusions

Formal description and verification is one of the most cru-
cial requirements of the high level security. Access con-
trol is an integral part of every security policy in an in-
formation system and so it also requires an appropriate
model to fulfil this requirement. Deontic logic, as it for-
malises the notions of obligation, prohibition and permis-
sion, corresponds in a natural way to the specificity of
access control activities. The presented Role-Based Ac-
cess Control Modal Model allows formal description and
analysis of the access control policy and access control re-
quests. Sufficient conditions for translation of modal for-
mulae into first-order Horn’s clauses were presented and
analysed. The form of Horn’s clauses raises a possibility
of PROLOG application (or other corresponding tools for
reasoning automation) in the processes of policy consis-
tency verification, validation of access requests, and other
processes related to access control.
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