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ON THE DISCRETE TIME–VARYING JLQG PROBLEM
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In the present paper optimal time-invariant state feedback controllers are designed for a class of discrete time-varying control
systems with Markov jumping parameter and quadratic performance index. We assume that the coefficients have limits as
time tends to infinity and the boundary system is absolutely observable and stabilizable. Moreover, following the same
line of reasoning, an adaptive controller is proposed in the case when system parameters are unknown but their strongly
consistent estimators are available.
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1. Introduction

Systems with jumping parameters have recently received
great attention because of their potential applications in
a number of technical problems, including flexible man-
ufacturing control systems, fault tolerant systems design,
analysis and synthesis of systems with abrupt changes in
operating points or disturbances, and others.

Much effort has particularly been concentrated on
different formulations of the JLQ problem in the case
when the system state and the jumping parameters can
be observed and consequently used for control, see, e.g.,
(Chizecket al., 1986; Costa and Fragoso, 1995; Ghosh,
1995; Griffiths and Loparo, 1985; Ji and Chizeck 1989;
Mariton, 1987; Ghaoui, 1996; Sworder, 1969; Sworder
and Robinson, 1973). Coupled Riccati equations related
to this problem are studied among others by (Abou-Kandil
et al., 1994; 1995; Czornik, 2000; Ji and Chizeck, 1988).
In (Pan and Bar-Shalom, 1996; Caines and Zhang, 1995;
Dufour and Bertrand, 1994; Dufour and Elliott, 1998) the
authors deal with a more complicated situation, where the
system state or the jump parameter system cannot be di-
rectly observed and are consequently estimated.

This paper is devoted to the JLQG problem for a class
of discrete time-varying systems on an infinite time in-
terval with completely observable system state and jump
parameters and addtitive white disturbances. It is well-
known that for such a problem, in the case without jumps,
the optimal control is not unique. So an interesting task
is to find the simplest one. In the time-invariant case the
situation is relatively easy, and the simplest control is the
time-invariant feedback. But when we consider a time-
varying system, the problem becomes much more com-

plicated. It is interesting that when the coefficients of
the system have limits as time tends to infinity, the set
of optimal control strategies contains the control in time-
invariant feedback form, see (Czornik, 1998; 1999). In the
present paper we establish such a result for the discrete-
time JLQG problem. We take into account the system
with coefficients having limits as functions of time as time
tends to infinity, and we show that the control minimizing
the quadratic index can be realized in the form of a time-
invariant feedback. The feedback matrix is equal to the
one for the time-invariant system with coefficients equal
to the limits of the time-varying system. To prove the re-
sults, the asymptotic behaviour of the solution of the time-
varying coupled difference Riccati equation is studied. It
enables us also to design an adaptive controller in the case
of unknown system parameters.

2. Standard JLQG Problem

The system under study is described by the following state
equation:

xk+1 = Ak(rk)xk + Bk(rk)uk + Ck(rk)wk+1, (1)

where xk ∈ Rn is the state,uk ∈ Rm stands for the
control, and the disturbancewk ∈ Rn, k = 0, 1 . . . is a
second-order independent identically distributed sequence
of random variables withEwk = 0 and Ewkw′k = I.
Moreover, rk is a strongly ergodic Markov chain with
values in a finite setS and transition probabilities

P
(
rk+1 = j | rk = i

)
= p

(k)
ij , i, j ∈ S.

We also assume that for eachi, j ∈ S, a limit pij of p
(k)
ij

as k →∞ exists and that the limit matrixP = [pij ] is a
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transition matrix of a Markov chain with a unique invari-
ant distributionπ(i), i ∈ S. The next assumption is that
rk is independent ofwk, k = 0, . . . , N − 1. For each
i ∈ S, k = 0, . . . , N , Ak(i), Bk(i), Ck(i) there are
given matrices of ordersn × n, n × m, n × n, respec-
tively. The cost criterion to be minimized is

J (x0, r0, u) = lim
N→∞

1
N

E

[
N∑

k=0

〈Qk (rk) xk, xk〉

+ 〈Rk (rk)uk, uk〉

]
, (2)

where the matricesQk(i) and Rk(i) are positive-
semidefinite and positive-definite, respectively, for each
i ∈ S.

Consider the noise-free system

xk+1 = Ak(rk)xk + Bk(rk)uk, (3)

yk =
√

Qk(rk)xk. (4)

Definition 1. If for any initial form r0 and initial x-states
x

(0)
1 , x

(0)
2 the minimum timeN is finite, such that equiv-

alent outputsy(x0 = x
(0)
1 ) = y(x0 = x

(0)
2 ) and known

inputs in the interval0 ≤ k ≤ N imply that x
(0)
1 = x

(0)
2 ,

then the system
{

Ak(i),
√

Qk(i), i ∈ S
}

is calledabso-

lutely observable.

The algebraic conditions equivalent to the absolute
observability for time-invariant systems are given in (Ji
and Chizeck, 1988).

Definition 2. The system

xk+1 = Ak(rk)xk (5)

is stochastically stableif

lim
N→∞

E
(
‖xN‖2

∣∣∣ r0 = i
)

= 0, i ∈ S

for any initial statex0.

It can be shown (Ji and Chizeck, 1988) that (5) is
stochastically stable if and only if

lim
N→∞

E

(
N∑

k=0

‖xk‖2 ∣∣ r0 = i

)
< ∞ (6)

for any initial statex0.

Definition 3. The system{Ak(i), Bk(i), i ∈ S} is called
stochastically stabilizableif there exists a feedback con-
trol uk = Lk(rk)xk such that the resulting closed-
loop systemxk+1 = (Ak(rk) + Bk(rk)Lk (rk))xk is
stochastically stable.

With these definitions we can formulate a solution of
the control problem for the time-invariant case:

Ak(rk) = A(rk), Bk(rk) = B(rk),

Ck(rk) = C(rk),
(7)

Qk(rk) = Q(rk), Rk(rk) = R(rk), p
(k)
ij = pij . (8)

Theorem 1. If the system{A(i), B(i), i ∈ S} is stochas-
tically stabilizable and the system{A(i),

√
Q(i), i ∈ S}

is absolutely observable, then the coupled algebraic Ric-
cati equation

P (i) = A
′
(i)F (i)

(
A(i)−B(i)L(i)

)
+ Q(i), (9)

where

L(i) =
(
R(i) + B

′
(i)F (i)B(i)

)−1

B
′
(i)F (i)A(i), (10)

F (i) =
∑
j∈S

pijP (j), (11)

has a unique positive definite solutionPi and the optimal
control law is given by

ũk = −L(rk)xk, i ∈ S. (12)

The value of the optimal cost is given by

J (x0, r0, ũ) =
∑
i∈S

∑
j∈S

π(i)pijtr
(
C

′
(i)P 0(j)C(i)

)
.

(13)

3. Asymptotic Behaviour of the Coupled
Difference Riccati Equation

In this section we shall investigate properties of the time-
varying coupled Riccati equation.

The next theorem, which describes the asymptotic
behaviour of the coupled difference Riccati equation, is
proved in (Czornik and́Swierniak, 2001).

Theorem 2. Assume that the sequence(AN (j),
BN (j), QN (j), RN (j), pij(N)) with AN (j) ∈ Rn×n,
BN (j) ∈ Rn×m, CN (j) ∈ Rn×n, QN (j) ∈ Rn×n,
RN (j) ∈ Rm×m, QN (j) ≥ 0, RN (j) > 0, i, j ∈ S,
is such that the limits ofAN (j), BN (j), QN (j), RN (j)
as N → ∞ exist for eachj ∈ S and R(j) > 0,
Q(j) ≥ 0, (A(i), B(i), i ∈ S) is stochastically stabi-
lizable, (A(i),

√
Q(i), i ∈ S) is absolutely observable,

where

A(j) = lim
N→∞

AN (j), B(j) = lim
N→∞

BN (j),

Q(j) = lim
N→∞

QN (j),
(14)
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R(j)= lim
N→∞

RN (j), pij = lim
N→∞

pij(N), i, j∈S. (15)

Then

lim
N→∞

1
N

N∑
k=0

P
(N)
k

(
i,K(i)

)
= P (i), (16)

for any initial condition{K(i) : K(i) ≥ 0, i ∈ S}, where

P
(N)
k (i, K(i)) is given by

P
(N)
k

(
i,K(i)

)
= A

′

N−k(i)F (N)
k−1(i)

[
AN−k(i)

−BN−k(i)L(N)
k (i)

]
+ Qk(i), (17)

P
(N)
0

(
i,K(i)

)
= K(i)

with
F

(N)
k−1(i) =

∑
j∈S

pij(N)P (N)
k−1

(
j,K(j)

)
,

L
(N)
k (i) =

(
RN−k(i) + B

′

N−k(i)F (N)
k−1(i)BN−k(i)

)−1

×B
′

N−k(i)F (N)
k−1(i)AN−k(i) (18)

for k = 1, . . . , N and P (i) being the unique solution
of (9).

Yet another characterization of the asymptotic be-
haviour of the coupled Riccati equation is given in the next
theorem. The proof can be obtained in much the same way
as in (Czornik, 2000) for its continuous time counterpart.

Theorem 3. Under the assumptions of the previous theo-
rem, there existsN0 such that for allN ≥ N0 the cou-
pled algebraic Riccati equation

PN (i) = A
′

N (i)FN (i)
(
AN (i)−BN (i)LN (i)

)
+ QN (i),

where
FN (j) =

∑
i∈S

p
(N)
ji PN (i),

and

LN (i) =
(
RN (i) + B

′

N (i)FN (i)BN (i)
)−1

×B
′

N (i)FN (i)AN (i),

has a solutionPN (j), j ∈ S, and

lim
N→∞

PN (j) = P (j), j ∈ S,

whereP (j), j ∈ S are the solutions of (9).

4. Optimal Control in the Time–Varying
Case

The main result of this section is based on the following
theorem:

Theorem 4. Suppose that the assumptions of Theorem 2
hold. Then the optimal control law for the time-varying
control problem (1), (2) is given by

ũk = −L
(
r(k)

)
xk, i ∈ S, (19)

where

L(i) =
(
R(i) + B

′
(i)F (i)B(i)

)−1

B
′
(i)F (i)A(i), (20)

F (i) =
∑
j∈S

pijP (j) (21)

and P (i) is the unique solution of (9).

This theorem was proved in (Czornik andŚwierniak,
2001) using Theorem 2.

Consider now the following situation: Let the as-
sumptions of Theorem 2 be satisfied, but neither the val-
uesAN (i), BN (i) nor their limitsA(i), B(i) are known
for the control purposes. Instead, we know the sequences
AN (i), BN (i) of their estimators and we know that the
estimators are strongly consistent, i.e.

lim
N→∞

∥∥AN (j)−AN (j)
∥∥ = 0,

lim
N→∞

∥∥BN (j)−BN (j)
∥∥ = 0, j ∈ S

or, equivalently,

lim
N→∞

AN (j) = A(j),

lim
N→∞

BN (j) = B(j), j ∈ S.
(22)

It appears that under this assumption we are still able to
solve the optimal control problem (1), (2). For that pur-
pose, we will use the following theorem, which is shown
in (Czornik, 2002):

Theorem 5. Suppose that the matricesL(i) are such that
for the control

uk = −L
(
r(k)

)
xk

the cost functional (2) takes a value ofJ . Suppose now
that the matricesLN (i) are such that

lim
N→∞

LN (i) = L (i) , i ∈ S.

Then if the control

uk = −LN

(
r(k)

)
xk

is applied, the value of the cost functional (2) isJ .
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Now we can propose a solution to the adaptive con-
trol problem formulated above.

Theorem 6. Suppose that neither the valuesAN (i),
BN (i) nor their limits A(i), B(i) are known, and that
the assumptions of Theorem 2 are satisfied. Moreover, let
the sequencesAN (i), BN (i) of known matrices be such
that (22) holds. Then the control

ũk = −LN (i)xk, i ∈ S, (23)

where

LN (i) =
(
RN (i) + B

′

N (i)FN (i)BN (i)
)−1

×B
′

N (i)FN (i)AN (i),

FN (i) =
∑
j∈S

pijPN (j),

and PN (i) is the unique solution of

PN (i) = A
′

N (i)FN (i)
(
AN (i)−BN (i)LN (i)

)
+ QN (i),

(24)
when it exists and zero otherwise, is optimal for the cost
functional (2).

Proof. From Theorem 3 we conclude that there existsN0

such that for allN ≥ N0 the coupled algebraic Riccati
equation (24) exists and that

lim
N→∞

LN (i) = L (i) ,

where L (i) is given by (20). Then by Theorem 4,L(i)
is the optimal feedback, and therefore by Theorem 5 we
conclude that control̃uk is optimal for the control prob-
lem (1), (2).

5. Conclusion

In this paper the discrete time-varying JLQG problem has
been revisited. It was shown that for a system with co-
efficients having limits as time tends to infinity the opti-
mal control can be realized in the form of a time-invariant
feedback with the feedback matrix equal to the one for the
time invariant system with coefficients equal to the limits
of the time-varying system. Based on this fact, a solu-
tion to the adaptive control problem was proposed under
the assumption that strongly consistent estimators of un-
known parameters are available.
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