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Iterative learning control (ILC) develops controllers that iteratively adjust the command to a feedback control system in
order to converge to zero tracking error following a specific desired trajectory. Unlike optimal control and other control
methods, the iterations are made using the real world in place of a computer model. If desired, the learning process can be
conducted both in the time domain during each iteration and in repetitions, making ILC a 2D system. Because ILC iterates
with the real world, and aims for zero error, the field pushes the limits of theory, modeling, and simulation, to predict the
behavior when applied in the real world. It is the thesis of this paper that in order to make significant progress in this field it
is essential that the research effort employ a coordinated simultaneous synergistic effort involving theory, experiments, and
serious simulations. Otherwise, one very easily expends effort on something that seems fundamental from the theoretical
perspective, but in fact has very little relevance to the performance in real world applications.
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1. Introduction

Starting in 1984 there has been considerable activity in the
field of iterative learning control (ILC) initially motivated
by robots performing repetitive tracking tasks. Learn-
ing controllers aim to improve their performance while
repeatedly executing a task (Arimotoet al., 1984; Bien
and Xu, 1998; Casalino and Bartolini, 1984; Craig, 1984;
Moore, 1993; Moore and Xu, 2000; Middletonet al.,
1985; Owens, 1977; Rogers and Owens, 1992; Uchiyama,
1978). For typical classical control systems executing
the same tracking command repeatedly, there are repeat-
ing deterministic errors in following the desired trajec-
tory. Often there are also repeating disturbance histo-
ries, such as the history of gravity torque on a robot link
along the path. In ILC the robot or system is returned
to the same initial condition before each repetition of the
task. Hence, there are two independent variables, time
and repetitions, making a 2D control problem. Often all
of the learning is done in repetitions, and simple feed-
back control applies in the time domain, but a true 2D
approach is logical and is applied by various researchers,
for example (Amannet al., 1998; Owenset al., 2000).
A closely related field is repetitive control (RC)—control
systems that learn to improve their performance while ex-

ecuting a periodic command, or ones executing a constant
command but subject to a periodic disturbance (Hara and
Yamamoto, 1985; Haraet al., 1985; Inoueet al, 1981;
Longman, 1998; 2000; Middletonet al., 1985; Nakano
and Hara, 1986; Omataet al., 1984; Tomizukaet al.,
1989). In RC the time and repetition domains get re-
placed by time and time shifted backward by one or more
periods.

The learning process in both ILC and RC can take
many forms (Bien and Xu, 1998; Longman, 1998; 2000;
Moore, 1993; Moore and Xu, 2000; Rogers and Owens,
1992). For example, it can be based on integral control
concepts from classical control theory, but applied in rep-
etitions. It can be based on contraction mappings in either
the time or frequency domains. It can be based on indi-
rect adaptive control theory or model reference adaptive
control theory operating in time or in repetitions or both.
It can be based on numerical methods for minimising of
a function, or numerical methods for root finding. Or one
can try to model the system and invert it to find the input
needed for the desired output. The word learning in the
ILC name suggests to many the use of neural networks,
which can in fact be applied to the problem, but the ma-
jority of the field makes use of control theoretic concepts
as described above.
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2. Approaches to Solving Engineering
Problems

In the evolution of any engineering field, there is
an interplay between three basic ingredients, three ap-
proaches to addressing new problems, i.e. three different
points of view (Fig. 1):

1. the development of a mathematical theory,

2. the use of modeling and simulation,

3. experiments performed in the real world.�
�
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Fig. 1. Interplay between theory, experiment and simulation.

It is very tempting to specialize in one approach and
ignore the others. A mathematician may have little inter-
est in realistic simulations and even less interest in con-
ducting experiments. There are engineers that solve all of
their problems in the laboratory, simply finding a way in
hardware to make it work, without the knowledge of the
underlying theory.

It is claimed here that if you want to make major con-
tributions to a new field, and especially to ILC, then you
must make use of all three approaches. Using only one
point of view may very easily lead to wrong conclusions,
very easily make one spend effort at research objectives
that do not actually make sense, in spite of the fact that
they seem to make sense from the single point of view
chosen. This happens even when one works hard to focus
on problems that seem fundamental from this one point of
view.

The field of ILC is unusual within engineering as a
result of asking for convergence to zero tracking error—
and doing so in the real world rather than with a math-
ematical model. Below we will see that this pushes the
predictive limits of the approaches, and hence, ILC dra-
matizes the need of research to make use of all three ap-
proaches. This paper illustrates this need by document-
ing the sequence of research objectives of one group of
researchers in the field, the author and co-workers, who
repeatedly aimed for research objectives that missed the
point, and repeatedly found that the experiments define
what the theory should be addressing.

3. Possible Structures of ILC

This paper concentrates on linear discrete time ILC. For
simplicity, single-input, single-output systems are consid-
ered. The system can be modeled in state variable form

x(k + 1) = Ax(k) + Bu(k) + v(k),
y(k) = Cx(k),

(1)

whereA can be a closed loop system matrix if one learns
only in repetitions, or it can be open loop. In these two
cases,u can be the signal added to the desired trajectory
for learning, or it can be the complete input signal includ-
ing learning. Thenv(k) represents the repeating distur-
bance plus the desired trajectory forcing function, or just
the repeating disturbance, respectively. The desired tra-
jectory hasp time steps, always starting from the same
initial condition. The column matrix giving the input his-
tory at repetitionj is written below in terms of input and
error histories of the current and previous repetitions:

uj = Ruj + S1uj−1 + S2uj−2

+ Gej + L1ej−1 + L2ej−2. (2)

Here, just two previous repetitions are included for sim-
plicity, but one can employ as many repetitions as desired.
The underbar in each case indicates a vector containing
the whole history of the variable during thej-th repeti-
tion. The R and G, if present, must be lower triangular
matrices of gains due to causality, and are called current
cycle feedback. The remaining matrices can be full. See
(Phanet al., 2000) for a discussion of the equivalence of
such general forms to forms using only the previous rep-
etition input and error. Most all ILC laws are a special
case of this equation, although one can make gains that
vary with repetitions as well. The integral control based
learning is obtained by setting all matrices to zero except
for S1, which is the identity matrix, andL1 which is a
scalar learning gain times the identity matrix. It corre-
sponds to the following algorithm: if the robot link was 2
degrees too low in the previous repetition, add the gain on
the diagonal times 2 degrees to the command in the next
repetition.

4. Two Experimental Testbeds

The experiments cited here were performed on two
testbeds. One is the Robotics Research Corporation robot
shown in Fig. 2. ILC is implemented in a decentralized
manner, using one ILC for each link operating indepen-
dently. The objective is to have each of the seven links
of the robot perform simultaneously a cycloidal 90 degree
turn, followed by a cycloidal 90 degree return. The ma-
neuver time is chosen so that the base joints reach the
maximum velocity allowed by the manufacturer. This
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maximizes nonlinear coupling effects such as centrifugal
force and Coriolis force. The experimental RMS error of
a good ILC law as a function of repetitions of the task
is given in Fig. 3 (Elciet al., 1994a; 1994b; 1994c; Lee-
Glauseret al., 1996). In only 12 repetitions of the task for
learning, the tracking accuracy along the high speed tra-
jectory was decreased by nearly a factor of 1000. To give
some interpretation to this number, tests were conducted
that simply asked the robot to perform the same maneuver
repeatedly, and took statistics as to how much variation
there was in the angle encoder counts of the actual trajec-
tory executed by the robot. This factor of 1000 is neces-
sarily a small factor of 2 or 3 above this repeatability level
when the trajectory is repeated in succession on the same
day. However, if one takes statistics running the trajectory
one time each day, then this factor of 1000 is substantially
below the repeatability level from day to day. Hence, to
maintain this level, one would need to keep the learning
process on. The learning process is correcting for changes
in the system from one day to the next. It would take con-
siderable time and effort to identify the source of these
variations—changes in temperature, in humidity, etc.

The second experimental testbed is a timing belt
drive system shown in Fig. 4. It consists of a motor ro-
tating the input gear, which is connected to an idler shaft
by a timing belt with teeth, and the other end of the idler
shaft is connected to the output shaft by a second timing
belt (Hsinet al., 1997a; 1997b). This produces a gear re-
duction of a factor of 8 in a compact set of hardware. The
objective is to get a constant velocity of the output shaft.
The error sources are variations in velocity from inaccu-
racies in machining and mounting of the shafts and gears,
as well as tooth meshing. These produce errors that are
periodic with the period of one rotation of each shaft and
each belt, including the fundamental and many harmon-
ics. The velocity error spectrum with a large number of
error frequencies is given in Fig. 5. This problem consti-
tutes a repetitive control problem. The best performance
obtained in our experiments is shown in Fig. 6. As dis-
cussed below, this error level is actually too good to be
used in practice.

Fig. 2. Robotics Research Corporation robot.

 

Fig. 3. Robot RMS error vs. repetitions for each joint using
integral control based learning with a compensator.

Fig. 4. Timing belt drive system.

 

Fig. 5. Output velocity error spectrum using a well-designed
feedback controller (amplitude scale is10−4).

5. Some Logical Objectives from the
Mathematical Viewpoint

The following statements sound very logical when viewed
from the point of view of mathematics:

1. My main research objective should be to prove that
my ILC law converges to zero tracking error.
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Fig. 6. Best output error spectrum using repetitive control.

2. For an RC law to be useful I must ensure that it is
stable.

3. To make the most useful possible control law, I
should create a law that is guaranteed to converge
to zero tracking error for the largest possible class
of systems. (If it is general enough, we can call it a
universal learning controller).

4. Designing an ILC law that is a contraction mapping
should produce a good learning control law.

5. There is no point in iterating in ILC, so that one
should just model the system and invert the model to
find the command needed to get zero tracking error.

6. I should aim to eliminate all tracking error.

In the sections that follow, it will be shown that in
one way or another, each of these statements is wrong.

6. Amazing Success/Failure of the
All-Purpose, Universal ILC

Following Statement 3 above, this section documents the
efforts to obtain ILC that converges to zero tracking error
for the largest possible class of systems.

Amazing success:Consider system (1) and the simplest
ILC based on integral control applied in repetitions:

uj+1(k) = uj(k) + φej(k + 1). (3)

The solution of this difference equation is the sum of all
previous errors times the learning gainφ, and hence it is
a discrete equivalent of integral control applied in repe-
titions to each time step. The learning control looks one
time step ahead to examine the error that is first affected by
a change in control at the present time step. One can prove
that this learning law is asymptotically stable, converging
to the zero tracking error (Phan and Longman, 1988):

1. for all sufficiently smallφ,

2. of the right sign,

3. providedCB 6= 0.

Note that this result is completely independent of the sys-
tem matrix A in (1). In other words, it is completely in-
dependent of the system dynamics in discrete time!

You might wonder if Item 1 above is a catch, but as
the sample time tends to zero, the upper limit on the gain
tends to infinity. So the range of gains producing con-
vergence to zero error can be made arbitrarily large by
picking a sufficiently fast sample time. For normal feed-
back control systems, a reasonable value of the control gain
would seem to be around unity or somewhat less. This
corresponds to the statement: if the robot link is 2 degrees
too low during a certain time step the last repetition, add 2
degrees or something a bit less, to the command in the next
repetition. In the case of the robot, the stability boundary
was at a gain of over 90, corresponding to trying to cor-
rect the 2 degree error with a correcting command of 180
degrees. Perhaps we should be impressed that with such
an extreme action, the ILC still converges to zero error.

Item 3 is not usually a constraint either. If system (1)
comes from a continuous time differential equation fed
by a zero order hold, then provided a reasonable sample
frequency is used, the first Markov parameter will not be
zero (i.e. it is difficult to have the response of the system
to a unit step input be zero at the first time step, starting
from zero initial conditions). When (1) models a typical
digital control system, similar arguments can be made.

Item 2 asks that we know the sign ofCB. Normally
one does know this. But since we wanted to have the
ILC law work for the largest possible class of systems, ef-
forts were expended to eliminate this condition. This can
be accomplished by generalizing the learning control law
(3) to the alternating sign ILC (Changet al., 1992; Long-
manet al., 1992), which uses+φ,−φ,+φ,−φ, . . . as the
learning gain for successive time steps in the first repeti-
tion, then changes all the signs in the next repetition, and
changes back the third, etc.

Also, one might argue that the system model in (1)
is somewhat restrictive—it is linear. The reference (Long-
manet al., 1992) applies (3) to a system of the form

ẋ = f(x, u) (4)

through a zero order hold, and aims for zero tracking error
at the sample times. It is shown that a very similar general
stability condition applies. The main requirement is that
(4) must satisfy a Lipschitz condition (at least piecewise).
This is a very large class of nonlinear systems. One way of
looking at the nonlinear problem is that as far as conver-
gence is concerned, only the nonlinearity observed over
one time step influences the result. And for reasonable
time steps, there will be very little of such nonlinearity.
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We conclude that the very simple ILC law (3) or its
alternating sign variant can produce zero tracking error in
the vast majority of single-input, single-output systems in
the world. This appears to be a very powerful result—
much more powerful than one would expect for such a
simple law. It is almost a universal learning controller.
Just connect the wires, turn it on, and it will converge to
the zero error—so, simple, and guaranteed to work for all
but rather pathological systems!

Simulations 1: When producing publications discussing
control laws, one naturally makes some simulations to
show how the law works. We made the usual simulations
of simple systems, e.g. second order systems such as for
the rotation of a robot link with a PD feedback controller
(Changet al., 1992). For simplicity, we picked trajec-
tories of 50 or 100 time steps. With a learning gain in
the range of 2/3, reasonably fast convergence was demon-
strated. There was some concern about the transients dur-
ing learning being somewhat large. The alternating sign
law helped keep the transients well behaved.

Experiments and failure: ILC law (3) was applied to
the robot in Fig. 2. The RMS tracking error decreased
by a factor of 35 dB in about 9 repetitions, or a factor
of 50. That sounds like a success. A factor of 50 im-
provements in the tracking error just by running the robot
9 times could be very significant. But theory says that
we are supposed to be able to converge to zero tracking
error. When the repetitions were repeated past 9 going
up to 15, the RMS error got worse. By repetition 15, the
robot was making so much noise, we were afraid to con-
tinue the experiment for fear of damaging the hardware.
This was frustrating—if only I could run the experiment 5
more repetitions, maybe the error would come down, and
I could continue the path toward zero tracking error.

Simulations 2: Since we could not continue in hardware,
we turned to a simulation, and used a linear third order
model of the input-output relationship of each robot link.
The model fits the robot performance rather well, and con-
sists of a break frequency at 1.4 Hz, defining the band-
width of the feedback controllers, and a vibration mode
at an undamped natural frequency of 5.9 Hz with a damp-
ing ratio of 0.5. The simulation resulted in exponential
overflow (Longman and Songchon, 1999)!

But the theory says it converges. The theory is right,
the exponential overflow is just a bad learning transient
(see (Huang and Longman, 1996) for explanations of this
phenomenon from several points of view). To make the
transient small enough so that the computer could han-
dle it, we decreased the length of the desired trajectory
to 1 second instead of 6 seconds. We changed the sam-
ple rate from the 400 Hz of the robot feedback controller,
to 100 Hz, and we simplified the trajectory slightly. And
success was obtained—the computer could simulate the

Fig. 7. Simulation of the learning transients of integral
control based learning applied to a robot link.

learning process, cf. Fig. 7 (Longman and Songchon,
1999). The initial RMS error decreased as shown in the
inset, from 0.4330 to 0.1402 radians in repetition 7. Then
the error increased to a maximum of1.1991 × 1051 at
repetition 62,132. Of course, we know that the error con-
verges to zero, and the simulation agrees, giving a numer-
ical zero of1.3145× 10−48 at repetition3× 105.

This makes the universal learning controller imprac-
tical in a couple of respects. First, it is rare in physical
problems that one can run3× 105 repetitions—the robot
is worn out long before. Second, it is a rare robot that
can allow the links to rotate by1.1991 × 1051 radians
without hitting limit switches (or breaking the electrical
wires). There might also be a problem that the actuators
are not strong enough to rotate to this angle within one
second.

We conclude that convergence is not really the point
in ILC, and not even much of an accomplishment. What
is needed is guaranteed good learning transients. And
that is an accomplishment. Furthermore, it is dreaming
to aim for a universal ILC. If universal controllers made
sense, we, control engineers, would have been out of busi-
ness long ago. Although Statements 1 and 3 of Section
5 seemed very reasonable research objectives from the
mathematical point of view, this experiment showed that
they were not addressing the real issues.

7. Who Needs Stability?

The interplay between the mathematical thinking and the
experiments during our ILC research produced a number
of surprises related to stability:

1. The guaranteed stable “universal” controller of the
previous section that proved to be useless in practice.

2. Or is it useless? This ILC with “unstable” behavior
(going to exponential overflow on the way to conver-
gence) can actually be a very practical ILC.
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3. And then there is a case of ILC designs that are sup-
posed to be unstable according to the theory, but are
stable in the real world.

“Unstable” but practical: The previous section dis-
cussed Statements 1 and 2 of Section 5. Concerning State-
ments 1 and 2 we can make a further comment. We are all
taught that infinite sums are useless if they diverge. Then
later we may learn about asymptotic expansions, where a
finite number of terms in a divergent sum actually gives
a very good approximation of the expanded function, and
can in fact make the divergent sum very useful. When the
ILC law (3) was applied to the real world robot, the er-
ror decreased by a factor of 50 in 9 repetitions. That is
a rather impressive improvement. So just stop the learn-
ing at that point, and this makes a very useful and simple
way to improve the tracking accuracy of a feedback con-
trol system (Longman and Huang, 1998). Although tech-
nically the ILC is stable but with bad transients, the corre-
sponding RC is actually unstable (Longman, 2000; Huang
and Longman, 1996), and of course the same possibility
exists for improving the performance of repetitive con-
trollers. Hence, we conclude that an unstable repetitive
control law can actually be practical.

When an experimentalist “tests” stability: The experi-
mentalist determines what he calls stability in a different
manner than the mathematician. He would certainly call
the exponential overflow situation unstable, after seeing
the error increase sufficiently so that he had to stop the
learning process, and never observing the ultimate conver-
gence. The reverse can also easily happen. Figure 8 shows

Fig. 8. Timing belt drive system RMS errors for 1,000
repetitions, linear phase lead repetitive control
with a 12-th order Butterworth filter.

the RMS error versus repetitions using an RC with a linear
phase lead and a 12-th order causal Butterworth low pass
filter (Hsinet al., 1998). The initial error is near the top of
the graph, although it is not discernable in the plot. The er-
ror decreases in a few repetitions and then bounces around

at the noise level. Any normal experimentalist would be
quite satisfied with 1000 repetitions of good performance,
and pronounce the system stable. In this particular case,
the experimenter decided to run it longer, and found that
around 2,650 repetitions an instability started to appear.
So he decided to try to fix the problem, and applied an 18-
th order Butterworth to get a better cutoff. Then he ran it
for 10,000 repetitions and everything behaved well. Then
he was satisfied.

Unstable in math, but stable in practice: The theoreti-
cian complains, I don’t care if you ran it for 10,000 repeti-
tions, I know it is unstable. Surely if you ran it still longer
you would see that it is unstable. Nevertheless, the experi-
ment started us thinking. Maybe the size of the word used
in the digital to analog converter and the analog to digi-
tal converter was able to produce stability. Computations
showed that this was indeed the case, that the 18-th order
Butterworth was a sufficiently ideal cutoff that the error
remaining above the cutoff frequency was smaller than the
last digit in the converter and therefore could not accumu-
late (about 8 digits for the hardware). This observation
then led to a new type of ILC and a new set of theory—for
ILC stabilization by quantization. Figure 9 shows an ex-

Fig. 9. Stabilization by finite word length
in integral control based learning.

ample (Hsinet al., 1998). Without quantization the RMS
error in this example goes through a minimum and then
starts up again. With a quantization level of10−6 it still
goes through a minimum and then starts to increase again,
but more slowly. Then with a level of10−5 this particu-
lar ILC is stabilized. So, the experiments spawned a new
theory, and a new class of ILC.

8. Did You Say You Wanted Zero
Tracking Error?

From the mathematical point of view it is natural to ask for
zero tracking error in the limit as the repetitions progress,



On the interaction between theory, experiments, and simulation in developing practical learning. . . 107

i.e. to ask for asymptotic stability. We have already seen
some reasons not to ask for this, and there are more.

The asymptotic expansion property:The previous sec-
tion produced an improvement in the RMS error of a fac-
tor of 50 in 9 repetitions. Maybe this significant improve-
ment is quite sufficient, and there is no need to work on
further learning.

The finite word length: Also above, we saw that stabi-
lization by quantization can be an effective design method
for ILC or RC. This obtains stability at the sacrifice of no
longer achieving zero tracking error.

Be kind to the hardware: We commented about Fig. 6
that this performance was too good. Although the output
shaft was giving a nearly perfect velocity performance, the
motor was working very hard. Again, the hardware was
making a lot of noise. We concluded that trying to control
the substantial peak at 240 Hz in Fig. 5 was not advisable,
otherwise we would be wearing out the equipment. This
peak is associated with the dynamics of tooth meshing on
the faster of the two timing belts. It is very far above the
bandwidth of the controller, and any corrective action at
this frequency requires an amplitude 11 times as big as
the error being corrected. This situation is rather typical of
hardware. In most situations one would want a frequency
cutoff of the learning for similar reasons.

Obtaining good learning transients: Perhaps the most
useful method of ensuring good learning transients, avoid-
ing the problem of Fig. 7, is to ask for a monotonic de-
cay of the steady state frequency components of the error
(Longman, 2000; Elciet al., 1994a). Violating this condi-
tion is very hard to avoid at high frequencies, and hence
supplying a cutoff for frequencies that cause such trouble
makes it much easier to design a learning controller. The
cutoff must be done without disturbing the phase, using a
zero phase filter as in (Elciet al., 1994a; 1994b; Longman,
2000; Plotnik and Longman, 1999). Hence, we can obtain
good learning transients at the expense of not asking the
zero error at high frequencies.

Robustness to the problem of parasitic poles, singu-
lar perturbations: Unlike many other fields of control, it
is not stability robustness that is important (the universal
controller has more such robustness than one can normally
hope for). It is the robustness of the good learning tran-
sients that is important in ILC. This robustness requires
that the phase lag of the system be known reasonably ac-
curately. In this kind of knowledge an error of 90 degrees
will normally violate the frequency based monotonic de-
cay condition for good transients. Most systems when
pushed hard enough exhibit additional dynamics, some-
times called parasitic poles. What earlier behaved like a
rigid body, when pushed for zero tracking error is seen to
exhibit some flexibility. An amplifier that might have been

considered simply a gain, exhibits some low pass charac-
teristics, etc. All it takes is one additional pole to pro-
duce an additional 90 degree phase lag. Hence, the good
learning transients condition is not robust to such singu-
lar perturbations. The simplest way to address the issue
is to cut off the learning for high frequencies where one
loses confidence in the phase model. Or one can let the
experiments show you what cutoff you need, by observ-
ing the frequency content of the error if it happens to start
to grow, and then pick a cutoff below this value. One can
even make this robustification into a self-tuning process
(Wirkander and Longmann, 1999).

Thus, there are many reasons not to ask for zero
tracking error, and Statement 5 of Section 5 was mis-
guided.

9. What are Good Models, Anyway?

Essentially, all of engineering depends on models to get
the desired results. ILC pushes the limits of one’s abil-
ity to model. In normal feedback control it would be just
fine to leave out some dynamics at high frequencies (far
above the bandwidth of the controller) of a very low am-
plitude, and not even identifiable in normal input-output
data. The gain and phase margins that determine stability
are determined at much lower frequencies, so the small
amplitude high frequency behavior is not an issue in sta-
bility. In ILC, such dynamics could easily destabilize the
controller. It might take a long time, maybe 2,650 rep-
etitions. In that following, some comments are given on
modeling issues in ILC:

• In the early days of ILC, a large percentage of the
literature worked very hard to make algorithms that
were guaranteed to converge for robots modeled as
multiple rigid bodies, i.e. modeled as the nonlinear
dynamics of multibody systems. These works made
substantial mathematical achievements. But, Figs. 3
and 11 show that using uncoupled ILC controllers,
independent ones for each joint, and using simple
linear theory, produces errors very close to the repro-
ducibility level of the robot. So all those nonlinear
dynamics equations will not be of any help in getting
better performance. In this case all the theoretical ef-
fort has no practical payoff. The complex and more
accurate model does not help.

• It is very natural to think that there is no real need for
ILC. Instead, we should simply make a model, and
invert it to get the input needed to produce the de-
sired output. For the robot, we went through this ex-
ercise using system identification methods. The only
dynamics that were visible were one pole at 1.4 Hz
for each robot link, i.e. the break frequency of the
feedback controllers. So we invert this model, and
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apply the result to the robot. This reduces the RMS
tracking error by roughly a factor of 10 (Elciet al.,
1994b). Using a good ILC algorithm continues to
reduce the error by about another factor of 100. So
what does all the work of making a model and invert-
ing do for you? It eliminates the need for the first 1
or 2 repetitions of the ILC. It is not clear that there
is any point in going through the effort. It is much
easier and faster to simply perform one or two more
repetitions.

• But there is more to say about the suggestion of mak-
ing a model and inverting it. When controlling a
system governed by a differential equation fed by a
zero order hold, as in nearly all digital control sys-
tems, and when the differential equation of the sys-
tem has three more poles than zeros, then (Åström
et al., 1980) shows that when the sampling is fast
enough, the discrete equivalent system model will
have one or more zeros outside the unit circle. This
makes the inversion a solution of an unstable differ-
ence equation. The result is that in practice for most
physical systems it is in fact impossible to invert the
system to find the control (Statement 5 of Section 5).

• One way of looking at the modeling issue is to say
that no finite order system model is good enough for
ILC. As has been mentioned above, when using typ-
ical robot data, for the robot doing substantial move-
ments, we were only able to identify the break fre-
quency at 1.4 Hz, making a first order model for
each link. Applying a few steps of learning con-
trol, however, cuts out much of the low frequency
error quickly. Suddenly, the data show clearly the
first resonance. In fact, if we keep the learning con-
trol on for a while and then take data, the only thing
that we can identify is the resonance, and we can no
longer see the break frequency. All error in that fre-
quency range is gone. Note that there is a very natu-
ral connection between ILC and optimal experiment
design. So now we use data at some intermediate
repetition in order to make a third order model, and
use it to design a phase cancellation controller (Elci
et al., 1994c), and then apply the ILC. The resulting
RMS error (Fig. 10) decreased by about two and a
half orders of magnitude, and then started to diverge.
Looking at the data shows that the divergence was re-
lated to the second vibration mode of the robot. Us-
ing this data to make a new 5-th order model in place
of the old 3-rd order model, allowed the error to de-
cay to nearly 3 orders of magnitude (Fig. 11). The
question is: Does this process simply keep continu-
ing? Does it ever stop? So far the process has found
only two of the seven vibration modes that should ex-
ist in the seven-degree-of-freedom robot with flexible
harmonic drives between each link. Or perhaps each

 

Fig. 10. Phase cancellation RMS error for
all joints without model updating.

 

Fig. 11. Phase cancellation RMS error for
all joints with model updating.

link has some structural flexibility, and can exhibit
vibration modes. The learning process could keep
finding more and more parasitic poles or residual
modes, more and more dynamics missing from our
current model. The implication is that no finite or-
der model is good enough for ILC. Of course, things
like the finite word length will actually put a limit
on how far the process can proceed. One reaction to
this thinking is to create ILC laws that do not rely
on finite order models. The author suggests the use
of experimental frequency response plots (Longman,
2000; Longman and Songchon, 1999). The objective
is to take care to make experimental Bode plots of
the system that are accurate to the Nyquist frequency.
And if they prove to be inaccurate above some fre-
quency as demonstrated by the growth of the error,
then look at the frequency content of the error and
create a frequency cut-off below that frequency (or
try to improve the frequency response information in
that frequency range).
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10. Can Simulations Predict
the Performance?

Simulations are supposed to be a substitute for much more
time consuming and expensive experiments. Could we
have made the same conclusions about what is important
in ILC simply by use of simulations, without having per-
formed the experiments cited?

• Simulations 1 of Section 6 were typical textbook size
problems, and they did not uncover the magnitude
of the difficulty. So the simulations must be more
sophisticated.

• Would the simulations have shown us the difficulties
of long term instabilities, requiring 2,650 repetitions
before we start to see the instability? No, if we do
not think to look for it. In this respect simulations
are like experiments.

• Could we have ever learned about stabilization due to
the finite word length in the D/A converter? Not very
likely. We would have to have been smart enough to
decide that it is important to include finite word size
effects in the simulation. This is like having to know
the answer before you can ask the question.

• There is a “catch 22” in making a simulation. As
has been discussed above, when we make a model
and invert it to find the input to produce zero error
according to the model, and then turn on a learning
controller, the error decreases further by two orders
of magnitude. ILC learns to eliminate errors that are
beyond the errors predicted by our model. Hence, the
simulation needs to know a model that contains phys-
ical phenomena that we have not modeled. In the
case of the robot, we know that there will be another
mode somewhere, even if we are unable to identify
it with any normal identification routine. We might
be able to make a realistic simulation for the robot in-
cluding more vibration modes, but in a less structured
situation, there is no way of including small dynamic
effects that we have not even thought about. So, sim-
ulation is not going to give us the right answer.

• One of the important issues in ILC is what final error
level candidate laws will produce. One would like
to find the ILC law that gives the smallest possible
final error level. The contraction mapping algorithm
of (Jang and Longman, 1994) seemed very promis-
ing on paper. Experiments gave the results shown in
Fig. 12 (Lee-Glauseret al., 1996). The final error
levels are worse than those of other learning algo-
rithms in Figs. 11 and 3. Hence, Statement 4 of Sec-
tion 5 was shown to be wrong in some sense (use
of a design based on a partial isometry (Jang and
Longman, 1996) or on phase cancellation (Elciet al.,
1994c) can produce contraction mappings without

this problem). Could we have learned this by sim-
ulation? It would be hard. It would be best to have
a real understanding of what the effects are that pro-
duce variations in the system response, i.e. to have
modeled the irreproduciblity of the system. Typical
mathematical thinking is to substitute white noise.
We might learn something from this, but I suspect
it would not give us the answer. It seems likely that
it is the finite word length effect again that produces
the poor final error level, because of the slow learn-
ing rate at high frequencies. Again, getting the right
answer by simulation requires too much understand-
ing of the problem before you have seen the phe-
nomenon.

�

�
�
� Fig. 12. RMS error using contraction mapping ILC after 2

repetitions of inverse model learning.

But there are other issues. Examine the error history
in Fig. 7 – is there anything wrong in the latter part of the
curve? It says that the error reaches10−48. This is a pre-
diction from programming a mathematically correct equa-
tion that gives the error in the next repetition based on the
error in the previous repetition. If instead one uses more
basic formulas, computing the control action each repe-
tition, computing the result of applying it to the system,
and then computing the error, the final error level will ap-
pear in a range like10−11 to 10−14 when programmed in
MATLAB with its double precision computations. These
results do not agree, although mathematically the equa-
tions programmed are totally equivalent. And certainly
both are wrong. The final error level will be very highly
influenced by the number of digits carried in the digital-to-
analog and analog-to-digital converters, and this might be
8 digits. But even if this is included in the computations,
it appears that there is no way to know enough about mod-
eling errors and noise to be able to predict the final error
levels. And hence, there is no way to know in advance
by simulation what learning control law gives the best er-
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ror levels. This situation makes ILC somewhat unusual.
In most fields of engineering simulations can give rea-
sonably good predictions of performance, at least if one
works hard enough.

• And then it seems unlikely that we would realize in
simulations that we need to stop the learning in order
to be kind to the hardware.

The conclusion is that extreme care and a lot of in-
sight would have been required to get the simulations to
predict the outputs correctly. And to have this amount of
insight, most likely one needs to run experiments.

11. Conclusions

This paper has presented a case history of the interplay be-
tween mathematical theory, modeling and simulation, and
experiment in the development of a field. This particular
case history is unusual in the sense that it pushes some of
these to their limit or beyond. ILC tries to learn everything
needed for zero tracking error, going beyond any model
one can develop. Both theory and simulation need mod-
els. Simulations are unusually inefficient, because they
rely on models that are being pushed beyond their range
of validity. In addition, simulations suffer routinely from
ill conditioning and experiments can be pushed beyond
hardware limits.

It was shown that limiting oneself to purely mathe-
matical thinking, even with the aid of simulation, can very
easily suggest research directions that appear to be impor-
tant, but in the light of experiments are seen to be rather
irrelevant. Section 5 listed several research objectives that
the author and co-workers considered at one time or an-
other to be very appropriate, perhaps central to the field.
Experiments and simulations showed them all to be wrong
in one way or another, or showed them to simply be mis-
guided. Experiments were needed to learn these lessons,
and to refocus the effort in a direction that addressed the
real issues of the field. Simulations were seen to be rather
ineffective for most purposes, requiring that one know too
much about the problem before being able to get a result
that predicts the experiments.

Experiments told us what types of models to use to
avoid as much as possible singular perturbations issues.
They told us not to expend substantial efforts on spe-
cialized nonlinear models for robots. The linear based
thinking produces experimental results approaching the
reproducibility level of the robot, so no more complex
modeling can do significantly better. Experiments sug-
gested new forms of ILC stabilized by quantization. But
we also learned not to trust what seemed like stability in
experiments—instability could lie dormant for 2650 rep-
etitions. It was only the fact that the theory said it was

unstable, that made us run that many repetitions. For ILC,
the interplay between experiments, simulations, and the-
ory is unusually lively, full of surprises, and full of appar-
ent paradoxes.
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