
Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 2, 239–253

MODELING OF DISTRIBUTED OBJECTS COMPUTING DESIGN PATTERN
COMBINATIONS USING A FORMAL SPECIFICATION LANGUAGE

TOUFIK TAIBI ∗, DAVID CHEK L ING NGO∗∗

∗ Faculty of Information Technology, Multimedia University
Jalan Multimedia, 63100 Cyberjaya, Selangor, Malaysia

e-mail:toufik.taibi@mmu.edu.my

∗∗ Faculty of Information Science and Technology, Multimedia University
Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia

e-mail:david.ngo@mmu.edu.my

Design patterns help us to respond to the challenges faced while developing Distributed Object Computing (DOC) applica-
tions by shifting developers’ focus to high-level design concerns, rather than platform specific details. However, due to the
inherent ambiguity of the existing textual and graphical descriptions of the design patterns, users are faced with difficulties
in understanding when and how to use them. Since design patterns are seldom used in isolation but are usually combined to
solve complex problems, the above-mentioned difficulties have even worsened. The formal specification of design patterns
and their combination is not meant to replace the existing means of describing patterns, but to complement them in order
to achieve accuracy and to allow rigorous reasoning about them. The main problem of the existing formal specification
languages for design patterns is the lack of completeness. This is mainly because they tend to focus on specifying either the
structural or behavioral aspects of design patterns but not both of them. Moreover, none of them even ventured in specifying
DOC patterns and pattern combinations. We propose a simple yet Balanced Pattern Specification Language (BPSL) aimed
to achieve equilibrium by specifying both the aspects of design patterns. The language combines two subsets of logic: one
from the First-Order Logic (FOL) and the other from the Temporal Logic of Actions (TLA).

Keywords: Balanced Pattern Specification Language (BPSL), First-Order Logic (FOL), Temporal Logic of Actions (TLA),
substitution, addition, elimination

1. Introduction

Advances in network technology have shifted the soft-
ware development from stand-alone to Distributed Object
Computing (DOC) in order to take advantage of their in-
herent benefits such as resource sharing, openness, con-
currency, scalability, fault tolerance and transparency. In
the remainder of this paper, distributed applications and
DOC applications will be used interchangeably as Object-
Oriented (OO) technology has become a standard in all
kinds of software development. Despite the benefits they
offer, distributed applications are harder to develop than
stand-alone applications. Developers must properly ad-
dress issues that are either not relevant or less problematic
for stand-alone applications such as service access config-
uration, event handling, concurrency and synchronization
(Schmidtet al., 2000).

Design patterns are abstractions generated from valu-
able experiences of developers in solving problems re-
peatedly encountered within certain contexts. Design pat-
terns and patterns are used interchangeably throughout the

paper. Since patterns have been extensively tested and
used in many development efforts, reusing them yields
better quality software within reduced time frame. Pat-
terns help capture and reuse the static structure and dy-
namic collaborations of key participants in software de-
sign. When inter-related patterns are put together, they
form a “pattern language”, which defines a vocabulary
for dealing with software problems, and provide a pro-
cess for orderly resolution of these problems. In recent
years, it has become clear that patterns and pattern lan-
guages help alleviate problems encountered in develop-
ing distributed applications. When used properly, patterns
direct developers’ attention towards higher-level software
applications architecture and design concerns, rather than
towards low-level operating system and networking pro-
tocols and mechanisms.

Pioneer pattern writers needed an urgent means to
describe these cumulated experiences in order to allow de-
velopers to reuse them. A combination of textual descrip-
tions, OO graphical modeling languages and sample code
fragments was, at that stage of pattern evolution, sufficient

T. Taibi and D.C.L. Ngo240

for conveying the essence of patterns. However, as soon
as the number of patterns had grown, and problems re-
quiring pattern combination had surfaced, users started to
realize that informal (textual and graphical) descriptions
can be ambiguous, imprecise and sometimes misleading
in understanding and applying patterns. Unsettled debates
were initiated among users and even pattern writers them-
selves about various aspects of patterns (Vlissides, 1997a;
1997b). Thus, the wide dissemination of patterns in such
cases depends upon the expressive ability of pattern writ-
ers. Also, an ambiguous specification can lead to incorrect
usage of the pattern. Informal specifications make it dif-
ficult (or sometimes impossible) to accurately answer the
following questions: Is one pattern the same as another
(duplication)? Is one pattern obtained from a minor revi-
sion of another (refinement)? Are two patterns unrelated
(disjointness)? These features are also critical as new pat-
terns are being discovered, discussed and debated about.

Hence, there was a need for a formal means of ac-
curately describing patterns. The formal specification
of patterns is not meant to replace the existing informal
descriptions but rather to complement them in order to
achieve well-defined semantics and allow rigorous rea-
soning about patterns. The formal specification of pat-
terns can help pattern users decide which pattern(s) is (are)
more appropriate to solve a given design problem within
a context. It can help formalize pattern combination. Fi-
nally, it can facilitate tool support for pattern usage, e.g.,
by finding instances of patterns in programs and by fine-
tuning them to meet pattern specifications (Eden and Hir-
shfeld, 2001) that are stored in the so-called pattern repos-
itory. Another possibility is a tool to instantiate from a
pattern specification, a possible implementation in a cho-
sen programming language.

As the pattern field had matured, a number of for-
mal specification languages (Chinnasamyet al., 1999)
have emerged as a need to cope with the inherent short-
comings of textual and graphical descriptions. However,
since these specification languages originated from differ-
ent mathematical sources and incorporated different in-
gredients, they reflect the way their authors perceived how
patterns should be formalized. Patterns have a structural
as well as behavioral aspect. Both the aspects are of equal
importance for understanding the underlying semantics of
any pattern, but the focus should always be on the pre-
dominant aspect (if any). The main problem of the avail-
able formal specification languages for patterns is the lack
of completeness. This is mainly because they either were
not originally conceived to specify patterns and have been
adapted to do so, or they tend to focus on specifying either
the structural or the behavioral aspect of patterns, but not
both of them. Moreover, few of them attempted to formal-
ize pattern combinations and none of them even ventured
on specifying the DOC patterns.

We have developed a Balanced Pattern Specification
Language (BPSL) (Taibi and Ngo, 2002) that is meant to
accurately convey the essence of patterns in a balanced
way. The BPSL was inspired by our views of why and
how patterns should be formalized (Taibi and Ngo, 2001).
We believe that integrating the formal specification of
structural and behavioral aspects of patterns in one speci-
fication language would help formally specify patterns in
a balanced way. This has led to make the BPSL develop
from both First Order Logic (FOL) to specify the struc-
tural aspect, and the Temporal Logic of Actions (TLA) to
specify the behavioral aspect. Moreover, since patterns
are seldom used in isolation, but most of the time are
combined in order to solve complex problems, we have
successfully used the BPSL to formalize a pattern combi-
nation. Since the specification of the two aspects (struc-
tural and behavioral) of patterns were derived from two
different logics (FOL and TLA), it is obvious that spec-
ifying a pattern combination will be done separately for
each aspect. In order to specify the structural part of the
combined pattern, the concept of FOLsubstitutions and
eliminationare applied. In order to specify the behavioral
part of the combined pattern,substitutions(full and par-
tial) andadditionsare applied to temporal relations and
actions. All the above-mentioned concepts will be de-
tailed in Section 3.1. We found that any significant be-
havioral aspect of the underlying patterns has an impact
on the specification of the structural aspect of the com-
bined pattern. This indeed shows the synergy that exists
between the two complementary aspects of a pattern.

The rest of the paper is organized as follows. Sec-
tion 2 gives a detailed description of the BPSL. Section 3
describes how pattern combination is formally specified
using the BPSL. In Section 4 we apply the BPSL to for-
mally specify theReactorandLeader/Followersarchitec-
tural patterns and their combination. Finally, in Section 5
we present work related to what is presented in this paper,
and we conclude the paper in Section 6.

2. Balanced Pattern Specification Language
(BPSL)

Patterns differ in terms of their field of usage, the problem
they solve and its context. However, each pattern has a
structural aspect and a behavioral aspect. In certain pat-
terns the structural aspect is predominant while in others
the behavioral aspect is supreme. Hence, any formal spec-
ification that is claimed to completely describe patterns
should incorporate the specification of both the structural
and behavior aspects (Taibi and Ngo, 2001). Each pattern
can be seen from two complementary views: the struc-
tural view and the behavioral view. However, the predom-
inant view should always be the focus. This principle is
not new, but comes directly from the very nature of OO

Modeling of distributed objects computing design pattern combinations using. . . 241

systems. By a balance in BPSL we mean that the formal
specification of both the structural and behavioral aspects
of patterns should complement each other. As the BPSL
is aimed at describing patterns accurately and in a bal-
anced manner through a simple and concise notation, its
main target is pattern understandability, which can only be
achieved by understanding a pattern’s structural and be-
havioral aspects and how they complement each other. To
understand that, the predominant aspect can be made the
focus. Once this is achieved, users will be able to know
when and how to use a given pattern, which is crucial to
take full advantage of the inherent benefits of patterns.

The structural aspect of a pattern can be formalized
using a subset of First Order Logic (FOL), because the
relations between pattern participants can be easily ex-
pressed as predicates. For simplicity, the subset of the
FOL used focuses on variable and predicate symbols. The
behavioral aspect of a pattern can be formalized using a
subset of Temporal Logic of Actions (TLA) (Lamport,
1994), which is best suited to describe collective behavior,
i.e., how objects cooperate. The subset used focuses on
actions that change state variables (class attributes) and/or
associate or disassociate objects through temporal rela-
tions. The following are the building blocks of the BPSL.
They reflect entities (participants) and relations (collabo-
rations) between them in a pattern:

1. Classes, attributes, methods, objects, and untyped
values make theprimary entities, which are consid-

Table 1. Primary permanent relations and their intent.

Name Domain Intent

Defined-in M ×C Indicates that a method is defined in a certain class.

A×C Indicates that an attribute is defined in a certain class.

Reference-to-one
(-many)

C ×C Indicates that one class defines a member whose type is a reference to one (many)
instance(s) of the second class.

Inheritance C ×C Indicated that the first class inherits from the second.

Creation M ×C Indicates that a method contains an instruction that creates a new instance of a class.

C ×C Indicates that one of the methods of a class contains an instruction that creates a new
instance of another class.

Invocation M ×M Indicates that the first method invokes the second method.

C ×M Indicates that a method of a class invokes a specific method of another class.

M ×C Indicates that a specific method of a class invokes a method of another class.

C ×C Indicates that a method of a class invokes a method of another class.

Argument C ×M Indicates that a reference to a class is an argument of a method.

A×M Indicates that an attribute is an argument of a method.

V ×M Indicates that an untyped value is an argument of a method.

Return-type C ×M Indicates that a method returns a reference to a class.

O ×M Indicates that a method returns an object.

Instance O ×C Indicates that an object is an instance of a certain class.

ered irreducible units. Untyped values are values of
variables of any type. They are used as a construct at
a higher level of abstraction as opposed to low level
programming language constructs. Untyped values
and objects are used as parameters to actions (see
Section 2.2).

2. Relations express the way in which entities collab-
orate. They can be either permanent or temporal.
Once defined, permanent relations between entities
cannot be changed while temporal relations may
change throughout the execution of actions. The
BPSL defines a set of primary permanent relations
based on what other permanent relations can be built
(see Table 1).

3. Actions are atomic units of execution, which can be
understood as multi-object methods used to embody
the behavioral aspect of patterns. Actions associate
and disassociate objects through temporal relations.

4. Any newly defined entity or permanent relation must
by derived from primary entities andprimary per-
manent relations, respectively.

2.1. Structural Aspect Specification

The subset of FOL used to describe the structural as-
pect of patterns comprises variable symbols, connectives
(mainly ‘∧’), quantifiers (mainly ‘∃’) and predicate sym-
bols acting upon variable symbols. The variable symbols

T. Taibi and D.C.L. Ngo242

represent classes, attributes, methods, objects and untyped
values, while the predicate symbols represent permanent
relations.

The domain (set) ofprimary entities that are classes,
attributes, methods, objects, and untyped values is
denoted respectively byC, A, M , O, andV . Table 1
depicts theprimary permanent relations, their domain
and their intent. These relations straightforwardly come
from object-oriented technology concepts. It is the
smallest set (in terms of the number of elements) on
top of which any other permanent relation can be built.
For example, the permanent relationForwarding is a
special case ofInvocation, where the actual arguments
in the Invocation are the formal arguments defined for
the first method. This can be formally specified as fol-
lows: Forwarding(m1,m2) ⇔ Invocation(m1,m2) ∧
Argument(a1,m1) ∧ · · · ∧ Argument(an,m1) ∧
Argument(a1,m2) ∧ · · · ∧ Argument(an,m2), where
m1,m2 ∈ M anda1, . . . , an ∈ C ∪A ∪ V , which means
that they can either be references to classes, attributes or
untyped values.Primary permanent relations are general
in the sense that they can be used to specify all patterns.
Primary permanent relations can be easily extracted from
the structure of the patterns represented usually by a
Unified Modeling Language (UML) (Rambaughet al.,
1998) class diagram and the collaboration of the pattern
participants represented by UML sequence diagrams.

2.2. Behavioral Aspect Specification

For patterns that have a predominant behavioral aspect,
it is necessary to understand how objects collaborate to
achieve the expected behavior. The subset of TLA used
in the BPSL looks at a pattern as an action system (Back
and Kurki-Suonio, 1988) that can be regarded as an ab-
stract state machine consisting of state variables (class at-
tributes) and a set of actions, where each action consists of
a precondition and a body. Actions change state variables
and/or associate and disassociate objects through tempo-
ral relations.

TLA deals with behaviorsσ = (S0, S1, . . .) defined
as an infinite sequence of states. Each stateSi is a col-
lection of values of state variables. A pair of consecutive
states(Si, Si+1) in a behavior is called a transition. A
stuttering transition is the one in which the state variables
do not change fromSi to Si+1.

A temporal relation can be defined as follows:
TR(C1[cardinality], C2[cardinality]), where TR is the
name of the temporal relation,C1 and C2 are classes,
and the cardinality represents the number of instances of
each class that participate in the relation. The cardinal-
ity can be represented as either a closed interval[n..m],
wheren and m represent any two positive integers, or as
[∗] to describe any possible number of instances.

TR(o1, o2) means that an objecto1 of a classC1
is currently associated throughTRwith an objecto2 of a
classC2 , while ¬TR (o1, o2) signifies thato1 and o2
are no longer associated throughTR. TR(o1, C2) indicates
that o1 is associated with all instances (objects) of the
classC2.

An action consists of a list of parameters (object and
untyped values), a precondition and a body. The body is
a definition of or state change caused by the execution of
the action. For example, if we suppose that a classC has
x as an attribute, an actionA may be defined as follows:
A(o, p) : o.x 6= p → o.x′ = p, where o is an object of
the classC, andp denotes an untyped value. The symbol
‘:’ means ‘by definition’. The expressiono.x 6= p is the
precondition under which the action can be executed and
o.x′ = p is the body of the action. The precondition may
contain a set of conjunctions and/or disjunctions while the
action body may contain a set of conjunctions. Unprimed
and primed attributes refer to the values of attributes be-
fore and after the execution of the action, respectively.
They define a state change caused by the execution of the
action. Objects that participate in an action and untyped
values are non-deterministically selected from those that
are suitable. For example, the above action is allowed for
all objects havingo.x 6= p. Semantically, an action is a
Boolean expression that is true or false with regard to a
pair of states, with primed variables referring to the sec-
ond state. For example, the actionA defined earlier is
true for a pair of states(S, T) if and only if the value that
state S assigns tox is different from p and the value
that stateT assigns tox is equal top.

Unlike permanent relations, temporal relations and
actions are specific to each pattern and therefore have to
be defined separately for each pattern. The system starts
in some initial state. As time elapses, actions are exe-
cuted, changing the system state accordingly. Actions are
selected for executionnon-deterministically, the only re-
striction being that the precondition of an action must be
true in order for the action to be executed. The execution
of an action isatomic, meaning that once the execution
has been started, it cannot be interrupted or interfered by
other actions. The computational model isinterleaving,
that is, only one action at a time is being executed. The in-
terleaving model is not a model of execution but a model
of observation so as to facilitate the reasoning about the
behavioral aspect of the pattern.

The sequence of states describing the execution of
an action is potentially infinite. The properties of a sys-
tem can be divided intosafetyand liveliness. Informally,
safety means that nothing will go wrong with the system,
while liveliness means that some actions will be executed
indefinitely, i.e. there are no infinite stuttering transitions.
Safety can be guaranteed by ensuring that invariants are
true at all states of the system while liveliness is obtained

Modeling of distributed objects computing design pattern combinations using. . . 243

by imposing an explicit fairness requirement. Marking an
object with an asterisk ‘*’ denotes a fairness requirement,
stating that if an object can repeatedly participate in an
action, the action will be executed for the object.

2.3. Integrating the Structural and Behavioral Aspect
Specifications

A formula in the BPSL has the following form:

∃(x1, . . . , xn) :

∧iPRi(ai, bi) (Permanent relations),

∧jTRj(cj , dj) (Temporal relations),

∨kAk(. . .) (Actions),

where thePRi’s are permanent relation symbols, theTRj ’s
are temporal relation symbols and theAk ’s are action
symbols while x1, . . . , xn are variable symbols repre-
senting the pattern primary entities (classes, attributes,
methods, objects and untyped values). In the notation
PRi(ai, bi), ai and bi could represent classes, attributes,
methods, objects or untyped values as in Table 1, while
in the notationTRj(cj , dj), cj and dj represent classes.
The notationAk(. . .) means that actions can have any
number of arguments that should be either objects or un-
typed values. Any argument ofPRi, TRj and Ak is
a subset of{x1, . . . , xn}. The variablesx1, . . . , xn are
typed, and each represents an entity, as expected (see Sec-
tion 2.1). In all specifications, we follow a convention in
which only relations and actions start with a capital let-
ter. The BPSL does not use two disjoint subsets of vari-
ables, whereby the variables of the first subset participate
in permanent relations and those of the second participate
in temporal relations and actions. Indeed, the variables
x1, . . . , xn participate in permanent and temporal rela-
tions, as well as actions. This proves that a seamless com-
bination of the two aspects (structural and behavioral) was
implemented in the BPSL. For example, object variables
participate inInstancepermanent relations while tempo-
ral relations, which are heavily used in actions, are de-
fined using class variables. Moreover, in some cases, per-
manent relationsReference-to-one(-many), Creationand
Invocationcan be straightforwardly mapped to temporal
relations between objects. BPSL uses four compartments
to specify a design pattern. The first declares variables
and their type, the second defines permanent relations, the
third defines temporal relations and the fourth defines ac-
tions. The ‘∨’ connective is used to connect actions be-
cause the action to be executed is non-deterministically
chosen from those enabled (their precondition is evaluated
to true). This leads to many kinds of possible behavior (an
infinite sequence of states), as seen in Section 2.2.

3. Formally Specifying a Pattern
Combination

Component based software engineering focuses on build-
ing software systems by assembling previously developed
and well-tested or even formally validated components
(D’Souza and Wills, 1998), rather than developing the en-
tire system from scratch. This leads to an apparent reduc-
tion in the cost and effort. Moreover, it can help to reduce
the challenges faced while developing distributed applica-
tions. However, the assembly can lead to software failures
if it is not done with prior knowledge of the salient prop-
erties and invariants of each component (Cheesman and
Daniels, 2000). Patterns are special types of components
offering a better understanding of the design assumptions,
trade-offs and implications of a component’s implementa-
tion. Since each pattern represents a well-tested abstrac-
tion that has an infinite number of instances (implemen-
tations), patterns are considered as building blocks from
which more reusable and changeable software designs can
be built. Thus, if formalized, pattern combinations can
lead to ready-made architectures from which only instan-
tiation is required to build robust implementations.

In the previous section we were able to develop a
formal language to specify patterns. While this is an im-
portant milestone in achieving a better understanding and
successful usage of patterns, it is still considered insuf-
ficient, as patterns are seldom used in isolation. While
developing software, in most cases two or more patterns
are to be combined to solve a given problem within a con-
text. In this sense patterns represent micro-architectures
that, when glued together, form the whole software archi-
tecture. Hence, there is a need to achieve a second mile-
stone by formally specifying a pattern combination which
is harder to understand and use than individual patterns.

The completenessof a component combination
(sometimes called the composition) is usually defined by
two conditions (Donget al., 2000):

(i) no component loses any properties after combina-
tion,

(ii) no new properties about each component can be in-
ferred from the combination.

Any combination that satisfies both of the conditions
is said to befaithful or correct. While the second condi-
tion is also applicable to patterns, we will soon see that the
first condition is not always applicable to patterns. Since
the specification of the two aspects (structural and behav-
ioral) of patterns were derived from two different kinds
of logic (FOL and TLA), it is obvious that specifying a
pattern combination will be done independently for each
aspect. In order to achieve good readability of formulae,
in the reminder of this section we assume the combination
of only two patterns. However, the same results can be
applied to any number of patterns.

T. Taibi and D.C.L. Ngo244

3.1. Pattern Combination Constructs

In order to specify the structural part of the combined
pattern, the concept of FOLsubstitutionsand elimi-
nation are applied. In order to specify the behav-
ioral part of the combined pattern,substitutions(full
and partial) andadditions are applied to temporal re-
lations and actions. In FOL, asubstitution list Θ =
{v1/t1, . . . , vn/tn} means to replace all occurrences of
the variable symbolvi by the terms ti. Substitu-
tions are made from left to right in the list. For ex-
ample,subst({x/Pasta,y/John},eats(y, x)) = eats(John,
Pasta). In the BPSL we restrict the termsti to vari-
able symbols only, i.e., constant and function symbols
are not supported, as they are not used in the subset
of FOL used by the BPSL. Substitutions can also be
defined on temporal relations and actions. For exam-
ple, TR2(x, y) = subst({a/x, b/y},TR1(a, b)) and
A2(x, y) = subst({a/x, b/y}, A1(a, b)). Elimination is
defined as taking out certain entities (variables) and per-
manent relations (predicates) from the formula that speci-
fies the structural aspect of a pattern. Obviously, the elim-
ination of a variable symbol triggers the automatic elimi-
nation of all predicates that involve that variable symbol.
For example,elim({x, single(y)}, ∃x, y smart(x) ∧
likes(x, y) ∧ student(y) ∧ single(y)) = ∃y student(y).
Addition is defined as adding object variables to ac-
tions. For example, if an actionA1 is defined as
A1(a, b) : TR1(a, b) ∧ TR2(a, b) → TR3′(a, b), we
can define a new actionA2 based on A1 as fol-
lows: A2(x, a, b) : add(x, subst({a/x in TR1}, A1))
which yields A2(x, a, b) : TR1(x, b) ∧ TR2(a, b) →
TR3′(a, b).subst{a/x in TR1} means that the sub-
stitution is partial, i.e., we only replacea by x in
the temporal relationTR1, which is part of the precon-
dition of action A1. We can also define a new ac-
tion A3 based onA2 by adding a precondition as fol-
lows: A3(x, a, b) : A2(x, a, b)∧TR4(x, a) which yields
A3(x, a, b) : TR1(x, b) ∧ TR2(a, b) ∧ TR4(x, a) →
TR3′(a, b).

3.2. BPSL’s Combination Process

Table 2 depicts the BPSL’s combination process that uses
all the techniques defined in the previous subsection (sub-
stitution, partial substitution, elimination, addition and
precondition addition) and was the result of many exper-
iments on combining different patterns from (Gammaet
al., 1995; Schmidtet al., 2000). We will apply most of
the findings of this section in the case study of Section 4.3.
The concept ofbehavioral dominance, i.e., which pattern
behaviorally dominates the other, is crucial when com-
bining patterns that have a significant behavioral aspect.
Behavioral dominance is case-dependent and can only be

derived after studying the behavior of the underlying pat-
terns and the expected behavior of their combination.

The specification of the combination for both
parts (structural and behavioral) is guaranteed to be
correct because it is built on top of the existing well-
tested specifications of the patterns involved in the combi-
nation. As such, instances of the pattern combination can
be used in particular applications without further proof,
which saves considerable efforts of fixing errors down-
stream in the software development process. Consistency
checking of a specification of a combined pattern is sim-
ply based on the fact that the specification of the com-
bined pattern follows the process and formulae defined in
Table 2.

4. Case Study: Reactor-Leader/Followers
Pattern Combination

In the following three subsections, we will show how
BPSL was successfully used to formally specifyReactor
andLeader/Followersarchitectural patterns (which have a
good mixture of the structural and behavioral aspects) as
well as their combination. In (Schmidtet al., 2000), the
Reactorpattern was classified as anevent handlingpat-
tern while theLeader/Followerspattern as aconcurrency
pattern.

4.1. Reactor Architectural Pattern

TheReactorarchitectural pattern allows event-driven ap-
plications to demultiplex and dispatch service requests
that are delivered to an application from one or more
clients.

The Reactor architectural pattern synchronously
waits for the arrival of indication events on one or more
event sources, such as connected socket handles. It in-
tegrates the mechanisms that demultiplex and dispatch
the events to services that process them. It decouples
event demultiplexing and dispatching mechanisms from
the application-specific processing of indication events
within the services. TheReactorarchitectural pattern is
applied to event-driven applications that receive requests
simultaneously, but process them synchronously and
serially.

Figure 1 depicts the UML class diagram of theReac-
tor pattern. For each service an application offers, the pat-
tern introduces a separateevent handlerthat process cer-
tain types of events from certain event sources.Event han-
dlers register with thereactor, which uses asynchronous
event demultiplexer(such asselect() in UNIX) to wait for
indication events to occur on one or more event sources.
When indication events occur, thesynchronous event de-
multiplexernotifies thereactor, which then synchronously
dispatches theevent handlerassociated with the event so
that it can perform the requested service.

Modeling of distributed objects computing design pattern combinations using. . . 245

Table 2. BPSL’s combination process.

Declarations

Let P1 andP2 be the patterns to be combined
P be the combined pattern
ϕ be the formula that specifies the structural aspect ofP

ϕ1 be the formula that specifies the structural aspect ofP1

ϕ2 be the formula that specifies the structural aspect ofP2

ϕ3 be extra entities and/or permanent relations that may be needed after combiningP1 andP2

TR1 be a temporal relation ofP1

TR2 be a temporal relation ofP2

TR3 be a temporal relation ofP
A1 be an action ofP1

A2 be an action ofP2

A be an action ofP
PC be a precondition representing an extra temporal relation (fromP1 or P2) added to one ofP ’s actions
w1, . . . , wn variables ofP1 (or P2)
v1, . . . , vn variables ofP1 (or P2)
u1, . . . , um variables ofP1 (or P2)
bdombe an operator that returns the formula, temporal relation or action of the behaviorally dominant pattern

Algorithm

If P1 andP2 have no significant behavioral aspect, thenϕ = subst({v1/w1, . . . , vn/wn}, ϕ1 ∧ ϕ2) (1)
else ifP1 behaviorally dominatesP2 (or vice versa) then

ϕ = subst({v1/w1, . . . , vn/wn}, bdom(ϕ1, ϕ2)) ∧ ϕ3, (2)

TR3(w1, . . . , wn) = subst({v1/w1, . . . , vn/wn}, bdom(TR1,TR2)(v1, . . . , vn)), (3)

A3(w1, . . . , wn) = subst({v1/w1, . . . , vn/wn}, bdom(A1, A2)(v1, . . . , vn)), (4)

else

ϕ = elim({. . . }, ϕ1 ∧ ϕ2) ∧ ϕ3, (5)

TR3(. . .) = TR1(TR2)(. . .) or, (6)

TR3(w1, . . . , wn) = subst({v1/w1, . . . , vn/wn},TR1(TR2)(v1, . . . , vn)), (7)

A3(. . .) : A1(A2)(. . .), or (8)

A3(w1, . . . , wn) : subst({v1/w1, . . . , vn/wn}, A1(A2)(v1, . . . , vn)), or (9)

A3(u1, . . . , um, v1, . . . , vn) : add(u1, . . . , um, A1(A2)(v1, . . . , vn)) ∧ [PC], or (10)

any combination of (9) and (10). (11)

Notes

TR1(TR2) means eitherTR1 orTR2.
[] means optional.
In (1) and (2) the variablesvi andwi represent classes, attributes or methods.
In (3) and (7) the variablesvi andwI represent classes.
In (4), (9) and (10) the variablesui, vi, andwi represent objects.
(2) and (5) show that any significant behavioral aspect of the underlying patterns has an impact on the specification of the structural
aspect of the combined pattern. This indeed shows the synergy that exists between the two complementary aspects of a pattern.
(5) shows indeed that after combination certain properties of the underlying patterns might be lost because of theelimoperation.
In (3) and (4), in some cases, extra temporal relations and actions might be added to accommodate the behavior required by the
behaviorally non-dominant pattern.
In (6)–(11), in some cases, extra temporal relations and actions might be added to accommodate the behavior of the combined
pattern.
In (9) and (11) substitution may be partial.

T. Taibi and D.C.L. Ngo246

Reactor
handle-events()

register-handler()
remove-handler()

Event Handler

handle-event()
get-handle()

Synchronous Event
Demultiplexer

demux()

Concrete Event
Handler

<<uses>>

dispatches
*

Handle*

*

owns

notifies

Fig. 1. UML class diagram of theReactorarchitectural pattern.

:Reactor :Concrete Event
Handler

:Synchronous Event
Demultiplexer

get-handle ()

demux(List<handle>)

register-handler(concrete-
event-handler, event-type)

handle-event()

handle-events (List<handle>)

event

:Main Program

handle

List <handle>

handle

Fig. 2. UML sequence diagram of theReactorarchitectural pattern.

Figure 2 depicts the UML sequence diagram of the
Reactorpattern. Firstly, an application registers a spe-
cific event handlerwith thereactorby indicating the type
of indication events(s) theevent handlerwants thereac-
tor to notify it about, when such event(s) occur on the
associatedhandle. The keywordList<> is used to re-
flect a list of objects of the class in angle brackets. Sec-
ondly, thereactor instructs each concreteevent handlerto
provide its internalhandleby invoking theget-handle()
method. Thehandle identifies the source of indication
events to thesynchronous event demultiplexerand the op-
erating system. Thirdly, the application starts thereac-
tor’s event loophandle-events(). At this point thereactor
combines the handles from each registered concrete event
hander into ahandle set. It then calls the methoddemux()
of thesynchronous event demultiplexerto wait for indica-
tion events to occur on thehandle set. Thesynchronous
event demultiplexermethoddemux() (select() in the case
of UNIX) returns to thereactorwhen one or more handles

corresponding to event sources become ready (for exam-
ple a socket becomes ready to read). Finally, thereactor
uses the ready handles as ‘keys’ to locate the appropriate
event handler(s) and dispatchhandle-event() method.

Table 3 depicts the BPSL specification of theReac-
tor pattern. It starts by defining the entities in the pat-
tern, which are limited in this case to classes, methods,
an untyped-value and objects. The second compartment
of Table 2 depicts the permanent relations, most of which
can be derived from Figs. 1 and 2. The permanent rela-
tion Instanceindicates that a given object is an instance
of a given class. Objects are used in the specification of
actions. The third compartment of Table 3 depicts tem-
poral relations. In the case of theReactorpattern, before
a concrete-event-handlecan start processing responses to
detected events, it first has to register with thereactor
yielding the temporal relationRegistered. Eachconcrete-
event-handleowns ahandlethat is used to wait for events
to occur on it, yielding the temporal relationOwned.

Modeling of distributed objects computing design pattern combinations using. . . 247

Table 3. BPSL specification of theReactorarchitectural pattern.

∃reactor , event − handler , concrete − event − handler , handle, synchronous − event − demultiplexer ∈ C;

handle − events, register − handler , remove − handler , handle − event , get − handle, demux ∈ M ;

event − type ∈ V ;

r, h, ceh, sed ∈ O;

Defined-in(handle-events, reactor) ∧
Defined-in(register-handler, reactor) ∧
Defined-in(remove-handler, reactor) ∧
Defined-in(handle-event, event-handler) ∧
Defined-in(get-handle, event-handler) ∧
Defined-in(demux, synchronous-event-demultiplexer) ∧
Reference-to-many(reactor, event-handler) ∧
Reference-to-many(reactor, handle) ∧
Reference-to-many(synchronous-event-demultiplexer, handle) ∧
Reference-to-one(event-handler, handle) ∧
Reference-to-one(reactor, synchronous-event-demultiplexer) ∧
Inheritance(concrete-event-handler, event-handler) ∧
Invocation(register-handler, get-handle) ∧
Invocation(handle-events, demux) ∧
Invocation(handle-events, handle-event) ∧
Argument(concrete-event-handler, register-handler)

Argument(event-type, register-handler)

Argument(concrete- event-handler, remove-handler) ∧
Argument(handle, handle-events) ∧
Argument(handle, demux) ∧
Return-type(handle, get-handle) ∧
Return-type(handle, demux)

Instance(r, reactor) ∧
Instance(h, handle) ∧
Instance(ceh, concrete-event-handler) ∧
Instance(sed, syschronous-event-demultiplexer)

Registered(reactor[0..1],concrete-event-handler[∗]) ∧
Owned(handle[0..1], concrete-event-handler[0..1]) ∧
Ready(handle[∗], synchronous-event-demultiplexer[0..1]) ∧
Dispatched(reactor[0..1], concrete-event-handler[∗])
Register(r,ceh,h): ¬ Registered(r,ceh) ∧¬ Owned(handle, ceh)→ Registered’(r,ceh) ∧ Owned’(h,ceh) ∨
Remove(r,ceh,h): Registered(r,ceh) ∧ Owned(h, ceh) ∧ Dispatched(r,ceh) → ¬ Registered’(r,ceh) ∧ ¬ Owned’(h,ceh) ∨
Dispatch(sed,r,ceh,h): Ready(h,sed) ∧ Owned(h,ceh) ∧ Registered(r,ceh)→ Dispatched’(r,ceh)

The synchronous-event-demultiplexerknows when
handles are ready if the type of events they handle has
occurred, yielding the temporal relationReady. When a
handle of a concrete-event-handlerbecomes ready, the
reactordispatches this information to theconcrete-event-
handlerthat owns it in order to do the required processing,
yielding the temporal relationDispatched. The fourth and
last compartment of Table 3 depicts actions of theReac-
tor pattern. ActionRegisterreflects that for aconcrete-
event-handlerto register with thereactor, it should not
be already registered with thereactorand not owning any

handleto be later registered and owning a givenhandle.
Action Removereflects that for aconcrete-event-handler
to be removed from thereactor it must be registered and
owns ahandleand thereactor has already dispatched to
it the last event that occurred on thehandlethat it owns.
When the action is executed, theconcrete-event-handler
will no longer be registered with thereactor and will not
own thehandlethat was allocated to it. The actionDis-
patchreflects that for thereactor to dispatch an event to a
concrete-event-handler, the latter must be registered with
thereactor, andownsahandle, which is ready.

T. Taibi and D.C.L. Ngo248

4.2. The Leader/Followers Architectural Pattern

The Leader/Followersarchitectural pattern provides an
efficient concurrency model where multiple threads take
turns sharing a set of event sources in order to detect, de-
multiplex, dispatch and process service requests that oc-
cur on the event sources. TheLeader/Followerspattern
does the above by structuring a pool of threads to share
a set of event sources efficiently by taking turns demulti-
plexing events that arrive on these event sources and syn-
chronously dispatching the events to application services
that process them. The pattern is applied to event-driven
applications where multiple service requests arriving on a
set of event sources must be processed efficiently by mul-
tiple threads that share the event sources. Athread pool
is a group of threads that share a synchronizer such as a
semaphore or condition variable, and implement a proto-
col for coordinating their transition between various roles.
One or more threads play the follower role and queue up
on the thread pool synchronizer waiting to play the leader
role. One of these threads is selected to be the leader,
which waits for an event to occur on anyhandlein its han-
dle set. When an event occurs, the current leader thread
promotes a follower thread to become the new leader.
The original leader then concurrently plays the role of a
processing thread, which demultiplexes that event from
the handle setto an appropriateconcrete-event-handler
and dispatches thehandle-event() method. A process-
ing thread can execute concurrently with the leader thread
and all other threads that are in the processing state. Af-
ter a processing thread has finished handling an event, it
returns to playing the role of a follower thread and waits
on thethread poolsynchronizer for its turn to become the
leader thread again.

The Reactor pattern often forms the core of
the Leader/Followerspattern implementations. How-
ever, theReactor pattern can be used instead of the
Leader/Followerswhen each event only requires a short
amount of time to process. In this case the additional
scheduling complexity of theLeader/Followerspattern is
unnecessary.

Table 4 depicts the BPSL specification of the
Leader/Followerspattern. It starts by defining the entities
in the pattern, which are limited in this case to classes, an
attribute, methods and objects (which will be used in the
specification of the behavioral aspect). The second com-
partment of Table 4 depicts the permanent relations, most
of which can be straightforwardly derived from the class
diagram of Fig. 3. The third compartment of Table 4 de-
picts temporal relations. The temporal relationOwnedis
identical to the one defined in theReactorpattern. The
temporal relationsReadyandDispatchedhave the same
semantics as in theReactorpattern with the exception that
the classhandle-setreplaces the classsynchronous-event-

demultiplexerin Readyand the classthread-poolreplaces
the classreactor in Dispatched. The temporal relationAc-
tivated reflects whether or not ahandleassociated with
a concrete-event-handleris activated. As explained ear-
lier, only a leader thread is allowed to synchronously de-
multiplex events on handles. Once an event occurs on a
handle, a new thread (from thethread pool) is promoted
to the leader and the readyhandle is deactivated. This
handlewill be reactivated only after the previous leader
thread has dispatched thehandle-event() method of the
concrete-event-handler. The temporal relationsLeader,
First-Follower and Follower(thread-pool[*]) reflect who
is the leader, first-follower and follower (respectively) in
thethread pool.

The last compartment of Table 4 depicts actions of
theLeader/Followerspattern. The actionPromotereflects
that in order to promote a thread (tp2) to become the leader
the following is required:

(i) (tp2) must be the first follower of a leader thread
(tp1),

(ii) thehandle(h) owned by theconcrete-event-handler
(ceh) must be activated,

(iii) thehandle(h) must be ready,

(iv) the event that occurred at (h) is not yet dispatched
by (tp1) to (ceh).

The execution of the action results in the following:

(i) (tp2) becomes the leader thread, and

(ii) thehandle(h) becomes non-activated.

The actionDispatchis similar to the one defined in
the Reactorpattern. However, here, in order to dispatch
an event to itsconcrete-event-handler, the handler must
be ready, owned by aconcrete-event-handlerand not ac-
tivated. After executing the action the event becomes dis-
patched by the leader thread to theconcrete-event-handler
and thehandleactivated again to be able to receive more
events. The last three actions are related to threads joining
or rejoining thethread pool. In general, to join athread
pool, a thread should have already dispatched the event to
the relatedconcrete-event-handlerand its associated han-
dle is activated. The actionJoin1 reflects the case where
one thread wants to join thethread pool, which does not
have a leader and thus becomes the leader. The action
Join2 reflects the case where a thread (tp2) wants to join
thethread pool, which has a leader (tp1) but does not have
a first follower and thus becomes the first follower itself.
The actionJoin3 reflects the case where a thread (tp3)
wants to join thethread pool, which has a leader (tp1)
and a first follower (tp2) and thus becomes a follower.

Modeling of distributed objects computing design pattern combinations using. . . 249

Table 4. BPSL specification of theLeader/Followersarchitectural pattern.

∃ thread-pool, handle-set, handle, event-handler, concrete-event-handler∈ C;

synchronizer∈ A;

deactivate-handle, reactivate-handle, demux, join, promote-new-leader, handle-event, get-handle∈ M ;

tp1,tp2, tp3, hs, h, ceh∈ O;

Defined-in(synchronizer, thread-pool) ∧
Defined-in(join, thread-pool) ∧
Defined-in(promote-new-leader, thread-pool) ∧
Defined-in(deactivate-handle, handle-set) ∧
Defined-in(reactivate-handle, handle-set) ∧
Defined-in(demux, handle-set) ∧
Defined-in(handle-event, event-handler) ∧
Defined-in(get-handle, event-handler) ∧
Reference-to-one(thread-pool, handle-set) ∧
Reference-to-many(thread-pool, event-handler) ∧
Reference-to-many(handle-set, handle) ∧
Reference-to-one(event-handler, handle) ∧
Inheritance(concrete-event-handler, event-handler) ∧
Invocation(demux, handle-event) ∧
Invocation(handle-event, deactivate-handle) ∧
Invocation(handle-event, promote-new-leader) ∧
Invocation(join, handle-events) ∧
Argument(handle, deactivate-handle) ∧
Argument(handle, reactivate-handle) ∧
Argument(handle, demux) ∧
Return-type(handle, get-handle) ∧
Return-type(handle, demux) ∧
Instance(tp1, thread-pool) ∧
Instance(tp2,thread-pool) ∧
Instance(tp3,thread-pool) ∧
Instance(hs, handle-set) ∧
Instance(h, handle) ∧
Instance(ceh, concrete-event-handler)

Owned(handle[0..1], concrete-event-handler[0..1]) ∧
Ready(handle[∗], handle-set[0..1])

Dispatched(thread-pool[∗],concrete-event-handler[∗]) ∧
Activated(handle[0..1],concrete-event-handler[0..1]) ∧
Leader(thread-pool[0..1]) ∧
First-Follower (thread-pool[0..1]) ∧
Follower (thread-pool[∗])
Promote(tp1,tp2,ceh,h,hs): Leader(tp1) ∧ First-Follower (tp2) ∧ Activated(h,ceh) ∧ Ready(h,hs) ∧ ¬ Dispatched(tp1,ceh)→
Leader’(tp2) ∧¬ Activated’(h,ceh) ∨

Dispatch(hs,tp,ceh,h): Ready(h,hs) ∧ Owned(h,ceh) ∧¬ Activated(h,ceh)→ Dispatched’(tp,ceh) ∧ Activated’(h,ceh) ∨

Join1 (tp1,h,ceh): Activated(h,ceh) ∧ Dispatched(tp1,ceh) ∧ 6= Leader(thread-pool)→ Leader’(tp1) ∨

Join2 (tp1,tp2,h,ceh): Activated(h,ceh)∧Dispatched(tp2,ceh)∧ Leader(tp1)∧¬ First-Follower(thread-pool)→ First-Follower’
(tp2) ∨

Join3 (tp1,tp2,tp3,h,ceh): Activated(h,ceh) ∧ Dispatched(tp3,ceh) ∧ Leader(tp1) ∧ First-Follower (tp2)→ Follower’(tp3)

T. Taibi and D.C.L. Ngo250

Thread Pool

 join()
 promote-new-leader()

Handle Set

 deactivate-handle ()
 reactivate-handle()
 demux()

synchronizer

Event Handler

 handle-event()
 get-handle()

Concrete Event
Handler

dispatches
*

Handle*

owns

Fig. 3. UML class diagram of theLeader/Followersarchitectural pattern.

Thread Pool

 join()
 promote-new-leader()

Event Handler

 handle-event()
 get-handle()

Handle Set

 deactivate-handle ()
 reactivate-handle()

Concrete Event
Handler

 dispatches
*

Handle
*

owns

synchronizer

Reactor

handle-events()
register-handler()
remove-handler()

notifies

Synchronous Event
Demultiplexer

demux()

 <<uses>>

notifies

Fig. 4. UML class diagram of theReactor-Leader/Followerspattern combination.

4.3. Reactor-Leader/Followers Pattern Combination

Figure 4 depicts the UML class diagram of theReactor-
Leader/Followerspattern combination while Table 5 de-
picts its BPSL specification.

Since theReactor pattern is simply used as the
underlying synchronous event demultiplexerfor the
Leader/Followerspattern, Fig. 4 really merges the dia-
grams of Figs. 1 and 3 with few changes. The eliminations
made are as follows:

(i) The thread poolclass is not linked to theevent han-
dler class.

(ii) Thereactorclass is not linked to thehandleclass.

(iii) demuxis not defined inhandle-set.

(iv) The synchronous event demultiplexerclass is not
linked to thehandleclass.

(v) demuxdoes not invokehandle-event.

(vi) The objecths and (automatically) theIntance(hs,
handle-set) permanent relation is not needed as the
synchronous event demuliplexerclass takes care of
demultiplexing events.

The additions made are as follows:

(i) Thethread-poolclass is linked to thereactorclass.

(ii) Thesynchronous-event-demultiplexerclass is linked
to thehandle-setclass.

Assume thatϕ1 represents the formula that specifies
the structural aspect of theReactorpattern andϕ2 repre-
sents the formula that specifies the structural aspect of the
Leader/Followerspattern. Based on the above-mentioned
eliminations and additions, the formulaϕ that speci-
fies the structural aspect of the combined pattern can be
defined as in Compartment 1 of Table 5. The temporal

Modeling of distributed objects computing design pattern combinations using. . . 251

Table 5. BPSL specification of theReactor-Leader/Followerspattern combination.

ϕ =elim({Reference-to-many(thread-pool, event-handler), Reference-to-many(reactor, handle), Defined-in(demux, handle-set),
Reference-to-many(synchronous-event-demultiplexer, handle), Invocation(demux, handle-event), hs}, ϕ1 ∧ ϕ2) ∧
Reference-to-one(thread-pool, reactor) ∧
Reference-to-one(synchronous-event-demultiplexer, handle-set)

Registered(reactor[0..1],concrete-event-handler[∗]) ∧
Owned(handle[0..1], concrete-event-handler[0..1]) ∧
Ready(handle[∗], synchronous-event-demultiplexer[0..1]) ∧
Notified(thread-pool[∗], reactor[0..1]) ∧
Dispatched(reactor[0..1], concrete-event-handler[∗]) ∧
Activated(handle[0..1], concrete-event-handler[0..1]) ∧
Leader(thread-pool[0..1]) ∧
First-Follower (thread-pool[0..1]) ∧
Follower (thread-pool[∗])
Register(r,ceh,h): ¬ Registered(r,ceh) ∧¬ Owned(handle, ceh)→ Registered’(r,ceh) ∧ Owned’(h,ceh) ∨
Remove(r,ceh,h): Registered(r,ceh) ∧ Owned(h, ceh) ∧ Dispatched(r,ceh)→ ¬ Registered’(r,ceh) ∧¬ Owned’(h,ceh) ∨
Promote(r, tp1,tp2,ceh,h,sed): add (r, subst({hs/sed, tp1/r in ¬ Dispatched(tp1,ceh)}, Promote(tp1,tp2,ceh,h,hs)) ∧
Notified(tp1,r)) ∨
Dispatch(r,sed,ceh,h): add (r, subst({hs/sed, tp/r}, Dispatch(hs,tp,ceh,h)) ∧ Notified(tp,r)) ∨
Join1 (r,tp1,h,ceh): add (r, Join1 (tp1,h,ceh) ∧ Notified(tp1,r)) ∨
Join2 (r,tp1,tp2,h,ceh): add (r, Join2 (tp1,tp2,h,ceh) ∧ Notified(tp2,r)) ∨
Join3 (r,tp1,tp2,tp3,h,ceh): add (r, Join3 (tp1,tp2,tp3,h,ceh) ∧ Notified(tp3,r))

relationsRegistered, Owned, ReadyandDispatchedof the
combined pattern are taken from theReactorpattern while
the temporal relationsActivated, Leader, First-Follower
andFollowerare taken from theLeader/Followerspattern.
A new temporal relationNotifiedwas added to the com-
bined pattern to reflect the fact that now the leader thread
notifies thereactor when ahandlebecomes ready but it
is thereactor’s job to dispatch the event to the appropri-
ateconcrete-event-handler. Similarly, the actionsRegis-
ter andRemoveof the combined pattern are taken from
the Reactorpattern while the actionsPromoteand Dis-
patch are taken from theLeader/Followerspattern with
some additions and substitutions. The actionsJoin1,Join2
and Join3 of the combined pattern are taken from the
Leader/Followerspattern with some additions.

5. Related Work

There are many formal specification languages proposed
by academia and industry. However, not all of them are
suitable for specifying design patterns, mainly because
design patterns are abstractions and do not need speci-
fications catering to low-level details. Also patterns cut
across module boundaries and not many specifications
approaches can support such cross-cuttings. The most

promising alternatives for specifying design patterns are
LanguagE for Patterns’ Uniform Specification (LePUS)
(Eden and Hirshfeld, 1999), Distributed Co-operation
(DisCo) (Back and Kurki-Suonio, 1988), Constraint di-
agrams (Lauder and Kent, 1998) and Contracts (Helmet
al., 1990). LePUS and DisCo have achieved the best rank-
ing after an extensive comparison based on well-defined
evaluation criteria (Taibi and Ngo, 2003).

As such, the BPSL is based to a certain extent on both
mathematical backgrounds of LePUS and DisCo (FOL
and TLA). LePUS is derived from Higher-Order Logic
(HOL) and focuses only on specifying the structural as-
pects of design patterns. We preferred to use a small frac-
tion of FOL because approachability was paramount in
the design of the BPSL. If the users of a formal specifi-
cation language for design patterns cannot easily under-
stand it, how are they supposed to understand design pat-
terns formally specified by this language? DisCo was de-
rived from TLA and was designed to specify reactive sys-
tems, which are in constant interaction with their environ-
ment and therefore have a predominant behavioral aspect.
DisCo has little (almost none) support for specifying the
structural aspect. The subset of TLA used in the BPSL is
different from the one used in DisCo, the syntax is com-
pletely different while they share most of the semantics

T. Taibi and D.C.L. Ngo252

derived from TLA concepts. DisCo (and in fact TLA it-
self) does not support the concept of temporal relations
and its semantics as defined in Section 2.2.

A lot of work has been done on formally specify-
ing software components and their combination: however,
comparatively little has been done with reference to for-
mal specification of the design pattern combination. Pat-
terns and software components share a lot of things be-
cause they can both be building blocks of software archi-
tecture. However, the fact that patterns represent success-
ful solutions to well-known design problems within cer-
tain contexts makes them special components. Each pat-
tern represents a well-tested abstraction that has an infinite
number of instances (implementations). For these reasons
patterns are building blocks from which more reusable
and changeable software designs can be built. In the
following, we will only highlight the work on formally
specifying pattern combination that is found to be very
related to what is presented in this paper. Composition
has been studied by Abadi and Lamport (Abadi and Lam-
port, 1993). Their results are applicable to any domain,
whereas ours are specialized in pattern combination.

Saeki (2000) used the Language of Temporal Order-
ing Specification (LOTOS) (ISO 8807; 1989) to specify
pattern combinations. The formal semantic of the LO-
TOS is based on the Calculus of Communicating Systems
(CCS) for behavior specification and on the Algebra of
Abstract Data Type (ADT) for data specification. The
LOTOS was originally devised by the International Or-
ganization for Standardization (ISO) to specify the layers
and their interaction for the Open System Interconnection
(OSI) model. The LOTOS has been adapted in (Saeki,
2000) to be used for specifying patterns that appeared in
(Gammaet al., 1995) and their combination. While the
LOTOS is best suited for network layers specification,
its adaptation to patterns did not yield simple and clear
specifications as expected by any formal specification lan-
guage.

Donget al. (2000) used FOLtheoriesto specify the
structural aspect of patterns and TLA to specify their be-
havioral aspect. The same techniques were used to specify
pattern combinations. Each pattern is specified by an FOL
theory that is derived from its signature (name, domain
and range). From a structural aspect, pattern combination
is performed usingname mapping, which associates the
classes and objects declared in a pattern with the classes
and objects declared in the pattern combination. The spec-
ification of the behavioral aspect is done purely using TLA
not a subset thereof. From a behavioral aspect, pattern
combination is simply the conjunction of the TLA formula
representing each of the participating patterns. Although
name mapping is similar to FOL substitutions, the BPSL
approach to the structural aspect specification is more rig-
orous as it uses a carefully chosen subset of FOL not FOL

theories. This subset was chosen to cater for the proper-
ties of patterns in particular, not components in general.
Moreover, the concept of elimination was added to FOL
to cater for cases where some variable symbols and predi-
cates need to be removed after combination. Furthermore,
we believe TLA is too generic to be applied directly to
specify the behavioral aspect of patterns but rather a sub-
set thereof, which is specifically devised to tackle all is-
sues and particularities of patterns. In the BPSL pattern
combination (from a behavioral aspect) is not simply the
conjunction of behavioral specifications of the underlying
patterns, but a rigorous process that involves identifying
the behaviorally dominant pattern (if any), substitutions,
partial substitution and addition in temporal relation and
actions as well as introducing new actions (if required).

Mikkonen (1998) used a variation of DisCo to spec-
ify the behavioral aspect of patterns. The specification
of pattern combination was done using as an example the
Observer-Mediatorpattern combination. The correctness
of the specification of the pattern combination is ensured
using the concept ofrefinement. Actions of the pattern
combinationmustrefine actions frombothpatterns, which
guarantee to satisfy their characteristic properties. Al-
though the concept ofrefinementis similar to the concept
of substitution, substitutions in the BPSL do not force the
usage of actions from both patterns. Moreover, the BPSL
possesses more operators than substitutions a defined in
Section 3.1 such as partial substitution, elimination, addi-
tion and addition of action preconditions.

6. Conclusion

The appealing increase in network and processing speeds
has increased the popularity of distributed application de-
velopment to take full advantage of their inherent benefits.
However, as in any other software development effort, dis-
tributed application development is facing enormous com-
plexities and challenges. Design patterns seem to alleviate
the problem by providing sound and robust solutions that
have been successfully applied in previous development
efforts. Current textual descriptions of design patterns
and especially their combination usually lead to ambigu-
ity and misunderstanding due to the inherent liabilities of
the natural language. As patterns represent abstractions,
any formal language meant to specify them should strive
to achieve simplicity, accuracy and completeness. Since
patterns have two complementary aspects (structural and
behavioral), the BPSL was devised to combine the specifi-
cation of the two aspects in order to achieve completeness.
The BPSL has carefully chosen the subsets of FOL and
TLA to be used in order for it to be simple for users and
yet describe patterns accurately. The BPSL was success-
fully used to formally specify all cases of pattern combina-
tion. In this paper the formal specification of theReactor

Modeling of distributed objects computing design pattern combinations using. . . 253

andLeader/Followerspatterns as well as their combina-
tion was taken as a case study. The specification of the
combination for both parts (structural and behavioral) is
guaranteed to be correct because it is built on top of the
existing well-tested specifications of the patterns involved
in the combination. As such, instances of the pattern com-
bination can be used in particular applications without fur-
ther proof, which saves considerable efforts of fixing er-
rors downstream in the software development process.

References

Abadi M. and Lamport L. (1993):Composing specifications.
— ACM Trans. Programm. Lang. Syst., Vol. 15, No. 1,
pp. 73–132.

Back R.J.R. and Kurki-Suonio R. (1988):Distributed coopera-
tion with action systems. — ACM Trans. Programm. Lang.
Syst., Vol. 10, pp. 513–554.

Cheesman J. and Daniels J. (2000):UML Components: A Sim-
ple Process for Specifying Component-Based Software. —
Reading, MA: Addison-Wesley.

Chinnasamy S., Raje R.R. and Liu Z. (1999):Specification
of design patterns: An Analysis. — Proc. 7th Int. Conf.
Advanced Computing and Communications, ADCOM’99,
Roorkee, India, pp. 300–400.

Dong J., Alencar P.S.C. and Cowan D.D. (2000):Ensuring
structure and behavior correctness in design composition.
— Proc. 7th IEEE Int. Conf.Workshop on the Engineer-
ing of Computer Based Systems, Edinburgh, Scotland,
pp. 279–287.

D’Souza D.F and Wills A.L (1998):Objects, Components, and
Frameworks With UML: The Catalysis Approach. — Read-
ing, MA: Addison-Wesley.

Eden A.H. and Hirshfeld Y. (1999):LePUS-Symbolic Logic
Modeling of Object Oriented Architectures: A Case Study.
— Proc. 2nd Nordic WorkshopSoftware Architecture,
NOSA’99, Ronneby, Sweden.

Eden A.H. and Hirshfeld Y. (2001):Principles in formal spec-
ification of object-oriented architectures. — Proc. IBM
Center for Advanced Studies Conference, CASCON’2001,
Toronto, Canada.

Gamma E., Helm R., Johnson R. and Vlissides J. (1995):Design
Patterns: Elements of Reusable Object-Oriented Systems.
— Reading, MA: Addison-Wesley.

Helm, R., Holland, I.M. and Gangopadhyay D. (1990):Con-
tracts: Specifying behavioral compositions in object-
oriented systems. — Proc. ECOOP/OOPSLA’90, Ottawa,
Canada, pp. 169–180

ISO 8807 (1989):Information Processing Systems, Open Sys-
tems Interconnection-LOTOS-. — A Formal Description
Technique based on the Temporal Ordering of Observa-
tional Behavior.

Lamport L. (1994): The temporal logic of actions. — ACM
Trans. Programm. Lang. Syst., Vol. 16, No. 3, pp. 872–
923.

Lauder A. and Kent S.(1998):Precise visual specification of de-
sign patterns. — Proc. Europ. Conf.Object-Oriented Pro-
gramming, ECOOP98, Brussela, Belgium, pp. 114–134.

Mikkonen T. (1998): Formalizing design patterns. — Proc.
Int. Conf. Software Engineering, ICSE’98, Kyoto, Japan,
pp.115–124.

Rambaugh J., Jacobson I. and Booch G. (1998):The Unified
Modeling Language Reference Manual. — Reading, MA:
Addison-Wesley.

Saeki M. (2000): Behavioral Specification of GOF Design
Patterns with LOTOS. — Proc. IEEE Asia Pacific Soft-
ware Engineering Conference, APSEC’2000, Singapore,
pp. 408–415.

Schmidt D.C., Stal M., Rohnert H. and Buschmann F. (2000):
Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects. — New York: Wiley.

Taibi T. and Ngo D.C.L (2001):Why and how should patterns
be formalized. — J. Object-Oriented Programm., Vol. 14,
No. 4, pp. 8–9, 101 communications.

Taibi T. and Ngo D.C.L (2002):Formal specification of design
patterns—A comparison. — Tech. Rep., Faculty of Infor-
mation Technology, Multimedia University.

Taibi T. and Ngo D.C.L (2003):Formal specification of de-
sign pattern—A balanced approach. — J. Object Technol.,
Vol. 2, No. 2, pp. 127–140.

Vlissides J.M. (1997a):Multicast. — C++ Report, Sep. 97,
SIGS Publications.

Vlissides J.M. (1997b):Multicast - Observer = Typed Message.
— C++ Report, Nov.-Dec. 97, SIGS Publications.

Received: 4 July 2002
Revised: 6 January 2003
Re-revised: 31 March 2003

