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A construction of a realistic statistical model of lung cancer risk and progression is proposed. The essential elements of the
model are genetic and behavioral determinants of susceptibility, progression of the disease from precursor lesions through
early (localized) tumors to disseminated disease, detection by various modalities, and medical intervention. Using model
estimates as a foundation, mortality reduction caused by early-detection and intervention programs can be predicted under
different scenarios. Genetic indicators of susceptibility to lung cancer should be used to define the highest-risk subgroups of
the high-risk behavior population (smokers). The calibration and validation of the model requires applying our techniques to
a variety of data sets available, including public registry data of the SEER type, data from the NCI lung cancer chest X-ray
screening studies, and the recent ELCAP CT-scan screening study.
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1. Introduction

One of the strategies of defeating cancer is to detect it
early. The philosophy is simple: the earlier the cancer is
detected, the smaller the chance that it has already spread
beyond the limited primary focus. This implies that the
extent of intervention needed is smaller and the progno-
sis is improved. This philosophy can be translated into
a practical program: (a) identify a population at high risk
for a given cancer, (b) develop an efficient and inexpensive
method of early detection of non-symptomatic tumors, (c)
develop a program of periodic examinations (screening)
of the high-risk group using the early detection method,
(d) treat the early cancer cases detected in this way. This
will reduce mortality from the target cancer (Fig. 1).

Unfortunately, in most common cancers, such as the
cancers of lung, colon, breast and prostate, the early detec-
tion and treatment paradigm raises lots of concerns (Bon-
neux, 2002; du Bois, 2002; Miettinenet al., 2002; Olsen
and Gotzsche, 2001; Werth, 2002) though it is only lung
cancer that screening is not recommended for (Smithet
al., 2002). A notable exception is the cancer of uterine
cervix, in which a simple early detection method (Pap
smears) followed by a prompt treatment seems to signifi-
cantly reduce mortality (Petterson, 1991).

Fig. 1. Schematic depiction of sequences of events and
time intervals in an individual’s lifetime, rele-
vant for modeling of lung cancer risk, progres-
sion, and detection and treatment.

What are the reasons for the failure of the paradigm?
As we will see, none of the four outlined steps is easy
to implement. The origins and progression of cancer are
stochastic and dynamic in nature and so is detection and,
to some extent, treatment. Ignoring these features leads to
incorrect estimates and predictions and, in some cases, to
incorrect policy recommendations.
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A comprehensive stochastic model of lung cancer
should involve genetic and behavioral determinants of
susceptibility, the progression of the disease from precur-
sor lesions through early localized tumors to disseminated
disease, detection by various modalities, and medical in-
tervention. The model should be able to predict mortality
reduction caused by early detection programs, under dif-
ferent scenarios, in presence of competing death causes.
It will be important to utilize the genetic indicators of sus-
ceptibility to lung cancer to define the highest-risk sub-
groups of the high-risk behavior population (smokers).

The purpose of this paper is to identify the problems
related to early detection and treatment of lung cancer and
to describe a stochastic model which makes it possible
to address these problems, i.e., to reconcile the results of
screening trials with other existing statistics of lung can-
cer. The model is presented on the background of pre-
vious works on the subject. Arguably, it is more com-
plete and better tested compared with these previous at-
tempts. In its present version, the model includes neither
explicit mechanisms of tumor growth, nor individualized
genetic susceptibility. These will be introduced in the fu-
ture. We will show the performance of the model on a
range of data sets available to us, such as data from the
NCI lung cancer chest X-ray screening studies, the recent
ELCAP computed tomography (CT-scan) screening study
and some other published data (Kakinumaet al., 1999;
Yankelevitzet al., 1999; 2000). Our deliberations will be
based on the important example of lung cancer, but they
are applicable, with appropriate changes, to other cancers.

2. Background on Lung Cancer. High Risk
Groups

Lung cancer remains the largest killer among all can-
cers in the USA and in the world. It kills more peo-
ple of both genders than the cancers of breast, colon and
prostate combined, and more women than breast cancer.
An overwhelming majority of cases is related to expo-
sure to Polycyclic Aromatic Hydrocarbons (PAH), such as
benzo[a]pyrene, first of all, in the tobacco smoke (Gold-
manet al., 2001), but genetic predisposition also plays a
major role (Amoset al., 1999; Aueret al., 1999; Wuet
al., 1998).

Two major factors make lung cancer difficult to fight.
One of them is that a majority of cases are detected only
when they are quite advanced. Attempts at early detec-
tion using chest X-ray and sputum cytology screening of
high-risk individuals produced controversial and ambigu-
ous results (Flehingeret al., 1988; 1993; Marcuset al.,
2000; Strauss, 2002). Another factor is that the high-risk
population (cigarette smokers) has largely evaded the at-
tempts at further stratification with respect to their risk of
contracting the disease.

There has been a recent progress in lung cancer de-
tection techniques. Computed tomography (CT) allows
the visualization of very small nodules in the lungs and
therefore it has the potential to detect malignant tumors
when they still are in an early stage. It detects mainly pe-
ripheral tumors, a large proportion of which is adenocar-
cinomas that recently became the most common type of
lung cancer, and bronchoalveolar carcinomas (Henschke
et al., 2002). The results of preliminary studies in the
United States (Henschke and Yankelevitz, 2000; Yankele-
vitz et al., 1999; 2000), Japan (Kanekoet al., 2000; Sone
et al., 2001) and Western Europe (Hillerdalet al., 2001;
van Klaverenet al., 2001) have been published and they
point at an increased detection rate of potential early ma-
lignancies. The probability that these will develop into
progressing lung cancers is not known, particularly that
of some of the lesions (e.g. the so-called “ground glass
opacities”, or GGO) which frequently lack well-defined
nodule components (Hasegawaet al., 2000).

Another area of progress concerns the genetic factors
predisposing individuals to developing lung cancer. There
exist a lot of data, concerning mostly the families of lung
cancer patients (Amoset al., 1999). Molecular epidemi-
ological studies have shown a poor DNA repair capacity,
as measured by assays that provide its overall estimate,
to be a risk factor for developing lung cancer (Hsuet al.,
1991; Weiet al., 2000). Genetic factors involved in the
metabolism of carcinogens have also been suggested to
contribute to lung cancer susceptibility (Strong and Amos,
1996). These associations can help to identify individuals
(smokers) at a high risk to develop lung cancer.

3. Screening for Lung Cancer: Ideas and
Difficulties

As has already been mentioned, the idea underlying mass-
screening programs for early detection of cancer is that
a sensitive detection technique (chest X-ray, CT-scan or
biomarkers) allows diagnosing lung cancer at an early
stage, when it is still curable (Fig. 1). If the early-stage de-
tection is followed by an appropriate treatment, then mass
screening can result in a reduction of population mortal-
ity attributed to lung cancer. However, there exist sev-
eral caveats, which have to be considered to understand
how difficult a practical implementation of this principle
can be.

• Identifying high-risk population.For the screening
program to be cost efficient, the yield of cases should
be relatively high. In a clinical trial setting, if the
population being screened is overly inclusive (e.g.,
all smokers), the high yield of cases in the program,
and, as a result, a big difference between the screened
and control groups, will not be observed. This may
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reduce our ability to decide if the observed mortality
reduction is significant, and it will definitely inflate
the cost of the program. This may be illustrated by
the results of our preliminary modeling. As it shows,
annual CT screening of all smokers for 20 years can
reduce mortality by 36%. If, within the same group,
only one quarter of it comprising high-risk individu-
als defined as having elevated BPDE sensitivity and
reduced DRC is screened, the mortality reduction is
19%. The screening of only highly BPDE sensitive
people (regardless of their DRC) is somewhat less ef-
fective as it reduces mortality by only 17%, but fur-
ther modeling to consider the costs associated with
screening only parts of the population is warranted.

• Screening biases.

(i) The lead-timebias means that in the screened
group survival may be better than in the con-
trol group, even if screening is no benefit to the
patients. This simply results from the fact that
the disease is detected earlier and thus the time
between the diagnosis and death (survival time)
is longer in the screened group even in the case
when the death itself is not postponed (Fig. 1).
Thus, the survival benefit observed in a screen-
ing program might be misleading.

(ii) The length bias (or its extreme form—
overdiagnosis bias) results from the fact that
screening is more likely to detect longer last-
ing and therefore possibly more indolent cases
(Fig. 2). This bias can inflate cure rates, as well
as survival, of screen-detected cases by includ-
ing indolent cases that would never surface in
the absence of screening (Gates, 2001).

• Another difficulty may arise if the biology of lung
cancer causes it to progress (metastasize) already
when the primary nodule is very small. This will

Fig. 2. Illustration of the length bias. Cases detected
on a screen with perfect sensitivity in general
remain at the early stage for longer, which im-
plies they may be less aggressive.

make the whole philosophy of early detection invalid
and the early detection itself a futile exercise as the
removal of a small primary will not improve curabil-
ity (Patzet al., 2000). However, recent data from CT
screening programs (Henschkeet al., 2002) as well
as the MLP data (Flehingeret al., 1992) show that
this is not the case as early diagnosed lung tumors
have high curability rates while the tumors that are
not resected kill the patients in 80% (Sobueet al.,
1992) to 90% (Flehingeret al., 1992) cases.

4. Randomized Clinical Trials (RCT)

RCT is a comparison of lung cancer mortalities in a study
in which high-risk subjects are randomly assigned to two
groups, screened and control. After a predetermined time,
the numbers of deaths from lung cancer in both groups
are compared. This design removes the impact of lead-
time and length biases. However, it is sensitive to the non-
compliance of screened individuals and the contamination
of controls by voluntary screening. Also, if the yield of
cases is low and/or the reduction of mortality is real but
smaller than expected, or if it occurs after a time longer
than expected, the design may yield inconclusive results
(Gorlovaet al., 2001; Strauss, 2000). Several major RCTs
of lung cancer screening were carried out using chest X-
ray and sputum cytology as detection tools. None of them
demonstrated a reduction in mortality from lung cancer.
Increases in the number of early-stage lung cancers in
the screening group were observed (and these cases en-
joyed a much improved survival), but they were attributed
to the lead-time and overdiagnosis biases (Marcuset al.,
2000). These findings resulted in recommendations by
the American Cancer Society and National Cancer Insti-
tute against annual chest X-ray examinations of smokers’
lungs and in generally adverse attitudes towards the po-
tential of screening for lung cancer (Wagner and Ruckde-
schel, 1995). Even in view of the recent application of CT-
scan as a screening tool, the medical community remains
cautious, as evidenced by a number of recent publications
(Grann and Neugut, 2003; Marcus, 2001; Marcuset al.,
2000; Patzet al., 2001). Mahadeviaet al. (2003) per-
formed a computer simulation-based analysis of the cost-
effectiveness of screening programs to conclude that the
high costs associated with screening, along with harms
from unnecessary invasive testing and uncertainty of ben-
efits, make helical CT screening of smokers not advisable.

To resolve the concerns, a new random-
ized controlled clinical trial, the National Lung
Screening Trial, started in September 2002 (see
http://www.cancer.gov/NLST ).



M. Kimmel and O.Y. Gorlova282

5. Models of Lung Cancer Natural History
and Detection Developed by Others

Attempts to model the natural history of lung cancer are
not numerous. Walter and Day (1983) developed a model
that provides estimates of lead-time and sensitivity of
screening, using data on the observed prevalence of dis-
ease at a screen and incidence between screens. The
model has been applied to the data from a Chechoslovak
lung trial (Walteret al., 1992). The authors concluded
that the detectable stage of lung cancer before the symp-
toms appear is as short as 7–8 months, while the detection
sensitivity is close to 100%. The mortality reduction due
to screening, as concluded by the authors, should be very
small. The authors assumed a constant detection proba-
bility over time, not allowing for a greater likelihood of
detection for tumors screened later in their preclinical de-
tectable stage. This preclinical entirely detectable stage
would correspond to the advanced asymptomatic stage in
the model proposed by Flehinger and Kimmel (1987). In
their model it is also detected with 100% probability but
has zero probability of cure and is preceded by an early
stage with non-zero curability but not easily detectable
(see below). However, the mean duration of that stage was
estimated as 2 years by Flehinger and Kimmel (1987) vs.
0.7 years by Walteret al. (1992), which may be attributed
to the use of a different detection tool (small-picture X-ray
in the Chechoslovak study, vs. full-size X-ray in the NCI
studies).

Bartoszynskiet al. (2001) suggested to model can-
cer detection as a quantal response variable, relating the
chance of detecting a tumor to its size. A different model,
involving tumor-size dependence of the rate of metastasis,
was proposed by Kimmel and Flehinger (1991).

A simulation model where the natural history of lung
cancer was modeled as a Markov process from cancer free
state to death was developed by Yamaguchiet al. (1991;
1994) to predict the potential impact of primary (reduc-
tion in smoking initiation and smoking cessation) and sec-
ondary (screening) prevention on mortality from lung can-
cer. They evaluated the mortality reduction due to screen-
ing as very low (11%).

Strauss with co-authors (1993; 1997; 2002) used re-
gression analysis applying it to the MLP data to show
that the survival benefit in the screened group is not at-
tributable to a lead time bias or a length bias or to over-
diagnosis, and that the tumor resection was the only sig-
nificant multivariate predictor of survival.

Yankelevitzet al. (2003) evaluated growth rates of
tumors found in Memorial Sloan-Kettering, John Hop-
kins, and Mayo lung trials using an exponential law of
growth and imposing a sensitivity threshold on those ob-
servations invisible in retrospect. As the authors con-
cluded, most tumors demonstrated a typical malignant

growth rate, which makes a high degree of overdiagnosis
very unlikely.

In the subsequent sections of the paper, we will de-
scribe in greater detail a stochastic model which includes
most of the features of the models listed above. It provides
predictions of the number of deaths from lung cancer, in
the presence or absence of screening, under diverse sce-
narios.

6. A Stochastic Model of Lung Cancer

The mathematical model of the natural history of lung
cancer in a periodically screened population was previ-
ously described (Flehinger and Kimmel, 1987; Flehinger
et al., 1988). Here we present the assumptions that cap-
ture the essential properties of the progression dynamics
of lung cancer.

1. In the high-risk population selected for screening, a
subgroup of participants is susceptible to non-small
cell lung cancer. The probability that a person be-
longs to this group isρ.

2. In the absence of screening and treatment, non-
small cell lung cancer after its onset progresses
through 2 stages—early and advanced—followed by
the death from cancer.

3. For a person in the susceptible subgroup, the age of
the onset of the early stage,τ0, is a random variable
with a trapezoidal distribution.

4. The durations of the early and advanced stages,τ1

and τ2, are independent exponential random vari-
ables with meansµ1 and µ2, respectively.

5. The screening program consists of examinations at
fixed intervals intended to detect the cancer.

6. Those participants whose lung cancers are detected
and treated at the baseline screening (prevalence
cases) may optionally be removed from the study and
control groups.

7. Given the presence of early cancer, the first examina-
tion after the onset of the disease detects early can-
cer with probabilityp. If no detection occurs, each
subsequent examination detects the early cancer with
probability λp. Since a small tumor missed on one
examination because of its location in the chest is
likely to escape detection again 4 months later,λ
was assumed to be less than 1. Detection on succes-
sive examinations is independent. It is assumed that
advanced cancers are surely detected after the stage
transition.
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8. When cancer is detected, screening is aborted and the
patient is treated. The probability of curing early-
stage lung cancer is equal toc; there is no possibility
of curing advanced-stage lung cancer. The cure is
defined pragmatically in terms of the survival of pa-
tients after detection: if patients are cured, their ages
at death are the same as if they had never had can-
cer; if they are not cured, their ages at death are the
same as if their cancer had not been detected through
screening.

9. Distribution of ages at enrollment and death from
competing causes are estimated from the data.

The model is among the simplest imaginable. It can
be run using simulation, but a range of analytic techniques
was also developed. It explains the reasons for the failure
to observe a reduction of mortality in X-ray-based screen-
ing programs. The main reason is the poor performance
of chest X-rays as a screening tool, which provides only a
limited mortality benefit from screening. Other reasons
include the lack of sufficient time to observe a benefit
from screening in the trial, as well as a high level of non-
adherence in the screened group and of contamination in
the control group. The model provides predictions of an
improved efficacy of screening techniques such as the CT-
scan.

The model shows that the duration of screening in
an RCT is very important (Fig. 3), particularly when the
effect of screening is around 15% as presumed for chest
radiography, and thus much less than that for CT.
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Fig. 3. Annual number of lung cancer deaths under annual
CT screening and follow up. Screening performed for
5 years (the thin line), for 10 years (the thicker line), and
for 20 years (the thickest line). Vertical axis: Number of
lung cancer deaths per year per 5,000 screened individ-
uals. Numbers of deaths approximately comparable to
those expected in the ACRIN study.

7. Modeling Stochastic Transitions in Lung
Cancer

A more refined model of cancer progression should
include several mechanisms, which recently became esti-

mable due to an influx of new data:

• Genetic determinants of carcinogenesis.Lung can-
cer is caused by the accumulation of DNA defects
caused by exposition to PAH metabolites. PAH are
metabolized by a cascade of reactions facilitated by
enzymes (Fig. 4), expressed differently in different
individuals. Considering the genetic sensitivity to
mutagens (such as PAH) and DNA repair capacity
will help isolate the highest-risk subpopulation, as
well as estimate the individual susceptibility to lung
cancer.

• Models of tumor-size dependent metastases.
Stochastic modeling allows integrating data from
different sources (CT-scan and X-ray screening
programs and clinical-case registries) representing
samples of tumors of different stages. Therefore it is
possible to estimate the probabilities of lymph node
and distant organ metastases for tumors of different
sizes (cell type, molecular features, and so forth).
Techniques, using the E-M algorithm, have already
been developed (Kimmel and Flehinger, 1991).

• Models of tumor growth.Repeated measurements
of small tumors obtained from CT-scans will allow
the estimation of variability in the rate and pattern of
the growth of early lung cancer (Yankelevitzet al.,
2000). These estimates can be obtained using max-
imum likelihood and imputation methods, whenever
measurements are missing or biased.

Fig. 4. Metabolism of benzo[a]pyrene.

It should be understood that the average growth rate
observed within a sample depends on the way the sam-
ple was ascertained. It has already been mentioned that
screen-detected cases represent a fraction of slower grow-
ing tumors due to a length bias, compared to all tumors. If
the sensitivity of a screening tool is low, the bias is even
stronger (Fig. 5). Within screen-detected cases, those vis-
ible in retrospect are expected to be slower than an av-
erage screen-detected case (Fig. 6(a)). Cases dealt with
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Fig. 5. Length bias in case of low sensitive screening modality;
p – probability to detect an early lesion per one screen;
t1, t2, t3 – times of screening examinations. Longer-
lasting cases have a higher probability of detection.

(a)

(b)

Fig. 6. Comparison of growth rates of various types of cases
detected in a screening study: cases visible vs. invisible
in retrospect (a); screen-detected vs. interval cases (b).

in prospective studies will be less biased in terms of the
growth rate than the cases visible in retrospect because
of a higher frequency of screening as it is unethical not
to closely follow up any detected lesion. Interval cases
(cases detected between screens) represent faster grow-
ing tumors as they have small size at one screen and thus
remain undetected, but they reach a big size that causes
symptoms, which leads to clinical detection before the
next screen (Fig. 6(b)). The so-called nonsolid nodules
(previously called “ground-glass opacities”, cf. Henschke
et al., 2002) show a slower growth than solid tumors (Aoki

et al., 2000). To summarize, estimates obtained based on
measurements from different studies vary widely, which
is not surprising in view of different ways of samples’ as-
certainment.

To estimate the tumor growth rate, we apply a max-
imum likelihood approach if two size measurements of a
tumor at two different time points are available. We as-
sume the exponential law of growth (this is a standard as-
sumption for macroscopic but still small tumors), so that

s(t) = s0 exp(rt),

wheres is the size (volume in our case),t is the time and
r is the parameter characterizing growth rate. We suppose
that r is a lognormally distributed random variable. Con-
sequently,ln r is distributed normally with parameters (ρ,
τ2 ). We develop a procedure to estimate these parameters
by maximum likelihood to show that

ρ̂ =
1
n

n∑
i=1

ln
(

l2i − l1i

∆ti

)
and

τ̂ =

√√√√ 1
n

n∑
i=1

[
ln

(
l2i − l1i

∆ti

)
− ρ̂

]2

.

If two measurements are available for some tumors
and only one measurement for others (which means that
no tumor was seen in retrospect for those cases), then a
simulation approach was used. The idea of the latter was
to reconstruct the missing measurement as being below
the detection threshold. The threshold is considered a log-
normal random variable, the distribution of which can be,
with some approximation, estimated from data (Table 1).
Note that the threshold for the screen detection and for the
retrospective examinations should be different, the latter
being smaller.

Table 1. Estimated parameters for the distribution
of the sensitivity threshold.

Detection Retrospective
examination

Mean 90% quantile Mean 90% quantile

12 43 6.6 23.65

The simulation procedure was as follows. First, the
maximum likelihood estimates forρ and τ2 were ob-
tained based only on cases with 2 measurements, as de-
scribed above. These estimates were then used as the ini-
tial values for the parameters to generate a lognormal ran-
dom variabler (growth rate). Then the threshold value
was generated from the lognormal distribution with the
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Table 2. Results of estimation of the growth parameters based on tumor size data.

Data set
Number of

tumors with 2
measurements

Number of
tumors with 1
measurement

Estimated
doubling

time

Estimated
ρ

S.d. of ρ
Estimated

τ

Yankelevitzet al. (2000) 5 90.78 −4.875 0.183 0.410

Yankelevitzet al. (1999) 9 70.35 −4.62 0.0935 0.281

Kakinumaet al. (1999) 6 315.60 −6.121 0.227 0.556

MSKCC stage 1 36 166.41 −5.481 0.11 0.657

MSKCC stage 1 correcteda 36 9 148.83 −5.368 0.125 0.720

MSKCC stage 3 10 186.32 −5.594 0.25 0.791

MSKCC stage 3 correcteda 10 12 103.54 −4.998 0.250 0.992

MSKCC interval cases 5 132.89 −5.256 0.359 0.802

MSKCC interval cases correcteda 5 20 67.43 −4.565 0.260 1.022

corresponding parameters (Table 1). Based on the equa-
tion of exponential growth, the generated value ofr, a
known tumor size at detection and the time interval be-
tween detection(t2) and previous examination(t1) with
the negative result, a tumor sizes1 at the time of the pre-
vious examination(t1) was calculated. If the size hap-
pened to be greater than the threshold,r was generated
anew until the tumor att1 became less than the threshold.
The procedure was performed for every case for which
only one measurement was available. As a result, “miss-
ing” tumor sizes att1 were restored for 1-measurement
cases. For this partially simulated data set, maximum like-
lihood estimates forρ and τ2 were recalculated. The
procedure was repeated 30 times and then the final esti-
mates were obtained by averaging over all iterations. The
procedure was verified by simulating data for a range of
initial parametersρ and τ2 and several sets of detection
threshold distributions. For convenience, the tumor vol-
ume doubling timeTd (in days) was used along with the
growth rate. The relationship between these two parame-
ters is as follows:

Td = ln(2)/ exp(ρ̂).

The distribution of the doubling times was compared to
the actual distribution of log growth rates, which was
known from simulation. The comparison was based on
a numerical approximation of the following index:

I =
∫ 1

0

∣∣F−1(u)− F−1
sim(u)

∣∣ du/Td,median,

aEstimates were corrected for the missing sizes of the tumors invisible in retrospect using the simulation approach.

where F−1(u) and F−1
sim(u) are the inverse cumulative

distribution functions of the estimated doubling times and
of the simulated doubling times, respectively, divided by
the median doubling time in the simulations. The index
can be interpreted as a standardized mean of absolute dif-
ferences between the estimated and simulated doubling
times. Without getting into details, the relative error in-
dex I rarely exceeds 15–20%.

We then applied our procedures to several data sets
that originated from different studies. The estimates ob-
tained based on measurements from different studies vary
widely (Table 2), which is not surprising because samples
were selected in different ways, and the results agree well
with the expectations.

8. Conclusions

The integration of detailed estimates of stochastic tran-
sitions into the progression network of lung cancer with
screening detection and subsequent treatment will make it
possible to predict the efficacy of different detection pro-
grams. It will also allow optimizing the selection of in-
dividuals to be included in mass screening. It is the only
method that allows accomplishing these tasks in the pres-
ence of a continuous change in detection and treatment
techniques as well as in presence of varying exposure to
carcinogens (fluctuating with behavioral factors such as
smoking) and a differing genetic make-up of people at
risk.
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