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A haplotype analysis is becoming increasingly important in studying complex genetic diseases. Various algorithms and
specialized computer software have been developed to statistically estimate haplotype frequencies from marker phenotypes
in unrelated individuals. However, currently there are very few empirical reports on the performance of the methods for
the recovery of haplotype frequencies. One of the most widely used methods of haplotype reconstruction is the Maximum
Likelihood method, employing the Expectation-Maximization (EM) algorithm. The aim of this study is to explore the
variability of the EM estimates of the haplotype frequency for real data. We analyzed haplotypes at the BLM, WRN,
RECQL and ATM genes with 8–14 biallelic markers per gene in 300 individuals. We also re-analyzed the data presented by
Manoet al. (2002). We studied the convergence speed, the shape of the loglikelihood hypersurface, and the existence of local
maxima, as well as their relations with heterozygosity, the linkage disequilibrium and departures from the Hardy-Weinberg
equilibrium. Our study contributes to determining practical values for algorithm sensitivities.
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1. Introduction

Much of recent research in clinical genetics relies on re-
solving the genetic structure of complex diseases (traits).
Complex genetic traits are linked with DNA loci located
in multiple regions in the genome. Eventually, the studies
will allow associating risks for complex diseases with sets
of specified haplotypes. Problems to be solved to achieve
this aim stem from (a) the necessity to carry out large
population-based studies and to collect large amounts of
data, and (b) the necessity of developing robust and ef-
ficient numerical algorithms for haplotype reconstruction
from unphased genotypes.

In this paper we are concerned with the latter prob-
lem, i.e., haplotype reconstruction from unphased geno-
type data. The first practical approach to solve this prob-
lem was a parsimony-type method developed by Clark
(1990). The necessity for a better use of the information
contained in the collected samples led to the increased
interest in maximum likelihood estimates of the haplo-
type structure. However, the likelihood function associ-
ated with the samples of unphased genotypes with the
underlying haplotype structure is complicated and can-

not be maximized by the standard techniques. A break-
through was the application of the Expectation Maximiza-
tion (EM) method (Dempsteret al., 1977) to maximize
the likelihood of the observed genotype data (Excoffier
and Slatkin, 1995; Hawley and Kidd, 1995; Longet al.,
1995). Since the publication of the EM algorithm for hap-
lotype discovery, further studies have appeared discussing
this method and its properties. Fallin and Schork (2000)
presented the results of their research on the accuracy of
haplotype frequency estimation as a function of a num-
ber of factors, including the sample size, the number of
loci studied, allele frequencies, and locus-specific allelic
departures from Hardy-Weinberg and linkage equilibria.
Via extensive simulation studies, they demonstrated that
the haplotype frequency estimation for biallelic diploid
genotype samples by using the EM algorithm performs
very well under a wide range of population and data-set
scenarios. They concluded that much of the overall error
is due to sampling, rather than to algorithmic and esti-
mation problems or inaccuracies. Their conclusion that
the accuracy of the frequency estimation of rare haplo-
types mainly depends on the proper sampling procedure
was confirmed by Clarket al. (2001), who applied the



J. Polańska420

EM algorithm to the inference of the CCR2-CCR5 hap-
lotypes in the CEPH families. The accuracy of the hap-
lotype frequency estimation performed using the EM al-
gorithm was also studied by Tishkoffet al. (2000), who
compared the results of the EM algorithm with the algo-
rithm based on the counting of the phase-known gametes.
They found that only the frequencies of rare haplotypes
might be wrongly estimated and suggested that applying
the molecular haplotyping method when obtaining highly
accurate estimates of the frequencies of rare alleles is nec-
essary. McKeigue (2000) reported that for the estimation
of two-locus haplotype frequencies, the above-mentioned
two strategies did not differ significantly in terms of the
information obtained for a given genotyping workload, if
the assumption of the Hardy-Weinberg equilibrium holds
true. The problem of the sensitivity to the departures
from the Hardy-Wienberg equilibrium was discussed by
Rohde and Fuerst (2001) and Singleet al. (2002) where
the authors tested the properties of the EM algorithm on
the loci which were closely linked and significantly devi-
ating from the Hardy-Weinberg equilibrium. Their con-
clusions did not differ much from those formulated by
Fallin and Schork (2000).

Since the first publication (Excoffier and Slatkin,
1995), a number of articles proposing some improve-
ments in the EM algorithm have appeared (Longet al.,
1995; Hawley and Kidd, 1995; Chiano and Clayton,
1998; Rohde and Fuerst, 2001). Some authors focused on
other variants of the EM algorithm to solve more specific
tasks (Slatkin and Excoffier, 1996; Ghosh and Majumber,
2000; Kalinowski and Hedrick, 2001). Extensive stud-
ies on the framework for haplotype inference other than
the parsimony and EM resulted in a new idea proposed
by Stephenset al. (2001a) known as the PHASE algo-
rithm. Their Bayesian method exploits ideas from popu-
lation genetics and coalescent theory to make predictions
about the patterns of haplotypes to be expected in natural
populations. Several comparative studies concerning the
EM algorithm and the PHASE algorithm of Stephenset
al. (2001a) were published (Stephenset al., 2001a; Xuet
al., 2001; Zhanget al., 2001; Stephenset al., 2001b). All
authors agree that generally both algorithms give the same
level of the accuracy of the haplotype frequency estimates.
According to the authors of the PHASE algorithm, it over-
performs other existing methods (i.e. parsimony and EM)
when there is “clustering” in the true haplotype configura-
tion. The observation of haplotype blocks in sequenced
DNA (Patil et al., 2001) and in coalescent simulations
(Wanget al., 2002) led to further modifications of both
algorithms. Niuet al. (2002) proposed a partition-ligation
strategy to investigate the haplotype block structure. The
resulting methodology, named EM-PL, constitutes an im-
provement in both accuracy and capacity in comparison
with the standard, previously existing algorithms (Qinet

al., 2002). The partition-ligation idea was also used in the
PHASE algorithm (Linet al., 2002) improving its perfor-
mance for the data with a large number of loci.

Due to the interest in haplotype blocks, coming from
the abundance of SNP data, the problem of the accuracy
and reliability of haplotype reconstruction methods gained
great importance. Despite many studies on the properties
of the EM algorithm, several problems related to its appli-
cation are still unsolved. Among the most important ones
are: determining the speed of convergence, the sensitiv-
ity to the stopping criterion and the existence of multiple
local maxima.

In this paper we explain the basic structure of the
EM algorithm and discuss the above-mentioned properties
with the focus on practical applications. We developed a
Matlab-based implementation of the EM method. Using
our program we study and illustrate several aspects of the
EM application: the speed of convergence, the reliabil-
ity of estimates, and the existence of multiple solutions.
We analyze the data set, recently presented by Manoet
al. (2002), leading to a nonunique solution, and we show
the existence of a local maximum, not found by Manoet
al. (2002). We also use a real data set of the observed
genotypes at the BLM, WRN, RecQL and ATM genomic
regions with 8–14 biallelic markers per gene in individu-
als from four ethnic groups (Bonnenet al., 2000; Trikka
et al., 2002) to estimate practical convergence rates, the
computational complexity and the sensitivity of estimates
to parameters. We demonstrate that convergence and com-
plexity depend on the number of loci (data size) and ob-
served variations in phenotypes (data structure).

2. Data

In our study we used the following three data sets:

• Data set #1: ATM region.

The data set consists of 14 biallelic neutral-sequence
variants that span 142 kbp of the ATM region. These ATM
intronic single-nucleotide polymorphisms (SNPs) were
genotyped in 183 DNA samples from individuals of four
different ethnic origins: African American, Asian Ameri-
can, white European American, and Hispanic. These sam-
ples were part of the collection analyzed in (Bonnenet al.,
2000). The detailed information on PCR and sequencing
primers, PCR amplification of genomic DNA, DNA se-
quencing, and allele-specific oligonucleotide (ASO) hy-
bridizations can be found in the original paper.

• Data set #2: BLM, WRN, RecQL regions.

The second data set consists of 8 SNPs identified
within 154 kbp of the BLM, 12 SNPs within 186 kbp
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of WRN and 11 SNPs within the 180 kbp of RecQL re-
gion. These noncoding SNPs were genotyped in 300, 309,
and 310 DNA samples for BLM, RecQL, and WRN re-
gions, respectively. The general collection included sam-
ples from four ethnic groups: African American, Asian,
Caucasian, and Hispanic. That data set was used for can-
cer association studies and is described in detail in (Trikka
et al., 2002).

• Data set #3.

The third data set was presented in (Manoet al.,
2002). It consists of 16 three-locus DNA samples and is
shown in Table 1.

Table 1. Data set proposed in (Manoet al., 2002).

Genotype Number of cases

TTT 4
TGT
TGT 6
GCT
TGT 2
CCT
TGT 2
CCG
TCT 2
CCG

3. Problem Formulation

With the discovery of the polymerase chain reaction
(PCR) going from genomic DNA to sequence data has
highly accelerated. The direct sequencing of the PCR
product for heterozygous diploids results in the amplifi-
cation of both alleles and does not allow us to resolve
the amplification products, which produces a vast number
of possible haplotypes. The more of such “ambiguous”
sites in an individual, the more haplotypes possible. The
data set is comprised of a number of polymorphic loci ob-
served in a sample of individuals. Let us call a multilocus
genotype whose haplotypic phase is unknown the pheno-
type (unphased genotype). A multilocus genotype defined
as a particular combination of two multilocus haplotypes
will be called a genotype hereafter. The number of geno-
types (cj) leading to thej-th phenotype is a function of
the number of heterozygous locisj :

cj =

{
2sj−1 if sj > 0,

1 if sj = 0.
(1)

Example 1. Assume the following unphased genotype
data (sj = 3):

TGTCGCA
TGC G.

The list of all possible phased genotypes is shown
below (cj = 22 = 4):

TGTCGCAG TGTCGGAG
TGTCTGCG TGTCTCCG

TGTCTCAG TGTCTGAG
TGTCGGCG TGTCGCCG �

The answer to the question ‘Which of thosecj geno-
types is the proper one?’ cannot be found without addi-
tional studies. It is possible to solve this problem by using
genealogical information in families, but then some mem-
bers of the families should be omitted in further studies.
This is by no means satisfying because of the additional
cost, especially when large samples are analyzed. The
goal is to find the best (in some sense) estimates of the
haplotype frequencies in the population using only lim-
ited information included in the unphased genotype sam-
ple data.

4. Maximum Likelihood Estimates

Clark (1990) introduced an algorithm to infer the haplo-
types from such population samples. The principle is to
start by examining complete homozygotes and single-site
heterozygotes. Then other individuals are screened for a
possible occurrence of previously recognized haplotypes.
For each positive identification, the complementary hap-
lotype is added to the list of the recognized haplotypes,
and so forth. The weak points of the above algorithm are
as follows: (a) homozygotes are not always present; for
example, it happens very often in a small sample study;
(b) the final result depends on the order in which the in-
dividuals were listed; (c) the information in the sample is
not fully used.

Example 2. For theData set #3there exist 145 possi-
ble algorithm paths leading to 50 different configurations.
Choosing the pathhap1 → hap2 → hap3 → hap5 →
hap4 one can reach the solution called ‘Configuration 1’
in Table 2, while the pathhap1 → hap2 → hap4 →
hap3 → hap5 leads to ‘Configuration 2’. �

Haplotypes can be inferred and their frequencies can
be estimated via a maximum likelihood approach. Under
the assumption of the Hardy-Weinberg equilibrium and
random mating, the probabilityPj of the j-th phenotype
is given by the sum of the probabilities of each of the pos-
sible genotypes:

Pj =
cj∑

i=1

P (genotype i) =
cj∑

i=1

P (hkhl), (2)
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Table 2. Numerical complexity of the problem of inferring the
haplotype frequencies.

Gene No. of Sample No. of No. of No. of
name SNP size observed feasible feasible

loci phenotypes haplotypes genotypes

BLM 8 300 112 256 1124
WRN 12 310 116 498 954
RecQL 11 309 96 1323 4015
ATM 14 183 45 4885 6701

Mano’s
data 3 16 5 11 11

where P (hkhl) is the probability that thei-th genotype
is composed of haplotypesk and l:

P (hkhl) =

{
p2

k if k = l,

2pkpl if k 6= l,
(3)

and pi denotes the frequency of thei-th haplotype.

The probability of a sample ofn individuals, con-
ditional on the phenotype frequenciesP1, P2, . . . , Pm, is
given by the multinomial expression

P =
n!

n1!n2! · · ·nm!
× Pn1

1 × Pn2
2 × · · · × Pnm

m , (4)

wherem denotes the total number of phenotypes andnj

is the number of individuals carrying thej-th phenotype:

m∑
j=1

nj = n.

Therefore the likelihood of the haplotype frequencies
given phenotypic counts is

L(p1, p2, . . . , ph) = a1

m∏
j=1

(
cj∑

i=1

P (hikhil)

)nj

. (5)

The maximum likelihood estimates of haplotype fre-
quencies could, in principle, be found analytically or nu-
merically by solving a set of equations resulting from the
h− 1 partial derivatives equated to 0:

∂ log L

∂pt
=

m∑
j=1

nj

Pj

∂Pj

∂pt
, t = 1, 2, . . . , h− 1. (6)

However, the nonlinearity of (6) and a large number of
equations to be solved when practical data are analyzed
make this approach prohibitive.

5. EM Algorithm

The number of haplotypes is most often unknown, so that
the analytical solution cannot be found by using (4)–(6).
Even if it is known, the problem becomes numerically in-
tractable for largeh, as has been mentioned before.

A method of overcoming these difficulties is the
application of the expectation maximization (EM) algo-
rithm. The EM algorithm was formalized by Dempster
et al. (1977), but its application to the problem of infer-
ring haplotype frequencies was formulated almost simul-
taneously by several authors (Excoffier and Slatkin, 1995;
Longet al., 1995; Hawley and Kidd, 1995). For a detailed
description of the algorithm we refer the reader to their ar-
ticles. The following presents an outline of the algorithm.

The EM algorithm is an iterative method of com-
puting sets of haplotype frequenciesp1, p2, . . . , ph start-
ing with arbitrary initial valuesp(0)

1 , p
(0)
2 , . . . , p

(0)
h . These

initial values are used to estimate genotype frequencies
P̃ (hkhl) as if they were the unknown true frequencies
(the expectation step). These expected genotype frequen-
cies P̃ (hkhl) are standardized and used, in turn, to es-
timate haplotype frequencieŝp at the next iteration (the
maximization step). In the iteration of the algorithm, we
have

• The expectation step

P̃ (hkhl)(g) =

{
p
(g)2
k if k = l,

2p
(g)
k p

(g)
l if k 6= l.

(7)

• The maximization step

P
(g)
j =

cj∑
i=1

P (genotype i)(g) =
cj∑

i=1

P̃ (hkhl)(g), (8)

P (hkhl)(g) =
nj

n

P̃ (hkhl)(g)

P
(g)
j

, (9)

p̂
(g+1)
t =

1
2

m∑
j=1

cj∑
i=1

δitPj(hkhl)(g), (10)

where δit is an indicator variable equal to the number
of times haplotypet is present in genotypei (0, 1, or
2). The flow chart depicting the implementation of the
steps (7)–(10) is shown in Fig. 1. The stopping (conver-
gence) criterion is defined as the absolute value of the dif-
ference between the consecutive ML function values be-
ing less than an arbitrary parameterε > 0.

Data Preprocessing.The probabilities appearing in (7)–
(10) are indexed by both haplotype and genotype num-
bers. Therefore, for a practical implementation of the al-
gorithm, a data preprocessing step is necessary. In this
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Fig. 1. Flow chart of the EM algorithm.

step, given the observed phenotypes, all feasible geno-
types and haplotypes are constructed and indices are as-
signed to all feasible genotypes and haplotypes.

The initial conditions for the EM algorithm. The
sensitivity to the initial conditions is a known prop-
erty of nonlinear algorithms. Generally, there are sev-
eral possibilities of initializing the haplotype frequen-
cies p

(0)
1 , p

(0)
2 , . . . , p

(0)
h . They can be summarized as

follows:

• All haplotypes are equally likely,

p
(0)
t =

1
nh

, t = 1, 2, . . . , nh. (11)

• All possible genotypes for each phenotype are
equally likely,

Pj(hkhl)(0) =
1
cj

, j = 1, 2, . . . ,m. (12)

• Initial haplotype frequencies are chosen at random.

• All initial haplotype frequencies are equal to the
product of the corresponding single-locus allele fre-
quencies (i.e., a complete linkage equilibrium).

• The input data influence the initial haplotype fre-
quencies.

Since in practical applications several iterations of
the EM algorithm should be performed to avoid reaching
a local maximum, randomized initial haplotype frequen-
cies are recommended, although the idea of composing
the deterministic values depending on the number of pos-
sible haplotypes or genotypes with a randomized additive
perturbation might work very well too.

6. Practical Application of the EM Method

We implemented the EM algorithm for haplotype recon-
struction, as has been presented in the previous section,
using the Matlab programming environment. Our imple-
mentation allows us to rerun the program automatically
with different random or deterministic initial values. Dur-
ing the iterations all the values of the haplotype frequen-
cies and the likelihood function are stored. An extra script
allows us to summarize the results of all simulations and
to compare the values of the maximum likelihood func-
tions and the obtained solutions to the problem. Partial or
summary results can be presented graphically. To test the
reliability of our implementation, we compared the results
of our calculations with the haplotype frequencies found
by Arlequin 2.0 (Schneideret al., 2000) and RIGHT 1.0
(Manoet al., 2002) for all three data sets. The estimated
haplotype frequencies did not differ by more than 0.1% for
the stopping criterionε = 10−8 and the maximum num-
ber of iterations for the Arlequin program equal to 5000.
Below, we show the results of our extensive simulation
studies regarding the EM algorithm convergence, numer-
ical complexity, and the existence of local maxima. We
report several facts which are important for practical ap-
plications of EM to haplotype reconstruction. We show an
example of genotypic data, which lead to multiple maxima
of the likelihood surface.

6.1. Properties of the Data Sets Used for
the Simulation Studies

Two of our three data sets used in the studies were real
DNA samples collected for disease association studies.
Testing the deviation from the EM algorithm assumptions
is necessary for a proper evaluation of the final results of
our work. The basic assumptions, which are of great im-
portance for the haplotype reconstruction method, are the
lack of departures from the Hardy-Weinberg equilibrium
and occurrences of free recombination events.

The Hardy-Weinberg Equilibrium and Loci Heterozy-
gosity. Tests for deviations from the Hardy-Weinberg
equilibrium (HWE) were conducted for each locus of SNP
genotypes of all data sets (Schneideret al., 2000). Within
ATM and RecQL, none of the SNPs deviated significantly
from HWE. Discrepancies were observed at two SNPs
on BLM: B18.1 (p = 0.029) and B22 (with significance
p = 0.032). Some departures were also noticed within
WRN: W1 (p = 0.030) and W18.2 (p = 0.036). A de-
tailed analysis of the departures from HWE within BLM,
RecQL, and WRN made for each locus-population com-
bination is presented in (Trikkaet al., 2002). As will be
demonstrated further on (cf. the subsection on numerical
complexity), the deficiency or excess heterozygosity with



J. Polańska424

respect to the HWE is related to the numerical complex-
ity of the EM algorithm and the structure of the likelihood
hypersurface. Among the 14 SNPs within the ATM lo-
cus, the smallest heterozygosity was observed for the 6-th
consequent SNP named IVS46-257a→c, and was equal to
0.130. The maximum observed value was equal to 0.494
for two SNPs numbered 7 and 13 (coded IVS55+186c→t
and IVS62-973a→c, respectively). The average heterozy-
gosity for all SNPs was 0.374. Within the BLM region the
heterozygosity pattern looked very similar to that of the
ATM region. We did not notice extreme differences in het-
erozygosity among the eight SNPs analyzed. The smallest
value of H was 0.196 (B4.2 coded as IVS1-20290g→a),
the highest was 0.451 (B22 coded as IVS22+9303c→t),
and the average was 0.352. The other regions showed two
clusters of SNPs differing significantly in heterozygosity.
The WRN region, consisting of ten SNPs had four of them
(W1 IVS1-8213g→a; W23 IVS35+11737g→c; W26.1
IVS53+30673c→t; and W26.2 IVS35+30764c→a) al-
most homozygous (heterozygosity 0.065, 0.021, 0.014,
and 0.018, respectively), while the other six demonstrated
the heterozygosity varying from 0.229 to 0.520. The av-
erage heterozygosity for that genomic region was 0.238,
but for the interior of the region it was highly heterozy-
gous and equal to 0.376. The highest heterozygosity was
observed at RecQL, where the heterozygosity no higher
than 0.1 was observed only at two flanking sites. All the
other SNPs were highly heterozygous and the average was
equal to 0.4007. This differentiation in the heterozygosity
structure influences the shape of the likelihood hypersur-
face and the existence of saddle-like or local maximum
points. It was pointed out by other authors (Fallin and
Schork, 2000) that an excess of homozygosity could, in
effect, decrease the amount of ambiguous phase informa-
tion in a data set and, as such, improve the estimation ac-
curacy. These results allow assuming that the observed
discrepancies in HWE result from a hidden substructure
of the data set and can be disregarded.

One of the loci inData set #3deviated significantly
from HWE (locus 2,p = 0.014). We observed an ex-
cess of heterozygosity for the deviating locus, but there is
no pattern of excessive heterozygosity within the pooled
data. The comparative studies by other authors (Fallin and
Schork, 2000; Niuet al., 2002; Singleet al., 2002) showed
the robustness of the haplotype frequency estimation to-
ward the HWE deviations, so it was assumed in further
studies that such deviations will not result in a significant
differentiation in the haplotype frequency estimation.

Recombination Events and a Linkage Disequilibrium.
The EM algorithm was developed assuming free recom-
bination events within the genomic region. A detailed
investigation of the ATM region is presented by Trikka
et al. (2002). The small number of haplotypes seen sug-

gested the possibility that recombination is reduced at the
ATM locus. The four-gamete test (Hudson and Kaplan,
1985) allowed the authors to conclude that the ATM locus
exhibits a reduced recombination in all four ethnic groups.
To better understand the background of this observation,
we measured the disequilibrium by using the likelihood
ratio test proposed by Slatkin and Excoffier (1996), and
implemented in the Arlequin package. The majority of
pairs are in a high disequilibrium. The lack of recom-
bination or the reduced number of recombination events
can be partly explained by an extremely high disequi-
librium observed within those loci. The analyses made
by Bonnenet al. (2000) demonstrate that the recombina-
tion events seem to have occurred throughout the BLM
and WRN genomic regions. The disequilibrium tests per-
formed by us confirmed the results obtained by Bonnen
et al. (2000). For RecQL, a linkage disequilibrium was
showed throughout the gene, with the exception of the
outermost markers. Within the BLM gene no such sig-
nificant disequilibrium was observed for all loci, but some
of them (loci 5 – B20, 6 – B21.1, and 7 – B22) were in
a high disequilibrium with all other loci. A significant
disequilibrium was also noticed between neighboring loci
throughout the BLM gene. We observed a high disequilib-
rium within the interior of the WRN gene (between W12.1
and W22 loci), which is generally coherent with the re-
sults of Bonnenet al. (2000). The test performed by Bon-
nenet al. (2000) showed that the recombination is absent
within the middle part of RecQL and is consistent with
the increased linkage disequilibrium observed in the same
area. They noticed the occurrence of the recombination
events within the WRN gene. They conclude that these
are probably of a recent origin. Taking under considera-
tion all the above, we presume that the low recombination
rate could be explained by an extensive linkage disequilib-
rium, which does not impact highly on the common hap-
lotype frequency estimates (Fallin and Schork, 2000).

Numerical Complexity. As was mentioned above, it is
necessary to prepare lists of feasible haplotypes and geno-
types before launching the EM algorithm. The final num-
bers depend not only on the number of loci within the ge-
nomic region, but also on the level of their heterozygosity.
Given the ATM gene with its 14 loci and a relatively small
number of the observed different phenotypes (45), the
number of feasible haplotypes increases to 4885, which
gives the number of feasible genotypes equal to 6701.
At the 8-th locus BLM gene, demonstrating the average
heterozygosity equal to 0.352, we noticed 112 different
phenotypes leading to 256 possible haplotypes and 1124
possible genotypes. The RecQL and WRN genes, having
almost the same numbers of loci (11 versus 12), demon-
strate different levels of numerical complexity. The num-
ber of the observed phenotypes inside the WRN sample
was 116 with 498 feasible haplotypes and 954 feasible
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genotypes. But for the RecQL gene those numbers were
96, 1323, and 4015, respectively. Such a large difference
can be partly explained by varying heterozygosity within
those regions. The WRN demonstrates significantly lower
heterozygosity (average 0.238, with four loci being almost
homologous,−H < 0.065) than RecQL does (average
0.401 for all loci, and 0.474 without the outermost, ho-
mozygous loci). It might influence both the speed of the
convergence and the monotonicity of the likelihood sur-
face. Table 2 presents a summary of the above analyses.

6.2. Convergence Speed the EM Algorithm

Since the introduction of the EM algorithm by Dempster
et al. (1977) a lot of works have been published regarding
its numerical properties. Their authors mainly focus on
the convergence of the algorithm and modifications, the
purpose of which is to speed it up. The majority of these
studies are carried up by mathematicians and the best ref-
erence source is the review by Meng and van Dyke (1997)
or the book by McLachlan and Thriyambakam (1997). A
large number of articles cited there are devoted to the gen-
eral EM algorithm and do not concern the specific form
introduced by Slatkin and Excoffier (1995). The basic
study on the convergence of the EM algorithm for the es-
timation of haplotype frequencies was published by Fallin
and Schork (2000). Using numerical simulations they no-
ticed that the algorithm converges relatively close to the
maximum in less than 50 iterations. Their simulations
showed that the convergence criterion influences the es-
timated haplotype frequencies to some limits. Increasing
the accuracy beyond10−8 did not significantly change
the estimates of the haplotype frequencies. These sim-
ulations were performed using data simulated by other
software. Our goal was to check the speed of the algo-
rithm convergence applied to “real” data, which exhibit
some deviations from the model. We launched 100 runs
of our implementation of the EM algorithm for each gene
data set, tracing the variability of the loglikelihood func-
tion and the estimates of the haplotype frequencies. We
observed that on average in less than 20 iterations the al-
gorithm reached its convergence point with the accuracy
defined by the criterion that the increase in loglikelihood
function be less than 0.01. The distance of the estimates of
the haplotype frequencies from their convergence point (in
the sense of the Euclidean norm) was sufficiently small in
only few steps of the algorithm. Figure 2 presents a typ-
ical profile of the loglikelihood function changes during
one run of the algorithm, while Fig. 3 demonstrates the
distance of the frequency estimates from the convergence
point for consecutive algorithm iterations. Increasing the
accuracy by setting the stopping criterion equal to10−5

results in an increase in the average number of iterations
to 80. The results of our studies performed on genetic data

Fig. 2. Convergence of the EM algorithm.

Fig. 3. Euclidean distance from the maximum for the
subsequent iterations of the EM algorithm.

confirm the relatively high convergence speed of the EM
algorithm when applied to the problem of the estimating
haplotype frequencies.

6.3. Multiple Local Maxima

Iterations of the EM algorithm, as defined by Dempster
et al. (1977), always lead to nondecreasing values of the
likelihood. However, there is no proof of the uniqueness
of a likelihood function maximum. Likelihood hypersur-
faces may have multiple local maxima. The problem of
the existence of local maxima has been noticed by several
authors (seeDiscussion partin Dempsteret al., 1977; Wu,
1983), but there are no studies concerning the details of
that issue.

To evaluate the global maximum values of the log-
likelihood function for each gene data set, we carried out



J. Polańska426

250,000 runs of the EM algorithm for haplotype recon-
struction, using the Arlequin software (Schneideret al.,
2000), with randomized initial conditions. These values
and the estimates of the haplotype frequencies obtained
in the simulations (data not presented here) served as a
reference in further studies. In the next step of our ex-
periment, we compared these reference maxima with the
results of 100 runs of our algorithm implementation with
the default value of the stopping criterion equal to 0.01.
We considered the accuracy of reaching the global max-
imum satisfactory, if the distance from the global max-
imum (in the sense of the Euclidean norm) to the con-
vergence point reached by the algorithm was less than or
equal to 0.005. A global maximum is characterized by
the value of the loglikelihood function, up to an additive
constant. In the case of the BLM gene, this value is equal
to −122.08. Four out of 100 runs of the algorithm for
the BLM gene reached their convergence points outside
the defined neighborhood of the global maximum. These
values were equal to−125.99, −124.09, −123.11, and
−122.42. Despite noticeable differences in the loglike-
lihood function values, there were no significant varia-
tions in the estimates of the haplotype frequencies. The
frequency estimates of the most common haplotypes did
not differ by more than 3.5% from the values for the
global maximum. The estimated frequencies for the com-
mon haplotypes were equal to 0.2114, 0.1691, 0.1079,
0.0839, and 0.0728, while their values for the global max-
imum were respectively equal to 0.2146, 0.1684, 0.1116,
0.0849, and 0.0745. Decreasing the stopping condition to
10−5 resulted neither in significant changes in the value
of the loglikelihood function, nor in the estimates of the
haplotype frequencies. After 67 additional iterations, the
value of the loglikelihood function for the convergence
point with the lowest likelihood increased from−125.99
to −125.91 without a significant improvement in the ac-
curacy of the estimates. The new estimates were 0.2128,
0.1685, 0.1080, 0.0841, and 0.0728, respectively. The dis-
tance from the global maximum decreased from 0.0207
after 15 iterations to 0.0202 after 82 iterations.

We performed similar experiments for the WRN and
ATM genes. All runs of the EM algorithm converged
to the close neighborhood of the global maximum in
about 15 steps. We did not observe irregularities around
the global maximum of the type observed for the BLM.
The hypersurface seems to be close to a negative definite
quadratic form in the vicinity of the global maximum.

To explore the above phenomena, we launched the
EM algorithm implemented in the Arlequin package sev-
eral times with various numbers of randomized initial con-
ditions. Table 3 presents a summary of these simulations.
The stopping criterion is the difference in the sum of the
haplotypic frequency change between two successive it-
erations being less than an arbitrary valueε. The high

linkage disequilibrium within the ATM genomic region
together with relatively low heterozygosity may explain
the shape of the loglikelihood hypersurface and a small
number of the observed irregularities. A lower linkage
disequilibrium and higher heterozygosity only inside the
WRN and RecQL genes may result in a less regular vicin-
ity of the global maximum of the loglikelihood hypersur-
face.

Table 3. Number of different convergence points found in
n runs of the EM algorithm with randomized ini-
tial values of the haplotype frequencies.

Gene Number of algorithm runs

name 50 100 500 1,000 5,000 25,000

Stopping criterionε = 10−5

BLM 43 84 250 343 588 765

WRN 46 87 298 425 876 1441

RecQL 28 44 80 100 182 351

ATM 47 79 228 286 482 775

Stopping criterionε = 10−8

BLM 14 19 25 29 30 35

WRN 17 21 29 33 39 65

RecQL 4 5 8 10 22 37

ATM 5 6 9 9 10 8

Stopping criterionε = 10−12

BLM 12 14 20 17 26 27

WRN 4 4 4 4 4 4

RecQL 2 2 3 3 7 11

ATM 1 1 1 1 1 1

Another aspect of the problem of the hypersurface
structure, focusing on multiple global maxima, was dis-
cussed by Manoet al. (2002). Below we recall the data
set proposed in (Manoet al., 2002) and we show the re-
sults of our analysis:

Example 3. The data set consists of unphased 3-locus
genotypes of 16 individuals (shown in Table 1). As re-
gards the number of loci and their variability, one notices
that there are 11 possible haplotypes. �

In (Mano et al., 2002), it was found that the like-
lihood surface had two separate global maxima, corre-
sponding to different configurations of haplotypes, with
the value of the logarithm of the likelihood function equal
to −19.418 for each of them. The estimates of the hap-
lotype frequencies for each configuration are presented in
Table 4. In our experiments we found one more local max-
imum, with the logarithm of the likelihood function value
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equal to−23.975, to which the algorithm may converge
for some initial conditions. The local maximum configu-
ration is shown in Table 5. Table 6 shows the examples
of initial values p

(0)
1 , p

(0)
2 , . . . , p

(0)
h , for which the algo-

rithm reaches all these maxima. To evaluate the probabil-
ity of reaching a particular local or a global maximum, we
launched 20,000 simulations with randomly chosen initial
conditions, and the stopping criterion at the level of10−6.
Fifty-four percent of the simulations reached the global
maximum called Configuration 2 (Table 4), 24% reached
the second global maximum (Configuration 1), but 22%
stopped at the local maximum presented in Table 5.

Table 4. EM haplotype frequency estimates for
both global maxima configurations.

Haplotype EM frequency estimate

sequence Configuration 1 Configuration 2

TGT 0.4375 0.4375

GCT 0.1875 0.1875

TTT 0.1250 0.1250

CCT 0.1250 0.0625

TCG 0.0625 0

CCG 0.0625 0.1250

TCT 0 0.0625

GGT 0 0

CGT 0 0

TGG 0 0

CGG 0 0

Table 5. EM haplotype frequency estimates for
a local maximum configuration.

Haplotype EM frequency estimate

sequence Local maximum configuration

TGT 0.1875

GCT 0

TTT 0.1250

CCT 0

TCG 0

CCG 0.1250

TCT 0.3125

GGT 0.1875

CGT 0.0625

TGG 0

CGG 0

Table 6. Initial conditions leading to each of
the global and local maxima.

Initial values of the haplotype frequency

Haplotype Global maximum Local

sequence Configuration1 Configuration 2 maximum

TGT 0.0603 0.1421 0.0654

GCT 0.1662 0.0371 0.1048

TTT 0.1365 0.1150 0.1477

CCT 0.0647 0.0202 0.0327

TCG 0.0990 0.1440 0.0366

CCG 0.0161 0.0619 0.0498

TCT 0.0371 0.1460 0.1536

GGT 0.0960 0.0336 0.1303

CGT 0.1384 0.1005 0.0401

TGG 0.0212 0.1347 0.0975

CGG 0.1645 0.0649 0.1415

7. Conclusions

Using simulated and real data examples, we substantiated
the observation made by others (Dempsteret al., 1977;
Excoffier and Slatkin, 1995; Longet al., 1995) that using
only one initial condition for the EM algorithm may lead
to incorrect results, associated with the existence of lo-
cal maxima of the likelihood function. Based on multiple
simulation studies, we determined that the most frequent
haplotypes remain the same, but their frequency estimates
could differ. It was already mentioned by the algorithm
developers (Dempsteret al., 1977; Excoffier and Slatkin,
1995; Longet al., 1995) that the EM algorithm should
be started from several initial conditions, but the resulting
sensitivity of the final estimates was not fully recognized.

Our study contributes to the understanding of the
properties of the EM algorithm when applied to real ge-
nomic data with loci deviating from HWE and exhibiting
a high linkage disequilibrium. We demonstrated that high
average heterozygosity within the analyzed genomic re-
gion resulted in a higher numerical complexity of the max-
imization problem. We evaluated the convergence speed
of the algorithm for these data. We observed that on aver-
age after less than 20 iterations the algorithm reached its
convergence point with the accuracy defined by the crite-
rion that the increase in the loglikelihood function be less
than 0.01. The distance of the estimates of the haplotype
frequencies from their convergence point (in the sense of
the Euclidean norm) was sufficiently small after only few
steps of the algorithm. Increasing the accuracy by setting
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the stopping criterion equal to10−5 results in an increase
in the average iteration number to 80.

We looked for relations among the locus heterozy-
gosities, the linkage disequilibrium pattern within the ge-
nomic neighborhood and the shape of the loglikelihood
function in the vicinity of the global maximum. The very
high linkage disequilibrium within the ATM genomic re-
gion together with relatively low heterozygosity may ex-
plain the smooth shape of the loglikelihood hypersurface
and a small number of the observed irregularities. A lower
linkage disequilibrium and higher heterozygosity inside
the BLM, WRN and RecQL genes may result in a less reg-
ular vicinity of the global maximum of the loglikelihood
hypersurface and the existence of multiple local maxima
on the loglikelihood hypersurface.

Our approach is more systematic than that of Manoet
al. (2002), who only presented the existence of two global
maxima of the loglikelihood hypersurface of the simulated
data set. We showed the existence of one local maximum
omitted in (Manoet al., 2002), and by using stochastic
Monte Carlo simulations, we estimated the probabilities
of reaching each of the maxima.

8. Software

There exist several software packages utilizing algorithms
to infer haplotype frequencies that are available on the In-
ternet:

• S. Schneider, D. Roessli, L. Excoffier. Arlequin
ver. 2.001: Software for population genetics data
analysis. Genetics and Biometry Laboratory, Univer-
sity of Geneva, Switzerland.

http://anthro.unige.ch/arlequin

• T. Niu, Z.S. Qin, X. Xu, J.S. Liu (Niuet al., 2002).
HAPLOTYPER and EM-DeCODER

http:/www.people.fas.harvard.edu/~junliu/em/em.html

• S. Mano, N. Yasuda, G. Tamiya, H. Inoko, T. Go-
jobori, T. Imanishi (Manoet al., 2002). RIGHT
ver. 1.0: A reasonable indicator of global maxima
for haplotype frequencies at the time.

http://www.jbirc.aist.go.jp/gendiv/RIGHT/

• D. Clayton. SNPHAP ver. 1.0: A program for esti-
mating frequencies of large haplotypes of SNPs.

http://www-gene.cimr.cam.ac.uk/clayton/software/

• M. Stephens, N.J. Smith, P. Donnely (Stephenset al.,
2001). PHASE ver. 1.0: A program for reconstruct-
ing haplotypes from population data.

http://www.stats.ox.ac.uk/mathgen/software.html

• J.S. Liu, S. Qin and T. Niu (Qinet al., 2002). PL-
EM. An algorithm for haplotype construction of the
Single Nucleotide Polymorphism.

http://www.people.fas.harvard.edu/~junliu/plem

Some authors offer their programs on request.
Among them are the following ones:

• A.G. Clark (1990): program INFERX,

• J.C. Longet al. (1995): program MLOCUS,

• M.E. Hawley and K.K. Kidd (1995): program
HAPLO.
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