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The aim of this paper is to present some approaches to tumour growth modelling using the logistic equation. As the first
approach the well-known ordinary differential equation is used to model the EAT in mice. For the same kind of tumour, a
logistic equation with time delay is also used. As the second approach, a logistic equation with diffusion is proposed. In
this case a delay argument in the reaction term is also considered. Some mathematical properties of the presented models
are studied in the paper. The results are illustrated using computer simulations.
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1. Introduction

The logistic equation (Verhulst, 1838) is one of the
most popular equations not only in mathematical ecology
(where we should look for its origin) but also in other ap-
plications. In this paper we focus on various possibilities
of tumour growth modelling on the basis of the logistic
equation. It appears that even such a simple ordinary dif-
ferential equation can be used to model such a compli-
cated process. In (Krug and Taubert, 1985) this equation
was proposed to describe the growth of the Ehrlich ascities
tumour (EAT) in a mouse. Ten years later, in (Schuster
and Schuster, 1995), a logistic equation with time delay
was used to model the same process. The authors showed
that the proposed equation is consistent with experimental
data much better than the equation without delays. This
equation has two terms with delays. Therefore, it is dif-
ferent from the classical Hutchinson equation (Hutchin-
son, 1948), which has only one delay term. The classical
logistic equation with delay was studied in many papers
and text-books (for details, see Gopalsamy, 1992; Kuang,
1993). Some preliminary analysis of the model proposed
in (Schuster and Schuster, 1995) was made in (Bodnar,
2000; Forýs, 2001; Forýs and Marciniak-Czochra, 2002).

Another possibility is to consider the logistic equa-
tion as a reaction-diffusion one. This type of logistic
equation is known as the Fisher equation (Fisher, 1937).
The idea of such a model for tumour growth comes from
(Drasdo and Höme, 2003). Finally, we combine the spa-

tial effects with delay effects and consider the delay lo-
gistic equation with diffusion. This model was proposed
in (Forýs and Marciniak-Czochra, 2002) and motivated by
(Gourley and So, 2002). In (Gourley and So, 2002), the
behaviour of solutions to a more general equation is stud-
ied but that analysis does not cover the case of the equation
presented in (Forýs and Marciniak-Czochra, 2002) and in
this paper.

2. Verhulst Equation

At the beginning, we recall the properties of the Verhulst
equation, i.e. the ordinary differential equation of the form

Ṫ (t) = rT (t)
(

1− T (t)
K

)
, (1)

where T (t) denotes the concentration of tumour cells in
a target organism,Ṫ (t) represents the derivative ofT
with respect to time,r is the net reproduction rate of the
tumour (which means the difference between proliferation
and apoptosis) andK is the carrying capacity.

We can show that for every positive initialT 0 the
solution to (1) is positive and tends to the carrying ca-
pacity K (see Fig. 1, where the phase portrait for (1) is
presented).

Calculating the second derivative

T̈ (t) = r2T (t)
(

1− T (t)
K

) (
1− 2T (t)

K

)
,
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Fig. 1. Phase portrait for (1) withK = r = 1.
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Fig. 2. Solution to (1) forK = r = 1 and T0 = 0.05.

we see that an inflection occurs att̄ such thatT (t̄) =
K/2. Therefore, forT 0 ∈ (0,K/2) the solution to (1)
has the well-known shape called the logistic curve (see
Fig. 2).

In (Krug and Taubert, 1985; Läuter and Pincus,
1989) the logistic equation was used to fit experimental
data for EAT (Ehrilch ascites tumour) in a mouse from
the Pathological Institute of the Leipzig University. In
(Krug and Taubert, 1985), the following form of the lo-
gistic curve was used to fit these data:

T (t) =
K

1 + exp(−r(t− θ))
,

where

θ =
1
r

ln
K − T0

T0
,

but in (Krug and Taubert, 1985) the authors calculatedθ
using the approximate expression1r ln K

T0
. In Table 1 we

Table 1. Experimental data for EAT (Ehrilch ascites tumour) in
a mouse and the results of approximation using the lo-
gistic equation forK = 150 × 107 and r = 0.6
which were obtained in (Krug and Taubert, 1985).

time number of tumour cells(×107) approximation

0 4.00 3.33

1 6.06

2 8.46 10.87

3 19.9 18.99

4 31.4 31.79

5 53.6 49.91

6 69.2 72.03

7 91.2 94.64

8 113.91

9 132 127.95

10 137.05

11 142 142.51

12 145.64

13 130 147.38

14 132 148.34

15 114 148.86

16 149.14

17 81.5 149.30

present the series of experimental measurements and the
results of approximation forK = 150×107 and r = 0.6
which were obtained in (Krug and Taubert, 1985).

In Table 1 and also in Table 24.1 in (Schuster and
Schuster, 1995) (where the data for tumours of different
age—7 and 14 days—are shown) we see that the time se-
ries coming from these data are not monotonic and, there-
fore, in (Schuster and Schuster, 1995) another mathemat-
ical description is proposed. This description is based on
the same Verhulst equation but with time delay. The au-
thors stressed biological reasons for the usage of such an
equation. On the other hand, it was a mathematical moti-
vation to use the Verhulst equation with time delay. From
the theory of delay differential equations it is known that
for one equation with delay oscillatory behaviour is pos-
sible even if for the same equation without delay there are
no oscillations (Gopalsamy, 1992; Hale, 1997).

3. Delay Logistic Equation

In (Schuster and Schuster, 1995) the following form of the
delay logistic equation was proposed to describe the EAT:

Ṫ (t) = rT (t− τ)
(

1− T (t− τ)
K

)
, (2)
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where the notation is the same as for (1) andτ reflects
the time delay connected with the cell cycle (Schuster
and Schuster, 1995). This equation differs from the clas-
sical form of the delay Verhulst equation (known as the
Hutchinson equation (Hutchinson, 1948)), which has only
one delay term. It is also possible to consider other types
of the delay logistic equation (for details, see (Kowal-
czyk and Forýs, 2002)). The Hutchinson equation was
studied in many papers and text-books (for details, see,
e.g., (Gopalsamy, 1992; Hale, 1997; Kuang, 1993)). In
this section we present the analysis of Eqn. (2). Some
preliminary remarks concerning the analysis of Eqn. (2)
can be found in (Bodnar, 2000; Foryś, 2001; Forýs and
Marciniak-Czochra, 2002).

At the beginning, we introduce some standard nota-
tion used in the theory of delay differential equations. Let
C = C([−τ, 0], R) denote the Banach space of contin-
uous functions from the interval[−τ, 0] to R, equipped
with the supremum norm| · |, and Tt(θ) = T (t + θ),
θ ∈ [−τ, 0]. In order to solve (2), we define an initial
nonnegative continuous functionT0 ∈ C. Using the step
method (Hale, 1997) we show that the solution to (2) is
defined for everyt ≥ 0,

T (t) = T (nτ) + r

∫ t−τ

(n−1)τ

T (s)
(

1− T (s)
K

)
ds,

for t ∈ [nτ, (n + 1)τ ], n ∈ N. The solution for non-
negativeT0 may be negative. The following result comes
from (Bodnar, 2000):

Lemma 1. Assume thatT0(θ) ∈ [0,K] for θ ∈ [−τ, 0].

1. If rτ > p1, wherep1 is the greatest root of the poly-
nomial

W1(x) = − 1
48

x3 − 1
8
x2 +

1
4
x + 1,

then there exists an initial functionT0 such that the
corresponding solution to Eqn. (2) has negative val-
ues.

2. If rτ < p2, wherep2 is the greatest root of the poly-
nomial

W2(x) = − 1
16

x3 − 1
4
x2 + 1,

then the corresponding solution to Eqn. (2) is non-
negative.

Now, we show that solutions to Eqn. (2) are bounded
from above.

Lemma 2. For every nonnegative initialT0 the solution
to Eqn. (2) is bounded from above.

Proof. We divide our proof into three parts.

(a) Let T0(θ) ∈ [0,K], for every θ ∈ [−τ, 0]. If
for any t ≥ 0 we have T (t) ≤ K, then the solution
is bounded byK. Otherwise, there exists a first point
t0 > 0 such thatT (t0) = K, and the solution enters the
region {T : T > K}. Hence, Ṫ (t0 + τ) = 0 and the
solution has a local maximum at the pointt0 + τ . We
obtain

T (t0 + τ) = K+r

∫ t0+τ

t0

T (s−τ)
(

1− T (s−τ)
K

)
ds

≤ K
(
1 +

rτ

4

)
(3)

and the same inequality is valid untilT (t) ≥ K. But if
there exists a next pointt1 > t0 such thatT (t1) = K,
then for t1 + τ the same inequality holds as well and
therefore the solution is bounded byK(1 + rτ/4).

(b) Assume now thatT0(θ) > K for θ ∈ [−τ, 0].
Then Ṫ (t) < 0 for t ∈ [0, τ ] and T (t) ≤ T 0(0) for
t ∈ [0, τ ]. Either T (t) > K for every t ≥ 0 and then
T (t) ≤ T 0(0) for every t ≥ 0, or there existst0 >
0 such thatT (t0) = K, but then (3) holds. Therefore
T (t) ≤ max{T 0(0),K(1 + rτ/4)}.

(c) Generally, if T0(0) ≤ K, then we
can use (3). If T0(0) > K, then T (t) ≤
max{maxt∈[0,τ ] T (t),K (1 + rτ/4)}. This completes
the proof.

Corollary 1. If T0(θ) ∈ [0,K] for θ ∈ [−τ, 0], then
T (t) ≤ K (1 + rτ/4) for every t ≥ 0.

On the other hand, ifT (t) < 0 on an interval of the
length greater than or equal toτ , then the solution tends
to −∞.

Corollary 2. If there existst0 > 0 such thatT (t) < 0
for everyt ∈ [t0, t0 +τ ], thenT (t) → −∞ as t → +∞.

Proof. Using the step method, we see that, for everyt ∈
[t0 + nτ, t0 + (n + 1)τ ], n ∈ N, n ≥ 1, the inequality

Ṫ (t) = rT (t− τ)
(

1− T (t− τ)
K

)
< 0

holds. Therefore,T is decreasing fort > t0 + τ . Equa-
tion (2) has no negative stationary solutions and hence
T (t) → −∞.

Knowing that the solution to Eqn. (2) exists for every
t > 0, we can study the asymptotic behaviour. Equa-
tion (2) has two stationary solutions—the trivial one and
the nontrivial carrying capacityK. We say that the sta-
tionary solutionT̄ to Eqn. (2) is stable if for everyε > 0
there existsδ > 0 such that for every initial continuous
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function T0 satisfying
∣∣T̄ − T0

∣∣ < δ the solution for this
initial function fulfils the inequality|Tt − T0| < ε. The
solution is asymptotically stable if it is stable andTt → T̄
for any initial condition sufficiently close tōT .

In analysing the asymptotic stability of these solu-
tions we follow (Forýs, 2001). We study the stability us-
ing the standard linearization theorem (Hale, 1997). For
the trivial solution the linearized equation is of the form

ẋ = rx(t− τ). (4)

Linearizing (2) around the pointT = K, we obtain a
similar equation:

ẋ = −rx(t− τ). (5)

The characteristic quasi-polynomial for both the solutions
has the same form:

Q(λ) = λ + be−λτ = 0, (6)

where b = −r for the trivial solution andb = r for
the nontrivial one. It is obvious that in order to use the lin-
earization theorem, we must haveQ(iω) 6= 0, ω ∈ R, i.e.
there is no purely imaginary characteristic value. Namely,
rτ 6= 3π/2 + 2kπ, k ∈ N for the trivial solution and
rτ 6= π/2 + 2kπ, k ∈ N for the nontrivial one. We use
the Mikhailov criterion (Forýs, 2001; Kolmanovskii and
Nosov, 1986; Kuang, 1993) to find stability and instability
regions forQ. This criterion states that all the roots of the
quasi-polynomialQ(λ) = P1(λ) + P2(λ)e−λτ (where
P1 and P1 are polynomials with degP1 > degP2 and
Q has no roots on the imaginary axis) have negative real
parts if and only if the increase∆ in the argument of
Q(iω) is equal to π

2 deg P1 as ω increases from 0 to
+∞.

ConsiderQ(iω) = Re(Q(iω)) + i Im (Q(iω)) for
τ > 0. We have

Re(Q(iω)) = b cos ωτ, Im (Q(iω)) = ω − b sinωτ.

The Mikhailov criterion implies the stability ofQ in the
case when the increase∆ in the argument ofQ(iω) is
equal toπ/2 as ω changes from 0 to+∞. Otherwise
Q is unstable. We have the following cases:

• If b > 0, then Q is stable forτ = 0. If τ < 1/b,
then Im(Q(iω)) increases asω increases from 0 to
+∞. Re(Q(iω)) oscillates betweenb and −b. It
is obvious thatarg Q(iω) → π/2 as ω → +∞
and arg Q(0) = 0. Therefore,∆ = π/2, which
proves stability. Whenτ increases, Im(Q(iω))
starts to oscillate and the Mikhailov hodograph may
intersect the real axis. The point of intersection is
ω̄ such that Re(Q(iω̄)) = 0. Therefore, ω̄τ =
π/2+kπ, wherek is a natural number. Hence either

Im (Q(iω̄)) = π/2τ + 2kπ/τ − b, or Im(Q(iω̄) =
3π/2τ + 2kπ/τ + b. If Im (Q(iω̄)) > 0 for all k,
then the hodograph does not circle round the point
(0, 0) and the change in the argument isπ/2. We
can see that Im(Q(iω̄)) > 0 for all k, if it is
positive for k = 0, which leads to the inequality
bτ < π/2. If τ increases, then the hodograph cir-
cles round(0, 0) once for bτ ∈ (π/2, 5π/2), twice
for bτ ∈ (5π/2, 9π/2), and so on.

• If b < 0, then arg Q(0) = π and arg Q(iω) →
π/2 + 2kπ, where k is an integer number.∆ =
−π/2 + 2kπ 6= π/2 for any k.

The above analysis gives stability or instability of
stationary solutions to Eqn. (2) under the assumption that
there is no imaginary characteristic value. On the other
hand, while considering the time scalingt → t/τ for
τ > 0, we see that it is possible to study (2) with unit de-
lay (i.e. on the spaceC([−1, 0], R)) and τ as a parame-
ter. The dependence of solutions to Eqn. (2) on the param-
eters is smooth and therefore it can be shown (Cook and
Driessche, 1986; Cook and Grosmann, 1982) that, as for
any scalar delay equation with a smooth right-hand side,
there may be only one critical valueτc > 0 for which
the solution loses stability. Moreover, if the solution is
unstable for somēτ , then it is unstable for everyτ > τ̄ .

Another problem is the Hopf bifurcation arising
when the solution loses stability. For the stationary so-
lution T = K the main assumptions of the Hopf bi-
furcation theorem (Hale, 1997) are satisfied. Therefore,
we only need to checkdx(rc)/dr, where x denotes the
real part of the characteristic value andrc = π/2τ is
the threshold value of the model parameter. Letλ(r) =
x(r) + iy(r) denote a characteristic value. Then x = −re−xτ cos yτ,

y = re−xτ sin yτ.
(7)

Using the implicit-function theorem, we get

dx

dr
(rc) =

rcτ

1 + r2τ2
=

2π

4 + π2
,

which is positive. Then the Hopf bifurcation occurs for
rc and the nontrivial stationary solution loses stability at
this point.

Corollary 3. The trivial stationary solution to Eqn. (2) is
unstable independently of the delay. The solutionT = K
is stable forrτ < π/2 and unstable forrτ > π/2. The
Hopf bifurcation occurs atrτ = π/2.

In (Schuster and Schuster, 1995) the following pa-
rameter values were used to fit Eqn. (2) to the data pre-
sented in Table 24.1:K = 100, r = 0.04 and τ =
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0, 1.7, 2.5, 3.4, 4.2. The authors solved the ordinary
logistic equation on the interval[0, τ ] and then used this
solution as the initial function for the initial pointt0 = τ .
The initial number of the EAT was equal to 4 for every
experiment. These solutions are shown in Fig. 3.
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Fig. 3. Solutions to Eqn. (2) with the parameters used in
(Schuster and Schuster, 1995) (K = 100, r = 0.04)
and different time delays. The simulations show that
the results presented in (Schuster and Schuster, 1995)
can be obtained after rescaling time. We see that for
the delay values proposed in (Schuster and Schuster,
1995) there are no oscillations while for delays which
are 10 times larger there are oscillating solutions and
the time interval where the solution is observed is also
10 times longer than that in (Schuster and Schuster,
1995). Therefore, the authors suppose that in (Schus-
ter and Schuster, 1995) the time was scaled by 10 to
obtain the figures presented therein.

4. Fisher Equation

The idea of tumour growth modelling using a logistic
equation with diffusion comes from (Drasdo and Höme,
2003). In the literature this equation is known as the
Fisher equation (Fisher, 1937), but it was studied on an

infinite-dimensional space,

∂T (t, x)
∂t

= rT (t, x)
(

1− T (t, x)
K

)
+ D∆T (t, x), (8)

wherex ∈ R, D ≥ 0 is the diffusion coefficient,∆T =
∂2T/∂x2.

This is a prototype equation which admits travelling
wave solutions (for details, see (Britton, 1986; Murray,
1993)). In this paper (as proposed in (Drasdo and Höme,
2003)), we consider Eqn. (8) on the space interval[0, 1],
and the Neumann boundary conditions

∂T

∂x
(t, x)|x=0,1 = 0, T (0, x) = T 0(x). (9)

The local existence of solutions to Eqn. (9) comes
from a general theory (Henry, 1981; Taira, 1995), since

f(T ) = rT (t, x)
(

1− T (t, x)
K

)
is Lipschitz continuous.

Lemma 3. The solution to Eqn. (9) is positive for any
positive initial T 0 and bounded above by the carrying
capacityK for initial data satisfyingT 0 ≤ K.

Proof. Let T (t, x) be any solution to (9).T0 = 0 and
T1 = K are stationary homogeneous solutions to the
problem. Then the application of the comparison theorem
(Smoller, 1994) with

NT =
∂T (t, x)

∂t
−D∆T (t, x)−rT (t, x)

(
1− T (t, x)

K

)
and

BT =
∂T

∂x
(t, x)|x=0,1,

while noting that NT0 = 0 = NT , 0 ≤ T 0 and
BT0 = 0 = BT , leads to the inequality0 ≤ T (x, t).
Applying this theorem toT (x, t) and T1, and then noting
that NT1 = 0 = NT , T 0 ≤ K and BT1 = 0 = BT ,
we obtain T (x, t) ≤ K. Hence,0 ≤ T (x, t) ≤ K if
0 ≤ T 0 ≤ K.

Lemma 3 shows thatΣ = {T | 0 ≤ T ≤ K} is an
invariant set for this problem. We can also show that every
Σ = {T | 0 ≤ T ≤ c}, where c < ∞ is a constant, is
an invariant set sincef(T ) = rT (t, x) (1− T (t, x)/K)
is Lipschitz continuous and forT 0 = c > K, f(T 0) =
rT 0

(
1− T 0/K

)
< 0. Thus, from invariant set theory

(Britton, 1986; Smoller, 1994) we obtain the global ex-
istence of the solutions to Eqn. (9) for everyT 0 ≥ 0.
The uniqueness follows immediately from the comparison
theorem.
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Since we showed that a solution to Eqn. (9) exists for
all times t ≥ 0, we wish to know its asymptotic behaviour
as t → +∞. Let T̄ (x) be a stationary solution to (9) with
initial conditionsT (0, x) = T̄ 0(x).

T̄ (x) is a stable solution if, for everyε > 0, there
exists δ such that for every initial functionT 0(x) such
that ‖T 0(·) − T̄ 0(·)‖L∞([0,1]) < δ, a solution T ex-
ists for this initial function for allt ≥ 0 and ‖T (·, t) −
T̄ (·)‖L∞([0,1]) < ε for all t > 0.

We say thatT̄ (x) is asymptotically stable if it is sta-
ble and there is a neighbourhoodN of T̄ such that ifT
is a solution to Eqn. (9) withT (0, x) ∈ N , then T exists
for all t ≥ 0 and limt→∞ ‖T (·, t)− T̄ (·)‖L∞([0,1]) = 0.

It can be shown (Murray, 1993; Smoller, 1994) that
there is no stable spatial pattern for a scalar reaction-
diffusion equation in one dimension with Neumann
boundary conditions. The spatial pattern means a spatially
non-homogenous stationary solution. Thus, the only sta-
ble solutions to (9) are spatially homogeneous and the so-
lutions to (9) have similar properties as in the case without
diffusion (cf. Fig. 4). It is obvious that (9) has the same
spatially homogenous stationary solutions as (1).

Fig. 4. Time evolution of the solution to Eqn. (9) for
r = 0.5, K = 2 and the diffusion coefficient
D = 1. We observe that for positive initial con-
ditions the solutionT tends to the spatially ho-
mogeneous stationary solutionT = 2 (= K).

The stability of stationary solutions to reaction-
diffusion equations can be analysed by consider-
ing the eigenvalues of the linearized system (cf.
(Britton, 1986; Smoller, 1994)). Sincef(T ) =
rT (t, x) (1− T (t, x)/K) is Lipschitz continuous and
Fréchet differentiable with the derivativedfT =
df(T )/dT , the mappingT → dfT is continuous and
D∆ generates a compact semigroup fort ≥ 0, we can
apply the theorem about the linear stability of stationary
solutions, which says that̄T is linearly stable if and only
if there existsα < 0 such that the spectrum ofA + dfT̄

lies in the half space Rez ≤ α (cf. Theorem 11.20
in (Smoller, 1994) or Theorem 5.60 in (Britton, 1986)).
Thus, in order to study the stability of these solutions to

Eqn. (9) we consider the linear variational equation

v̇ = av + D∆v,
∂v

∂x

∣∣∣
x=0,1

= 0, v(0, x) = v0, (10)

where a = r for the trivial solution anda = −r for the
nontrivial one. We look for a solution to Eqn. (10) of the
form v(t, x) = v0e

λtW (x), whereW ′′(x) + k2W (x) =
0, k ∈ Z. This solution exists only forλ = a − dk2.
Therefore, if a = −r, then λ < 0 for every integerk,
and if a = r, then λ > 0, for k = 0.

The theorem about the linearized stability for
reaction-diffusion equations with locally Lipschitzian and
Fréchet differentiable kinetics functions (cf. (Britton,
1986) Th. 5.61 or (Smoller, 1994) Th. 11.22) says that
if the stationary solutions of such equations are linearly
stable, then they are asymptotically stable. HenceT = 0
is unstable andT = K is asymptotically stable as solu-
tions to Eqn. (9), as well as to Eqn. (1). Moreover, if we
assume thatT is separated from 0, then we can show that
T tends toK as t → +∞.

Lemma 4. If T 0(x) ≥ α for x ∈ [0, 1] and α ∈ (0,K),
then T (t, x) → K as t → +∞.

Proof. Using the comparison theorem, we check that
T (t, x) ≥ α, for t ≥ 0 and x ∈ [0, 1]. Set v = T −K.
Then

v̇ = −rv
( v

K
+ 1

)
+ D∆v,

∂v

∂x

∣∣∣
x=0,1

= 0 (11)

and v(t, x) ≥ −(K − α), for t ≥ 0 and x ∈ [0, 1].
Defining

ξ(t) =
1
2

∫
[0,1]

v2(t, x) dx,

we get

ξ̇(t) =
∫

[0,1]

v̇(t, x)v(t, x) dx.

Multiplying (11) by v(t, x) and integrating the result by
parts, we obtain

ξ̇(t) = − r

∫
[0,1]

v2(t, x) dx− r

∫
[0,1]

v3(t, x)
K

dx

−D

∫
[0,1]

(∂v

∂x

)2

(t, x) dx.

If T > K, thenv > 0 and ξ̇(t) < −2rξ. If T < K, then
0 > v > −(K−α) andv3 > −(K−α)v2, which leads to
the inequalityξ̇ < −2rα/Kξ. In both the cases we have
ξ(t) → 0 as t → +∞, which implies thatT (t, x) → K.



Logistic equations in tumour growth modelling 323

5. Delay Logistic Equation with Diffusion

The idea of this section is to study the logistic equation
with delay and diffusion, and is based on (Gourley and
So, 2002), where the authors looked for spatial patterns
connected with the delay of the reaction in some class of
reaction-diffusion equations. We study the problem

∂T (t, x)
∂t

= rT (t− τ, x)
(

1− T (t− τ, x)
K

)
+ D∆T (t, x), x ∈ [0, 1], (12)

T (t, x) = T 0(t, x) for (t, x) ∈ [−τ, 0]× [0, 1],

∂T (t, x)
∂x

∣∣∣
x=0,1

= 0 for t ≥ −τ,

whereτ > 0 is a constant delay andD ≥ 0 is a diffusion
coeficient.

To study the existence of solutions to (12), we use the
step method (Hale, 1997) and study the Neumann problem
on the intervals[nτ, (n+1)τ ] for nonnegative integersn.
Therefore, on every time interval so defined we solve the
problem

∂T (t, x)
∂t

= f(t, x) + D4T (t, x),

(t, x) ∈ [nτ, (n + 1)τ ]× [0, 1]

with the initial function

T (nτ, x), x ∈ [0, 1]

and
∂T

∂x
(t, x)|x=0,1 = 0.

A local solution to Eqn. (12) exists and is unique (Taira,
1995).

Using the step method and the comparison theorem
(Smoller, 1994), we obtain that if a solution is nonnega-
tive and bounded forD = 0, then it remains in the same
region for D > 0.

Now, we formally follow the ideas presented in the
previous section and study the linearized equation

Ṫ (t, x) = aT (t− τ, x) + D∆T (t, x),

∂T

∂x

∣∣∣
x=0,1

= 0, T (0, x) = T 0,
(13)

where a = r for the trivial solution anda = −r for
the nontrivial one. Next, also formally, we consider the
characteristic equation associated with (13).

Consider the case ofD = 0 and the solutionT =
K. Corollary 3 yields that it is stable forrτ < π/2 and

unstable otherwise. ForD > 0, the characteristic equa-
tion changes to

λ + re−λτ + Dk2 = 0,

wherek ∈ Z+ results from the Neumann boundary prob-
lem. Assume thatrτ < π/2. Studing the Mikhailov
hodograph (Forýs, 2001) we conclude that, for every inte-
ger k such thatDk2 > r, the characteristic values remain
in the left complex half-plane. On the other hand, for ev-
ery integerk such thatDk2 < r, there is a switching in
the stability at the point

τk =
1√

r2 −D2k4
arccos

Dk2

r
.

Therefore, if D > r and r < π/2, then T = K
is stable. If r > π/2, then this solution is unstable inde-
pendently of the diffusion coefficientD. If D < r and
r/D 6= k2, then we have a finite sequence(τk) of critical
values of delay. Letτmin denote the minimal value ofτk.
We see thatτk increases with an increase ink and hence
τmin = π/2r. Therefore, if τ0r < π/2, i.e. the trivial
solution is stable for the case without diffusion, then for
every integerk such thatDk2 < r we haveτk > τ0,
which means that the critical valueτ0 belongs to the in-
terval where the solution is stable. This implies that the
solution T = K is stable independently of the diffusion
coefficient D in the stability region for the case without
diffusion.

We can see that if the stationary solution is unstable
without delay, then it remains unstable for every delay and
every diffusion coefficient. It leads to the instability of the
trivial solution.

These conclusions are confirmed by simulation re-
sults. We carried out simulations of Eqn. (12) for the pa-
rameter valuesr = 0.5 and K = 2. The stationary state
T̄ = 2 is perturbed using a cosine function with the am-
plitude equal to 0.1 or a small random perturbation (i.e.
the initial value at every discretization point is the value of
the spatially uniform solution perturbed by a small value
which is randomly generated). The asymptotic behaviour
is similar for both types of perturbations. Therefore, we
present only examples of figures in the regular case. Sim-
ulation results agree with the analysis. For small delays,
i.e. τ < π, the solution T̄ is stable (see Fig. 5). For
τ = π it loses stability and oscillations in time appear
(Fig. 6). An example of undamping oscillations is shown
in Fig. 7, whereτ = 4. For delays greater thanτ = π the
amplitude of oscillations grows at the beginning and sta-
bilises eventually. For large delays (see Figs. 8 and 9) the
solution becomes negative. We see that the solutions do
not depend on the initial perturbation. Diffusion makes
them spatially homogenous. The situation seems to be
analogous to the equation without delay.
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Fig. 5. Time evolution of the solution to Eqn. (12) forr = 0.5,
K = 2, delay τ = 1 and diffusion coefficientD = 1.
We performed simulations for timet = 150. Observe
that the stationary solution̄T = 2 is stable.

Fig. 6. Time evolution of the solution to Eqn. (12) forr = 0.5,
K = 2, delay τ = 3.1415927 and diffusion coefficient
D = 1, for time t = 200. The stationary solution̄T =
2 is unstable and temporal oscillations appear.

Fig. 7. Time evolution of the solution to Eqn. (12) forr = 0.5,
K = 2, delay τ = 4 and diffusion coefficientD = 1,
time t = 200. We observe temporal oscillations.

Fig. 8. Time evolution of the solution to Eqn. (12) forr = 0.5,
K = 2, delay τ = 5 and diffusion coefficientD = 1.
We performed simulations for timet = 100. For t =
80 the solution already becomes negative.
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Fig. 9. Time evolution of the solution to Eqn. (12) forr = 0.5,
K = 2, delay τ = 10 and diffusion coefficientD = 1.
We performed simulations for timet = 100. For t =
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