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DNA microarrays provide a new technique of measuring gene expression, which has attracted a lot of research interest in
recent years. It was suggested that gene expression data from microarrays (biochips) can be employed in many biomedical
areas, e.g., in cancer classification. Although several, new and existing, methods of classification were tested, a selection of
proper (optimal) set of genes, the expressions of which can serve during classification, is still an open problem. Recently we
have proposed a new recursive feature replacement (RFR) algorithm for choosing a suboptimal set of genes. The algorithm
uses the support vector machines (SVM) technique. In this paper we use the RFR method for finding suboptimal gene
subsets for tumor/normal colon tissue classification. The obtained results are compared with the results of applying other
methods recently proposed in the literature. The comparison shows that the RFR method is able to find the smallest gene
subset (only six genes) that gives no misclassifications in leave-one-out cross-validation for a tumor/normal colon data set.
In this sense the RFR algorithm outperforms all other investigated methods.
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1. Introduction

DNA microarrays (biochips) constitute a new tool which
can be used by biologists to obtain information about
expression levels of thousands of genes simultaneously.
Their main advantages are: the reproducibility and scala-
bility of the obtained data, a short time of one experiment
and, of course, a large number of genes whose expression
is measured. The technique of producing DNA microar-
rays is improving continuously.

In general, there are two different types of DNA mi-
croarrays: spotted microarrays and oligonucleotide mi-
croarrays. There are several important differences be-
tween these two types of microarrays. One of them is the
technology of production. While spotted microarrays are
obtained by using special spotting robots, oligonucleotide
microarrays are synthetized, often using photolitographic
technology (the same as used during the production of
computer chips).

There are many ways of exploiting data from mi-
croarrays. One of the most frequently used manners is the
classification of samples belonging to different classes.

Such a classification can be applied, e.g., to medical di-
agnosis and choosing a proper medical therapy. One of
the first papers dealing with the problem of classification
was the one by Golubet al. (1999). In this paper sam-
ples of two types: acute myeloid leukemia (AML) and
acute lymphoblastic leukemia (ALL) were classified and
clusterized. For classification purposes the authors pro-
posed the so-called weighted voting (WV) algorithm. The
AML/ALL data set (available via the Internet) was used
by other scientists for testing different analysis methods.
For example, the same data set was used for testing a
more traditional perceptron algorithm in (Fujarewicz and
Rzeszowska-Wolny, 2000; 2001). The obtained results
were slightly better than those obtained using the WV
algorithm. In (Fureyet al., 2000) a relatively new and
promising method of classification and regression called
the support vector machines (Boseret al., 1992; Vapnik,
1995; Christianini and Shawe-Tylor, 2000) was applied to
the same data set. In (Brownet al., 2000) the SVM tech-
nique was tested on another microarray data set. More-
over, in this work the SVM approach was compared with
other methods such as decision trees, Parzen windows,
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Fisher’s linear discriminant, and the conclusion was that
the SVM significantly outperformed all other investigated
methods. Therefore the SVM technique can be regarded
as a very promising supervised learning tool dealing with
microarray gene expression data.

Choosing a proper learning and classification method
is a final and very important element in the recognition
process when dealing with gene expression data. How-
ever, there are other earlier stages of data processing,
which are also very important because of their signifi-
cant influence on the classification quality. One of these
elements is gene selection. In (Golubet al., 1999) a
method called the neighborhood analysis (NA) was used,
while in (Fujarewicz and Rzeszowska-Wolny, 2000; 2001)
Sebestyen’s criterion (1962) modified by Deuser (1971)
was applied. In both methods a performance index evalu-
ating discriminant ability is calculated separately for each
gene. After this, a set ofn genes with the highest index
value is chosen for learning and classification purposes.
Such an approach seems reasonable. However, it may not
be the best way of choosing a working gene set. This is
due to the fact that expression levels of different genes are
strongly correlated and a univariate approach to the prob-
lem is not the best way. On the other hand, in the case of
microarray gene expression data, a naive approach to the
problem by checking all subsets of thousands of genes is
impossible due to a high computational cost.

Recently several new multivariate methods of choos-
ing optimal (or suboptimal) gene subsets have been pro-
posed. Szaboet al. (2002) proposed a method that uses
the so-calledv-fold cross-validation combined with an ar-
bitrarily chosen method of feature selection. In the ap-
proach set forth in (Chilingaryanet al., 2002) the Maha-
lanobis distance between the vectors of gene expression
is used to iteratively improve the actual gene subset. An-
other algorithm, combining genetic algorithms with the
k-nearest neighbor, was proposed by Liet al. (2001).

In (Fujarewiczet al., 2003) a new method called the
recursive feature replacement (RFR) for gene selection
was proposed.1 The RFR method uses the SVM tech-
nique and iteratively optimizes the leave-one-out cross-
validation error. The comparison of the RFR method with
other algorithms such as the NA algorithm and those pro-
posed in the papers (Szaboet al., 2002; Chilingaryanet
al., 2002) showed the superiority of the RFR method.

Recently a new method for gene selection, also based
on SVM, was proposed in (Guyonet al., 2002). The
method, called the recursive feature elimination (RFE),
also outperformed other investigated methods.

One of benchmark data sets which are frequently
used for testing various methods of gene expression data
processing is the tumor/normal colon data set. This data

1 In (Fujarewiczet al., 2003) the name RFR was not used.

set was presented and analyzed (clustered) in the paper
(Alon et al., 1999).2 Expression levels of about 6500
genes were measured for 62 samples: 40 tumor and 22
normal colon tissues. 2000 of them were selected by the
authors for clustering/classification purposes. The main
result of the paper (Alonet al., 1999) was the cluster-
ing experiment of the data. The data were grouped into
two clusters with 8 wrong assignments: three normal tis-
sues were assigned to the “tumor” cluster and five tumor
tissues were assigned to the “normal” cluster. In (Furey
et al., 2000) the SVM technique was used to classify the
same data set. The classification was performed twice: for
the whole data set (2000 genes) and for top 1000 genes.
In both cases the result of leave-one-out cross-validation
was six misclassifications (3 tumor and 3 normal ones).
Nguyen and Rocke (2002) tested two methods of data se-
lection on the colon data set: principal component analy-
sis (PCA) and partial least squares (PLS), and two meth-
ods of classification: logistic discrimination (LD) and
quadratic discriminant analysis (QDA). The best results
were obtained after applying LD classification to the first
50 and 100 components (linear combinations of gene ex-
pression vectors) given by the PLS method. Unfortu-
nately, there were still four misclassifications obtained in
leave-one-out cross-validation.

In this paper we apply RFR, RFE, NA and pure
Sebestyen methods to the tumor/normal colon data set.
The comparison of the obtained results shows that the
RFR method finds the smallest gene subset that gives no
misclassifications in leave-one-out cross-validation.

The paper is organized as follows. In Section 2 we
present methods we used for colon data preprocessing and
preselection. The RFR method of gene selection is de-
scribed in Section 3. Finally, Sections 4 and 5 present
results and conclusions. In addition, because the RFR
method uses the SVM technique, the latter is briefly de-
scribed in Appendix.

2. Data Preprocessing and Preselection

The tumor/normal data set contains expression levels of
2000 genes measured using Affymetrix oligonucleotide
microarrays for 62 samples (40 tumor and 22 normal) of
colon tissues. The data set can be expressed in the form of
a matrix composed of 62 column vectors

X = [x1,x2, . . . , ,xN]. (1)

Each vectorxi has 2000 elements, so that the dimension
of the matrix X is 2000 × 62. The data were prepro-
cessed using the following steps. Firstly, the data were

2 The tumor/normal colon data set is freely obtainable on the web
site http://microarray.princeton.edu/oncology/
affydata/
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log transformed (base 10). Then all columns and rows
were normalized. Normalization consists in the substrac-
tion of the mean and division by the standard deviation of
an appropriate vector. Finally, we applied the “squashing
function” suggested in (Guyonet al., 2002):

f(x) = atan
(x

c

)
(2)

in order to reduce the influence of outliers. We chose the
value of c = 0.1.

After the preprocessing stage the data were pres-
elected using the modified Sebestyen criterion (Deuser,
1971; Sobczak i Malina, 1978). The modified Sebestyen
criterion for a given subset of genesΓ and for a more
general case ofL classes is given by the formula

GΓ =
1
L

L∑
i=1

 1
L−1

L∑
j=1,j 6=i

SΓ(i, j)− mi

mi−1
SΓ(i, i)

, (3)

wheremi is the number of samples representing thei-th
class and

SΓ(i, j) =
1

mimj

∑
p∈Ωi

∑
t∈Ωj

∥∥xΓ
p − xΓ

t

∥∥2
(4)

is a measure of separation between classesi and j. In (4)
the symbol‖ · ‖ stands for the Euclidean norm,Ωi is the
set of the indices of samples from thei-th class andxΓ

p is
the vector of expression levels of thep-th sample for the
gene subsetΓ. The main advantage of the criterion (3) is
its additivity property:

GΓ =
∑
k∈Γ

Gk, (5)

whereGk is calculated using (3) for only one feature. In
this case Eqn. (4) takes the form

Sk(i, j) =
1

mimj

∑
p∈Ωi

∑
t∈Ωj

(xk
p − xk

t )2. (6)

Formula (6) is a measure of separation between classesi
and j along thek-th axis (xk

p is the expression level of
the k-th gene in thep-th sample).

Hence, in order to find the best subset ofl genes, i.e.,
that with the highest value of (3), one has to take simplyl
genes with the highest values ofGk calculated separately
for each gene. The values ofGk for all 2000 genes are
presented in Fig. 1. For the future calculations, we chose
the first 300 genes.

3. Recursive Feature Replacement (RFR)
Method

In this section the RFR method (Fujarewiczet al., 2003)
will be described. At the beginning, two performance in-
dices used for evaluating the classification quality for a

Fig. 1. Sebestyen criterionGk calculated for all 2000
genes separately and drawn in descending order.

particular gene subset will be described. Both indices are
based on the result of leave-on-out cross-validation but
they use different mathematical formulas.

3.1. Performance Index

3.2. Evaluation of Gene Subset Generalization Ability

The fact that is worth recalling here is that the aim of con-
structing a recognition system is not to perfectly separate
the training set. The main aim is to find the feature set
(a gene set in our application), the form of the classifying
function and the learning algorithm, for which the sam-
ples not being used during the learning phase are classified
correctly. In other words, the learning machine should be
characterized by a good generalization ability.

In general, in the leave-one-out cross-validation
method one vectorxk is removed from the training set
and the remaining vectors serve during the learning phase.
After this it is checked how the removed vector is classi-
fied. In the RFR method the SVM technique is used for
finding a linear classification rule (see Appendix). If the
SVM is used, the leave-one-out cross-validation method
can be formally stated as follows:

1. Remove one vectorxk from the training set.

2. For the remaining vectors calculatewo and bo us-
ing the SVM method (see Appendix, Eqns. (22)
and (23)).

3. For the removed vectorxk calculate the function

fnorm(xk) =
dk

‖wo‖
(woT

xk + bo). (7)

4. Repeat Steps 1–3 fork = 1, 2, . . . , N .
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In (7), dk is the target output (14), see Appendix. The
symbol ‖ · ‖ denotes the Euclidean norm. Owing to the
division by the norm ofwo the absolute value of (7) is
equal to the Euclidean distance between the decision sur-
face and the vectorxk. This is because after this normal-
ization the norm of the gradient of the function (7) is equal
to 1. The positive value of (7) indicates that the vectorxk

is correctly classified.

As has been mentioned above, we use two different
performance indices based on all values of (7) calculated
for all samples.

The first index is a simple percentage index which
takes into account how many samples are correctly classi-
fied in leave-one-out cross-validation:

Jcv1 =
Ncorr

N
· 100%, (8)

where Ncorr is the number of positive values of (7). The
second performance index is based only on the worst
(minimal) value among all values of (7):

Jcv2 =
1√
n

min
k

fnorm(xk). (9)

In (9), the result is divided by
√

n in order to make the re-
sults comparable for training sets with different numbers
of genesn. High values of (8) and (9) indicate a good gen-
eralization ability. If the performance index (9) is positive,
then all samples during leave-one-out cross-validation are
classified correctly.

Note that the cross-validation method evaluates the
generalization ability of the whole recognition system.
Since in our approach the form of the discriminant func-
tion and the learning algorithm are fixed, the outcome of
the cross-validation method presented here depends only
on the way of selecting the gene set. Moreover, for a
fixed gene subset this outcome is unique because both the
method of cross-validation and the SVM technique give
unique results.

Let us denote byΩ the set of numbers of all mea-
sured genesΩ = {1, 2, . . . , N}, and byΩ∗ ⊂ Ω any of
its subsets. The symbols

Jcv1(Ω∗) (10)

and
Jcv2(Ω∗) (11)

will respectively denote the values of the performance in-
dices (8) and (9) calculated for the gene subsetΩ?.

3.3. Algorithm

As has been mentioned in the Introduction, due to a high
computational cost, it is impossible to examine all subsets

of thousands of genes the expressions of which are mea-
sured using microarrays. Therefore the RFR algorithm
uses a heuristic rule, where the subset of genesΩ? is
modified in successive iterations so that the value of the
performance index increases. Since the performance in-
dex (8) takes only discrete values, the second performance
index (9), which is real valued, is used. The algorithm
consists in performing the following steps:

1. Read an initial subsetΩ∗ ⊂ Ω.

2. Find the single gene of the numberk ∈ Ω? that max-
imizes Jcv2(Ω∗\{k}).

3. Find the single gene of the numberl ∈ Ω\Ω? that
maximizesJcv2(Ω∗ ∪ {l}).

4. If Jcv2((Ω?\{k}) ∪ {l}) > Jcv2(Ω?), then Ω∗ :=
(Ω∗\{k}) ∪ {l}, and go to Step 2.

5. Stop.

Note that the number of genesn in the subsetΩ?

does not change, so the algorithm has to be run for ev-
ery n = 2, 3, . . . ,M − 1 , whereM is the number of all
genes. As a starting gene subset forn we choose an opti-
mal gene subset obtained forn− 1 supplemented by one
of the remaining genes with the best modified Sebestyen
criterion (as described in the previous section). As the
first optimal one-element gene subset we choose simply
the gene which maximizes (9).

4. Results

We implemented and applied to the tumor/normal colon
data set the following four methods: recursive feature
replacement (RFR), recursive feature elimination (RFE),
neighborhood analysis (NA), and the pure Sebestyen
method. The NA method and the Sebestyen criterion were
applied to the entire 2000 gene data set, while RFR and
RFE were applied to the set of the first (best) 300 genes
previously preselected by the Sebestyen criterion as men-
tioned in Section 2.

In Fig. 2 the value of the performance index (9) cal-
culated for the first 30 gene subset obtained using different
methods is presented. It can be easily seen that the RFR
and RFE methods are superior to the NA and Sebestyen
methods. For small gene subsets the performance index
calculated using the RFR method grows faster and starts
to be positive for the subset of only six genes. The perfor-
mance index reaches first a local maximum for the subset
of ten genes which are listed in Table 1. The suboptimal
subset of six genes, for which the performance index starts
to be positive, is a subset of a larger 10-element subopti-
mal subset and it is listed on top in Table 1. It is not a
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general rule of the RFR method but in the case of this par-
ticular colon data set it appeared to be true.

For larger gene subsets it is less than the values of the
performance index in the RFE method but still remains
positive. This means that all samples are classified cor-
rectly in leave-one-out cross-validation, see Fig. 3. Hence
from a practical point of view this difference is not very
important.

Fig. 2. Performance indexJcv2 calculated for the first 30
gene subsets obtained using different methods of
data selection.

Table 1. Set of 10 genes selected using the RFR method.

Gene number Gene name

H06524 Gelsolin Precursor, Plasma (Human)

M82919 Human gamma amino butyric acid (GABAA) –

beta-3 receptor – subunit mRNA, complete cds.

T59878 Peptidyl-Prolyl Cis-Trans Isomerase

B Precursor (HUMAN)

H64807 Placental Folate Transporter (Homo sapiens)

M36634 Human vasoactive intestinal peptide (VIP)

mRNA, complete cds.

X12369 Tropomyosin Alpha Chain, Smooth Muscle

(HUMAN)

T50797 Deoxyridine 5’-Triphosphate Nucleotidohydro-

lase (Human)

X15880 Human mRNA for collagen VI alpha-1

C-terminal globular domain

R75843 Translational Initiation Factor 2 Gamma

Subunit (Homo sapiens)

M58050 Human membrane cofactor protein (MCP)

mRNA, complete cds.

Fig. 3. Performance indexJcv1 calculated for the first 30
gene subsets obtained using various methods of
data selection.

In this article we use an approach to the evaluation of
the generalization ability of a gene subset based on leave-
one-out cross-validation in the standard meaning, where
one sample is removed in one learning-classification cy-
cle. Such an approach was used in all previously cited
works devoted to gene selection. An approach where one
sample is removed in one selection-learning-classification
cycle seems to be quite reasonable, although it requires
much harder computational efforts.

The ten genes separated by the RFR method reflect
various cellular mechanisms. Most of them were previ-
ously observed to be associated with the colon cancer. The
vasoactive intestinal peptide (VIP), which plays an impor-
tant role as a neuroendocrine mediator in the secretion of
water and electrolytes in the gut, is suggested to promote
the growth and proliferation of tumor cells. Patients with
colorectal cancer occurred to have an elevated serum level
of VIP and a high density of VIP receptors in cancer cells
(Hejna et al., 2001). It became the base of performing
scintigraphy with [123I]VIP radioligand, which was con-
cluded to be a sensitive method for radioimaging colorec-
tal cancer (Radereret al., 1998). The increase in the dUT-
Pase (deoxyuridine 5’-triphosphate nucleotidohydrolase)
activity takes place during mitogenic stimulation and the
proliferative stage of the cell. Colorectal adenomas and
adenocarcinomas revealed a wide spectrum of dUTPase
expressions and its high level may be a negative prognos-
tic marker (Fleishmannet al., 1999). It predicts tumor
resistance to chemotherapy, a shorter time to progression
and a shorter overall survival (Ladneret al., 2000). Two
other genes are engaged in the immune response. The
peptidyl-prolyl isomerase-B precursor (cyclophilin B) is
involved in T cell activation and its expression is observed
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in tumor infiltrating lymphocytes in many types of can-
cer (e.g., colon cancer) (Gomiet al., 1999; Tamuraet al.,
2001). The membrane cofactor protein (MCP, CD46) is
one of the proteins protecting cells, also tumor cells, from
the lysis by an activated complement (Jurianzet al., 1999).
Expressions of complement-regulatory proteins are often
deregulated in cancer, which results in tumors that are re-
sistant to an attack by complement. The MCP is highly ex-
pressed by glandular epithelium of human breast and col-
orectal tumor tissues and represents a possible mechanism
of the tumor escape (Thorsteinssonet al., 1998; Schmitt
et al., 1999). On the other hand, the underexpression of
gelsolin was observed in cancer cells. Gelsolin is a multi-
functional actin-binding protein which acts as both a regu-
lator and an effector of apoptosis (Kwiatkowski, 1999). It
is downregulated in several types of tumors and its abnor-
mal expression is among the most common defects found
in human breast, gastric, bladder and colon cancer (Porter
et al., 1993; Winstonet al., 2001; Rao, 2002). Also, the
loss of basement membrane components, such as type IV
collagen, has been demonstrated in colorectal cancer (Gal-
bavy et al., 2002; Okaet al., 2002). It is related to the
loss of differentiation and the malignant potential of ep-
ithelial tumors of the colon. The tropomyosin alpha chain
(smooth muscle) represents the cluster of muscle genes
mentioned by Alonet al. (1999) as those that differenti-
ate between tumors and normal tissues. It is due to a high
muscle content in the normal samples. Similarly, the de-
crease in the GABAA receptor expression may be due to
the lack of an innervated circular muscle strip in a tumor
tissue (Grider and Makhlouf, 1992). Although there has
been no evidence so far of association between cancero-
genesis and translational initiation factor 2 gamma subunit
(eIF-2 gamma), other translation components such as eIF-
4 and eIF-2 alpha have been reported to be overexpressed
in human tumors, including colorectal cancer (Loboet al.,
2000; reviewed in: Duaet al., 2001). The role of the gene
number H64807 is not very clear and it needs further re-
search.

5. Conclusion

In this article the problem of finding differentially ex-
pressed genes for the tumor/normal classification of colon
tissues has been investigated. The data set consisted of
gene expression profiles of 2000 genes measured for 62
colon tissues (40 tumor and 22 normal) using Affymetrix
DNA microarrays. Four methods of gene selection: re-
cursive feature elimination, recursive feature replacement,
neighborhood analysis and the pure Sebestyen criterion
were used. The comparison showed that the RFE and RFR
methods worked much better than the two other investi-
gated methods.

The results of leave-one-out cross-validation ob-
tained for the RFE and RFR methods showed that the RFR
method gives better values of the performance index (9)
for a smaller gene subset while the RFE method is slightly
better for larger gene subsets. This phenomenon is proba-
bly related to the nature of both the methods. In the RFR
method we start with a one-element gene subset and in
successive runs of the algorithm the suboptimalk-element
gene subsets are reached starting from a previously found
(k − 1)-element suboptimal gene subset. The occurrence
of local maxima is the reason why a global optimum is not
reached. On the other hand, in previous iterations the RFE
eliminates (for larger gene subsets) the genes which could
be useful in smaller gene sets.

The ten genes selected by the RFR method for
which the leave-one-out cross-validation performance in-
dex reached an optimal value were listed and analyzed.
Most of them have been previously reported to be associ-
ated with colon cancer.
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Appendix – Support Vector Machines

Here the reader who is not familiar with the SVM method
will find a very brief introduction to this area. For more
details, we refer the reader to the books by Christian-
ini and Shawe-Tylor (2000), Haykin (1999) and Vapnik
(1995).

Although SVM is a universal tool for nonlinear clas-
sification and regression, the basic idea of the method
will be explained using the linear classification of a lin-
early separable training set. Consider a set ofN vectors
{xi}N

i=1,xi ∈ Rn. Each vector represents one and only
one classω1 or ω2. In a standard linear classification

problem we look for a weight vectorw ∈ Rn and a scalar
bias b of the linear classifying (discriminant) function

f(x) = wT x + b, (12)

which satisfies the following set of inequalities:{
wT xi + b > 0 for xi ∈ ω1,

wT xi + b < 0 for xi ∈ ω2.
(13)

If such a function exists, the training set is calledlinearly
separable.

For notational simplicity, introduce the set of desired
responses (target outputs){di}N

i=1:

di =

{
+1 when xi ∈ ω1,

−1 when xi ∈ ω2.
(14)

The discriminant function (12) determines a hyperplane in
ann-dimensional input space which is called thedecision
surface. The equation of this surface is as follows:

wT x + b = 0. (15)

Several possible positions of the decision surface forn =
2 are presented in Fig. 4. The crosses and circles indicate

Fig. 4. Three examples of the decision surface
perfectly separating the training set.

members of theω1 and ω2 classess, respectively. For
a linearly separable case there are an infinite number of
“good” discriminant hyperplanes, i.e., those satisfying in-
equalities (13), but only one is optimal in the SVM sense,
see Fig. 5.

The optimal hyperplaneP o satisfies inequalities
(13), but it also maximizes themargin of separationγ,
which indicates the Euclidean distanceρ between the hy-
perplaneP and the closest vector. Hence the problem can
be formulated mathematically as follows:

Problem 1. Find optimal wo and bo that maximize

γ = min
i

ρ(P,xi), i = 1, 2, . . . , N (16)

subject to the constraints (13).
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Fig. 5. Optimal decision surface in the SVM sense.

The vectors for whichρ(·) takes on a minimal value
are called thesupport vectors. In Fig. 5 they are marked
with circles.

It can be easily shown (Boseret al., 1992) that Prob-
lem 1 can be transformed into the following quadratic pro-
gramming problem:

Problem 2. Find optimal wo and bo that minimize the
cost function

J(w) =
1
2
wT w (17)

subject to the constraints

di(wT xi + b) ≥ 1, i = 1, 2, . . . , N. (18)

In practice, the following dual problem is solved:

Problem 3. Find optimal Lagrange multipliers{αo
i }

N
i=1

that maximize the cost function

Q(α) =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjdidjxT
i xj (19)

subject to the constraints

N∑
i=1

αidi = 0, (20)

αi ≥ 0, i = 1, 2, . . . , N. (21)

A non-zero value ofαi indicates thatxi is one of
the support vectors. Optimalwo and bo can be calcu-
lated using equations

wo =
N∑

i=1

αo
i dixi, (22)

bo = ds − (wo)T xs, (23)

where xs is any support vector, i.e., a vector for which
αs > 0.

Now let us assume that the training set is not linearly
separable. Then, of course, the sets of constraints (13)
and (18) are inconsistent. In order to make this problem
tractable, a set of nonnegative scalar variables{ξi}N

i=1

called theslack variablesis introduced to the inequali-
ties (18):

di(wT xi + b) ≥ 1− ξi i = 1, 2, . . . , N. (24)

The cost function (17) is also modified:

J(w, ξ) =
1
2
wT w + C

N∑
i=1

ξi, (25)

whereC is a user-specified positive constant.

The problem of finding an optimal discriminant func-
tion in the non-separable case is stated as follows:

Problem 4. Find optimalwo and bo minimizing the cost
function (25) subject to the constraints (24) and

ξi ≥ 0, i = 1, 2, . . . , N. (26)

In much the same way as in the separable case, in-
stead of Problem 4, the following dual problem is usually
solved:

Problem 5. Find optimal Lagrange multipliers{αi}N
i=1

that maximize the cost function (19) subject to the con-
straints (20) and

0 ≤ αi ≤ C, i = 1, 2, . . . , N. (27)

Note that the only difference between Problems 3 and 5
(for the separable and non-separable cases) is in the con-
straints (21) and (27).

The optimum value of the vectorw is again given
by (22). The optimum value of the bias can be calculated
using (23), wherexs is any support vector with the slack
variable equal to zero. It can be shown that for such a
vector the inequality has to be satisfied.

Linear SVM is a special case of more general nonlin-
ear SVM constructed by introducing an additional set of
nonlinear functions, see books (Christianini and Shawe-
Tylor, 2000; Haykin, 1999; Vapnik, 1995).


