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PROPERTIES OF A SINGULAR VALUE DECOMPOSITION BASED
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Recently, data on multiple gene expression at sequential time points were analyzed using the Singular Value Decomposition
(SVD) as a means to capture dominant trends, called characteristic modes, followed by the fitting of a linear discrete-time
dynamical system in which the expression values at a given time point are linear combinations of the values at a previous
time point. We attempt to address several aspects of the method. To obtain the model, we formulate a nonlinear optimization
problem and present how to solve it numerically using the standard MATLAB procedures. We use freely available data to test
the approach. We discuss the possible consequences of data regularization, called sometimes “polishing”, on the outcome
of the analysis, especially when the model is to be used for prediction purposes. Then, we investigate the sensitivity of
the method to missing measurements and its abilities to reconstruct the missing data. Summarizing, we point out that
approximation of multiple gene expression data preceded by SVD provides some insight into the dynamics, but may also
lead to unexpected difficulties, like overfitting problems.
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1. Introduction

Multiple gene expression methods reach maturity as a tool
to investigate dynamical changes in genomes. The princi-
pal aim is to capture the dependencies between expres-
sions of different genes. Attempts to achieve it were made
even before the introduction of DNA chips and SAGE (Se-
quential Analysis of Gene Expression, (Velculescuet al.,
1995)), in several different ways, depending on particular
biological systems with the corresponding different time
scales. Time sequences of chromosomal aberrations were
reconstructed in a number of tumor systems, dating from
the paper (Vogelsteinet al., 1988) on colon cancer and
continuing with a recent series of papers on phylogenetic
models of tumors (e.g., Radmacheret al., 2001). The tech-
niques employed in these papers belong to the mainstream
of phylogenetic reconstruction, with the time flow repre-
sented by distances based on probabilistic models of evo-
lution.

Another type of methods involves attempts to under-
stand gene interaction by analyzing single-time snapshots
representing equilibrium-state solutions under conditions
in which particular genes are down- or up-regulated.
These methods are based on various nonlinear models,
including perceptrons and neural networks (Kimet al.,
2001).

Recently, data on multiple gene expression at se-
quential time points were analyzed using Singular Value
Decomposition (SVD) as a means to capture dominant
trends, followed by the fitting of a linear time-discrete dy-
namical system of the form

Y (t + ∆t) = MY (t),

to the dominant trend characteristics (Holteret al., 2000;
2001). This approach can be arguably employed for two
purposes: First, the short-time changes in the components
of vector Y (t) can be expressed using matrixM ,

∆Y (t) = Y (t + ∆t)− Y (t) = (M − I)Y (t).

Therefore, the off-diagonal entries ofM reflect linear ap-
proximations of the influence of some components of vec-
tor Y (t) on the changes in other components. However,
this kind of sensitivity analysis is not as straightforward
as it might seem, since the components ofY (t) are them-
selves combinations of expressions including the number
of genes.

Second, dynamical system representation may help
to reconstruct missing measurements at some time points,
by providing an interpolation between the time points at
which measurements exist.

In the present paper, we attempt to address sev-
eral aspects of the method presented in (Holteret al.,



K. Simek338

2000; 2001). We slightly reformulate the statement of the
method to make it more amenable to mathematical anal-
ysis. Then we discuss the possible consequences of data
regularization, called “polishing” by the original authors,
on the outcome of the analysis. Also, we investigate the
sensitivity of the method to missing measurements and its
abilities to reconstruct the missing data. We use the same
data as in (Holteret al., 2000; 2001), for comparison pur-
poses. The computer software applied was written in the
Matlab programming language. The original m-files are
available from the authors upon request.

Further comments, including possible new applica-
tions of the method, are included in the Discussion.

2. Algorithm Description

2.1. Singular Value Decomposition (SVD)

The singular value decomposition of anyn×m matrix A
has the form (e.g., (Golub and van Loan, 1996; Watkins,
1991)):

A = USV T , (1)

whereU is an n×n orthonormal matrix whose columns
are called the left singular vectors ofA, andV is an m×
m orthonormal matrix whose columns are called the right
singular vectors ofA. For n > m, the matrixS has the
following structure:

S =



s1 0
...

0 sm

0 · · · 0
...

...
...

0 · · · 0


.

The diagonal elements of the matrixS are customarily
listed in descending order,s1 ≥ s2 ≥ · · · ≥ sm ≥ 0, and
are called the singular values ofA.

The properties of SVD matrices are as follows:

1. The singular values of a rectangular matrixA are
equal to the square roots of the eigenvaluesλ1,
λ2, . . . , λm of the matrixAT A.

2. The rank of the matrixA is equal to the number of
positive singular values

rank(A) = r, r ≤ m.

3. The Euclidean norm ofA is equal to the largest sin-
gular value,

‖A‖2 = s1.

4. The first r columns of the matrixU form an
orthonormal basis for the space spanned by the
columns ofA.

5. The first r columns of the matrixV form an or-
thonormal basis for the space spanned by the rows
of A.

2.2. Data

SVD can be used to analyze the time dynamics of gene
expression data (Holteret al., 2001). Each row of the ma-
trix of gene expressionA corresponds to a different gene,
and each column corresponds to a different time point at
which the expression data were measured. The entries of
the matrixA contain the gene’s relative logarithm expres-
sion ratios at discrete time points. For up-regulated genes
the ratios are positive while for down-regulated genes they
are negative. Since in most applications the number of
samples or time points assayed is much smaller than the
number of genes investigated, only the case ofn > m is
considered.

In (Holter et al., 2000), before applying SVD, the
data were regularized using polishing. The polishing pro-
cedure includes replacing the original data matrixA with
a new matrix of the form

[Aij − Ā·j − Āi·+
=

A··],

where Ā·j is the average of thej-th column of A, Āi·

is the average of thei-th row of A, and
=

A is the average
of all entries ofA. This new matrix will also be calledA,
which involves no ambiguity. After polishing, the rows
and columns of the matrix have zero mean values. Be-
cause of polishing the rank ofA is equal tor ≤ m − 1.
Depending on circumstances, polishing may or may not
be desirable.

2.3. Characteristic Modes

Let us denote byXi, i = 1, . . . , r the upperr rows of
matrix SV T . The orthogonal vectorsXi are called the
characteristic modes associated with matrixA:

X =


X1

...

Xr

 =


s1v

T
1

...

srv
T
r

 .

The time changes of thej-th gene, included in the row
Aj of matrix A, can be obtained as linear combinations
of the characteristic modes. The coefficients of each com-
bination are the corresponding entries of matrixU :

Aj =
r∑

i=1

UjiXi.
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Usually, not all the characteristic modes are needed
to reconstruct gene expression patterns with a reasonable
accuracy (Alteret al., 2000; Holteret al., 2000; Ray-
chaudhuriet al., 2000). We may use a truncated expres-
sion

Aj =
l∑

i=1

UjiXi, l < r.

The contribution of modes to the gene pattern decreases
from the higher order to the lower order modes. The sin-
gular values which represent the magnitudes of the corre-
sponding modes can be used as measures of the relative
significance of each characteristic mode in terms of the
fraction of the overall expression that it captures

pi =
s2

i
r∑

j=1

s2
j

, i = 1, . . . , r.

A similar index can be defined for each gene:

ci
k =

(Ukisi)2
r∑

j=1

(Ukjsj)2
.

It defines the contribution of thei-th mode to the tem-
poral pattern of thek-th gene. There are several heuris-
tic methods to estimate the numberl of the most signifi-
cant characteristic modes (Everitt and Dunn, 2001; Jack-
son, 1991). One of the simplest techniques is to retain just
enough modes to capture a large percentage of the overall
expression. Usually, the values of 70–90% are proposed.
Another procedure is to exclude characteristic modes such
that the fraction of expressionpi they capture is less than
(70/r)%. Another method consists in examining the so-
called scree plots fors2

i or log s2
i . Using this method, we

can usually find a natural border between significant and
insignificant singular values (the so-called elbow).

2.4. Dynamical Model for Characteristic Modes

Since the characteristic modes are functions of time, we
can try to find a discrete-time dynamical model of changes
in the modes following the approach from (Holteret al.,
2001). We assume the simplest linear model in which the
expression values at a given time moment are linear com-
binations of the values at previous time instants.

Denote byY (t) the expression level of all charac-
teristic modes at timet,

Y (tj) =


X1j

...

Xqj

 , j = 1, . . . ,m, (2)

where q = r is the rank of matrixA. Assuming that
the original data matrix has a full rank, the rank ofA is
equal tor = m− 1 or r = m, depending on whether or
not polishing was carried out. The matrix of characteristic
modes can be rewritten in the form

X =
[
Y (t1), Y (t2), . . . , Y (tm)

]
,

whereti are time points at which the gene expression was
measured.

The model can be written in the form of the linear
equation

Y (t + ∆t) = MY (t), (3)

where M is a q × q translation matrix (q ≤ m) and
∆t stands for the time step for the dynamical model. For
evenly spaced measurements,∆t can be found from the
expression∆t = ti+1 − ti, where ti = i∆t. Other-
wise, ∆t is defined as the maximal time interval such that
each measurement time is an integer multiple of∆t, i.e.,
ti = ni∆t.

Since, as was mentioned earlier, time-series data can
often be represented by the most significant modes only
and a part of characteristic modes can be excluded, we
can try to build a reduced-order model taking into account
only a small number of variables. In this case the dimen-
sion of the vector (2) isq = l, but the form of the dynam-
ical model (3) is not changed.

To obtain the model, we find matrixM based on the
knowledge of temporal patterns of characteristic modes.
The optimization problem as stated in (Holteret al., 2001)
consists in minimizing the performance index of the form

J =

m∑
j=1

‖Y (tj)− Z(tj)‖2

m∑
j=1

‖Y (tj)‖2

, (4)

where Z(t) is a time variable described by the discrete
linear equation

Z(t1 + k∆t) = MkY (t1),

with initial condition Z(t1) = Y (t1). Since the measure-
mentsY (tj) are given, the problem consists in finding the
q2 entries of matrixM which minimize J . In general,
this minimization problem is nonlinear.

2.5. Steps of the Proposed Approach

1. Regularize gene expression data: rows and columns
of A must have zero mean.

Output:
• polished data ready for SVD,
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• the rank of the polished data matrixA which
is decreased and equal tor = m− 1.

2. Perform SVD, i.e., find matricesU, S andV for the
polished data.

Output:
• singular valuessi,

• columnsvi of matrix V (defining characteris-
tic modes),

• the first r columns ui of matrix U (needed
for gene expression data reconstruction).

3. Find characteristic modesXi.

Output:
• matrix X containing (in rows) temporal pat-

terns ofXi.

4. Solve the resulting optimization problem (full or re-
duced order).

Output:
• translation matrixM .

3. Solution Methods

3.1. Evenly Spaced Measurements andq=r

For evenly spaced measurements andq = r, solving
the problem leads to solving a system of linear algebraic
equations. We have

Y (tk+1) = Yk+1 =


M1·

M2·
...

Mr·

Yk

=



Y T
k 0 0 · · · 0

0 Y T
k 0 · · · 0

...
...

...
...

...

0 0 · · · Y T
k 0

0 0 · · · Y T
k




MT

1·
MT

2·
...

MT
r·

 , (5)

where M1·, . . . ,Mr· are the rows of matrixM . Using
the notation involving the Kronecker product (Bellman,
1960), we obtain

Yk+1 =
(
Ir ⊗ Y T

k

)


MT
1·

MT
2·
...

MT
r·

 ,

where Ir is the r × r identity matrix.

As the equality should hold for eachk = 1, 2, . . . , r,
we obtain a combined equation of the form

Y2

Y3

...

Yr+1

 =


Ir ⊗ Y T

1

Ir ⊗ Y T
2

...

Ir ⊗ Y T
r




MT
1·

MT
2·
...

MT
r·

 ,

or, more compactly,

Y = Ỹ M̃ . (6)

where Ỹ is a squarer2 × r2 matrix.

Solving this equation, we obtain optimal elements of
matrix M . Assuming thatỸ is nonsingular, the equation
has a unique solution and the value of the performance
index is zero. The standard Matlab procedures are used to
solve this equation.

3.2. Evenly Spaced Measurements andq<r

In this case the optimization problem may be reduced to
the solution of an equation similar to (6), but now ma-
trix Ỹ is an rq × q2 rectangular matrix. The resulting
translation matrixM is the least-squares solution to the
overdetermined system of equations of the type (6). The
obtained fitting is not ideal. Again, the standard Matlab
procedures can be applied.

3.3. Unevenly Spaced Measurements andq≤r

For unevenly spaced measurements and the general case
q ≤ r, it is necessary to minimize the goodness-of-fit in-
dex J , as defined above. Holteret al. (2001) used sim-
ulated annealing, while we use a standard Gauss-Newton
algorithm (for details, see (Branch and Grace, 1996) and
references therein) as provided in Matlab, with very good
results. The problem is strongly nonlinear and, in gen-
eral, very hard to solve, especially for meaningful differ-
ences in measurement time intervals. Since the applied
optimization algorithm is very sensitive to the choice of
the initial guess for the solution, we propose a two-step
optimization. In the first step we use a modified perfor-
mance index (4). Instead of the variableZ(t1 + k∆t) =
MkY (t1), we useZ1(ti+1) = M (ni+1−ni)Y (ti), where
ti = ni∆t, which prevents raisingM to a high power.
For the new index we can apply any initial condition, i.e.,
a null, an identity, or a random matrix. In the second step
we return to the original performance index and solve the
problem with the initial condition resulting from Step 1.
In most cases the appropriate tuning of the parameters of
optimization procedures is required to obtain a precise so-
lution.
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4. Influence of Data Polishing

An important caveat takes place when using data pol-
ishing. This procedure may lead to dynamical models
which do not necessarily reflect the intrinsic dynamics of
the underlying systems. We demonstrate that when pol-
ished data are used, in the case of equally spaced mea-
surements and a full-order model (q = r = m − 1), it
is always possible to exactly fit the modes using a lin-
ear system with matrixM of rank m − 1 which has the
spectrum composed of all complexm-th roots of unity,
except for the root equal to 1. By the spectral map-
ping theorem,Mm = I, where I is the identity matrix.
Therefore, this system necessarily leads to a prediction
Y (tm+1) = MmY (t1) = Y (t1), i.e., to a periodic system
with period m∆t .

Let us notice that ifA has row sums equal to0, i.e.,
Ae = 0, wheree is the column vector of the appropriate
dimension with all entries equal to1, then we also obtain
the same property for the matrix of modesX. Indeed,

SV T e = UT Ae = UT 0 = 0. (7)

On the other hand, rewriting the expression on the left-
hand side of Eqn. (5), we obtain

M [ Y1 | Y2 | · · · | Ym−1] = [Y2 | Y3 | · · · | Ym] . (8)

However, based on the property (7), we obtainYm =
−

∑m−1
k=1 Yk and, therefore, for matrixM we obtain

M =
[
Y2 | Y3 | · · · | Ym−1 | −

m−1∑
k=1

Yk

]
×

[
Y1 | Y2 | · · · | Ym−1

]−1
, (9)

while assuming thatdet([Y1 | Y2 | · · · | Ym−1]) 6= 0.
For a complex numberλ to be an eigenvalue of matrix
M , it is necessary and sufficient to satisfy the equation
det(M − λI) = 0, which, in view of the expression (9),
is equivalent to

det
([

Y2 | Y3 | · · · | Ym−1 | −
m−1∑
k=1

Yk

]
− λ [Y1 | Y2 | · · · | Ym−1]

)
= 0.

This can be written down in the form

det
(
[Y1 | Y2 | · · · | Ym−1]Qm−1

)
= 0,

where

Qm−1 =



−λ −1
1 −λ 0 −1

1 −λ −1

1
... −1
...

...
...

... −λ
...

0 1 −λ −1
1 −(1 + λ)


.

Expandingdet(Qm−1) starting from the upper left
element, we obtain

det(Qm−1) = (−1)m−1(1 + λ + λ2 + · · ·+ λm−1).

The solutions ofdet(Qm−1) = 0, being identical
with the eigenvalues ofM , are therefore equal to all the
complex m-th roots of unity, except for the root equal
to 1, as claimed.

5. Results

To illustrate the ideas presented in the paper, we used
freely available data on the yeast cdc-15 synchronized cell
cycle described in (Spellmanet al., 1998). In a yeast
culture synchronized by CDC15, over 6000 genes were
monitored over approximately 2.5 cell cycle periods. Al-
most 800 of them were classified to be cell cycle regu-
lated. We chose a data set consisting of 12 measurements
at 20 minute intervals, starting att1 = 10 minutes. As
in (Holter et al., 2000), we disregarded the last 3 data
columns corresponding to the beginning of the third cell
cycle, where the data were becoming progressively less
synchronized.

The analysis consists of three parts. In Part 1 we built
a dynamical model for the original data. Since the mea-
surements are evenly spaced in time, the analysis leads to
the solution of a system of linear algebraic equations. We
show the influence of data polishing in this case. In Parts 2
and 3 we deleted portions of the data to test the reconstruc-
tion properties of dynamical system fitting. In Part 2 we
deleted two columns (timest = 70, 150), and in Part 3,
6 columns (timest = 70, 110, 130, 170, 190, 210) of
the data matrix, obtaining two modified data sets with un-
evenly spaced measurements. The estimation of the trans-
lation matrix in these cases requires solving a nonlinear
optimization problem as described earlier.

Table 1 shows the singular values (si) and the coef-
ficients of relative significance (pi) of each characteristic
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Table 1. Singular values (si) and coefficients of rel-
ative significance (pi) of each characteristic
mode, based on the data considered.

Part 1 Part 2 Part 3

unpolished polished

si pi si pi si pi si pi

39.26 0.40 38.59 0.43 36.96 0.46 29.06 0.45

30.75 0.25 30.50 0.27 27.02 0.25 22.48 0.27

22.62 0.13 18.75 0.10 17.41 0.10 16.98 0.15

16.24 0.07 15.41 0.07 14.38 0.07 11.65 0.07

11.10 0.03 10.97 0.03 10.80 0.04 9.23 0.05

10.75 0.03 9.97 0.03 9.27 0.03

9.81 0.03 8.48 0.02 7.56 0.02

8.48 0.02 7.62 0.02 6.84 0.02

7.48 0.01 7.22 0.01 6.10 0.01

7.09 0.01 6.56 0.01

6.51 0.01 5.65 0.01

5.71 0.01

mode. In each case two first characteristic modes cap-
ture roughly 70% of the overall variability of the expres-
sion. This means that the temporal pattern of the gene ex-
pression can be described by the use of two characteristic
modes with reasonable accuracy.

For original data the solution matrixM is unique
and has properties resulting from data polishing as de-
scribed in Section 4. Figure 1(a) shows the eigenvalues
of the translation matrixM for a full-order dynamical
model. They all lie on the unite circle. The resulting
model is stable and provides the exact reconstruction of
the characteristic modes presented in Fig. 2. For unpol-
ished data (Fig. 1(b)) the obtained model is unstable but it
also provides the exact reconstruction of the data. Spec-
tral properties of the reduced second-order model in both
cases are very similar.

In Fig. 4(a) the characteristic modes of the first two
data sets are presented. It is easy to notice that the small
distortion of the data, i.e., deleting two columns, which is
equivalent to 16% missing data, did not change the shapes
of the original characteristic modes. Using procedures
similar to those in (Alteret al., 2001; Wallet al., 2001),
we can use the dynamical model to recover the missing
data with reasonable fidelity.

Figures 4(b) and 6 show the reconstruction of the
characteristic modes with the use of the full dynamical
model (q = r). For both distorted data sets the recon-
struction at the retained measurement points is very pre-
cise. This means that the optimization procedure provides
accurate solutions.
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Fig. 1. Eigenvalues of the translation matrixM for full
(crosses) and reduced second-order (stars) models
for (a) polished, (b) non-polished original data.

However, the inspection of Fig. 6 reveals that for the
strongly distorted data set the values of the characteristic
modes at retained time points are conserved (compared
with the original data), but this time the dynamical model
cannot be used to reconstruct the characteristic modes at
deleted time points. The obtained dynamical model is un-
stable, i.e., the model variables are oscillatory with grow-
ing amplitudes, although at the measurement points the
values are very close to the values of characteristic modes.

As shown in Figs. 3, 5 and 7, which present the re-
construction of the first two characteristic modes for re-
duced dynamical models in all three cases, the main fea-
tures of the expression patterns are reproduced quite well.
This means that the influence of the high order modes on
the dominant ones is weak and the dominant modes could
be reconstructed based on a reduced-order model.
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Fig. 2. Six out of 11 characteristic modes
for the gene expression data.
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Fig. 3. Reconstruction of the first two characteristic
modes for the original data. The dots corre-
spond to characteristic modes, the crosses cor-
respond to the reconstructed variables based on
the reduced second-order dynamical model.

6. Discussion

The present note is concerned with the SVD representa-
tion of time-dependent multiple gene expression data and
their approximation by linear dynamical systems, follow-
ing the approach of Holteret al. (2000; 2001) and using
the same data that were originally used by them. SVD al-
lows us to reconstruct the data exactly, using the complete
set of characteristic modes, or approximately, using a sub-
set of dominant modes, if the data are provided at evenly
or unevenly spaced time points. In this way, the time pat-
tern in the data can be represented by a small number of
principal constituents.
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Fig. 4. (a) Characteristic modes for the original data (stars) and
for the first modified data set (dots); (b) Reconstruction
of the characteristic modes for the first modified data
set. The dots correspond to the characteristic modes for
the data set, the crosses correspond to the reconstructed
characteristic modes based on the full dynamical model,
the circles show the approximation of the temporal pat-
tern resulting from the dynamical model for each time
momentt = n∆t.

However, this decomposition does allow neither the
prediction of future trends, nor the reconstruction of the
gene expression at the time points at which measurements
were not carried out. These tasks can be accomplished
using an approximation of the modes by a dynamical sys-
tem and then either extrapolating the data by running the
system for times beyond the existing data points, or in-
terpolating them by running the system for times between
the data points.

The extrapolation of data should be approached with
caution, particularly if preprocessing is carried out. In-
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Fig. 5. Reconstruction of the first two characteristic modes
for the first modified data set. The dots correspond
to the characteristic modes, the crosses correspond
to the reconstructed modes based on the second-
order dynamical model, the circles show the ap-
proximation of the temporal pattern resulting from
running the model for each time momentt = n∆t.
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Fig. 6. Reconstruction of characteristic modes for the sec-
ond modified data set. The dots correspond to the
characteristic modes for the data set, the crosses
correspond to the reconstructed characteristic modes
based on the full dynamical model, the circles show
the approximation of the temporal pattern resulting
from the dynamical model for each time moment
t = n∆t, the stars represent the temporal pattern
of the characteristic modes of original data set.

deed, we demonstrated that using the procedure called
polishing in (Holteret al., 2000; 2001) may lead to se-
rious distortions in the dynamics of a linear model of
the characteristic modes. Polishing makes the powers of
the estimated translation matrixM periodic with period
m, yielding a dynamical system with periodm∆t. This
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Fig. 7. Reconstruction of the first two characteristic modes for
the second modified data set. The dots correspond to
characteristic modes, the crosses correspond to the re-
constructed variables based on the second-order dynam-
ical model, the circles show approximation of the tem-
poral pattern resulting from the model for each time mo-
ment t = n∆t, the stars represent the temporal pattern
of the characteristic modes of original data set.

might be justified if the underlying biological process is
by its nature periodic, as in the data we used in this paper.
However, in general, polishing is not advisable when the
model is to be used for prediction purposes.

As evident from our numerical experiments, approx-
imation by a linear model does not necessarily lead to
a correct reconstruction of the missing data. In our ex-
periment, we deliberately removed data points and found
that, while accurately fitting the existing observations, the
linear dynamical system may provide a very inadequate
interpolation at the missing data points. If the data are
polished, then the system of the maximum order (equal
to the number of measurements decremented by 1) be-
comes unstable, overshooting between the existing data
point (Fig. 6). It is interesting that this phenomenon can
be alleviated by reducing the system order (Fig. 7). How-
ever, in this case the modelling accuracy decreases.

Summarizing, the approximation of multiple gene
expression data preceded by SVD provides some insight
into the dynamics but it may also lead to unexpected dif-
ficulties. Substantial numerical and mathematical effort
will be needed to understand these problems in a satisfac-
tory manner.
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