
Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 4, 537–547

APPLICATION OF A JAVA-BASED FRAMEWORK TO PARALLEL SIMULATION
OF LARGE-SCALE SYSTEMS

EWA NIEWIADOMSKA-SZYNKIEWICZ ∗,∗∗, MACIEJ ŻMUDA ∗

KRZYSZTOFMALINOWSKI ∗,∗∗

∗ Institute of Control and Computation Engineering, Warsaw University of Technology
ul. Nowowiejska 15/19, 00–665 Warsaw, Poland

e-mail:{e-n-s, kmalinowski}@ia.pw.edu.pl, mzmuda@elka.pw.edu.pl
∗∗ Research and Academic Computer Network (NASK)

ul. Wąwozowa 18, 02–796 Warsaw, Poland

Large-scale systems, such as computer and telecommunication networks, complex control systems and many others, operate
in inherently parallel environments. It follows that there are many opportunities to admit parallelism into both the algorithm
of control implementation and simulation of the system operation considered. The paper addresses issues associated with
the application of parallel discrete event simulation (PDES). We discuss the PDES terminology and methodology. Particular
attention is paid to the software environment CSA&S/PV (Complex Systems Analysis & Simulation—Parallel Version),
which provides a framework for simulation experiments performed on parallel computers. CSA&S/PV was applied to
investigate several real-life problems. The case studies are presented for both computer and water networks.

Keywords: parallel computations, simulation, large-scale systems, computer systems, computer-aided system design

1. Introduction: Parallel Discrete Event
Simulation

In recent years parallel processing has provided a new im-
petus in systems engineering. It is clear that physical sys-
tems are inherently parallel objects which lend themselves
to parallel computation—this is obvious as they operate in
the real world, where parallelism is a natural phenomenon
of everyday life. Parallel simulations allow us to reduce
the computation time of the simulation program, to exe-
cute large programs which cannot be put on a single pro-
cessor and to better reflect the structure of the physical
system which usually consists of several components. The
role of parallel simulations is particularly and increasingly
important in the field of large-scale systems, where simu-
lations require significant execution time.

In sequential discrete event simulation all processes
access the same event list. In parallel discrete event sim-
ulation (PDES) the event list is distributed over the num-
ber of processors. A parallel simulation program may be
viewed as a collection of sequential simulation programs,
i.e. logical processes (LP), each modelling a single physi-
cal process. The LPs communicate sending time-stamped
messages to each other. It is important that all interactions
must occur via this message-passing mechanism. We al-
low for the possibility that messages are not received in
the order in which they were transmitted.

There are three important procedures associated with
the implementation of PDES: computation decomposition
and processes allocation, synchronization, and memory
management.

Load balancing. The computation processes should be
distributed across the processors in order to balance the
load. Several strategies of problem partitioning are pro-
posed:domain decomposition, where the idea is to divide
the data domain into several components on which the cal-
culations can be carried out independently,functional de-
composition, where the idea is to divide the calculation
algorithm into several modules,dynamic decomposition
when the partitioning problem is dynamically changed
as the program is executed (to achieve a more balanced
workload). After decomposition the whole task can be
modelled as a directed graph in which nodes represent
logical processes (i.e. subtasks), and arcs (i.e. intercon-
nections) indicate communication between the nodes. The
next step is to distribute logical processes across the par-
allel processors, so that all processors work effectively
all the time and inter-processor communications are mini-
mized. Two basic approaches are static and dynamic allo-
cation. Static allocation algorithms distribute fixed tasks
(processes) over the processors for the duration of sim-
ulation. Dynamic allocation algorithms dynamically as-
sign processes to processors, i.e. allow processes to mi-



E. Niewiadomska-Szynkiewicz et al.538

grate during the simulation. The decision about the ade-
quate allocation technique strongly depends on the hard-
ware platform and the characteristic features of the simu-
lation study considered.

Synchronization. The calculation tasks require explicit
schemes for synchronization. Two simulation techniques
are considered (Banks, 1998; Kheir, 1996), namely a syn-
chronous one and an asynchronous one.Synchronous
simulation is implemented by maintaining a global clock
(GVT—Global Virtual Time). The events with the small-
est time-stamp are removed from the event lists of all
LPs for parallel execution. The execution of these events
generates new events that are requeued to the event lists.
The parallelism of this technique is limited because only
events with time-stamps equal to that of the global clock
can be executed during an event cycle.Asynchronous
simulation is much more effective due to its potentially
high performance on a parallel platform. In asynchronous
simulation each logical process maintains its own local
clock (LVT—Local Virtual Time). The local times of dif-
ferent processes may advance asynchronously. The events
arriving at the local input message queue of a logical pro-
cess are executed according to the local clock and the local
schedule scheme. The synchronization mechanisms fall
into two categories, namely, conservative and optimistic.
They differ in their approach to time management.Con-
servative schemes avoid the possibility of causality error
occurrence. These protocols determine safe events, which
can be executed. Classical approaches, the CMB proto-
col developed by Chandy, Misra and Bryant and based on
null messages, as well as various algorithms using win-
dows are described in the literature (Mehl, 1991; Misra,
1986; Nicol and Fujimoto, 1994).Optimistic schemes
such asTime Warpand its modifications (Jefferson, 1985;
1990) allow for the occurrence of causality errors. They
detect such an error and provide mechanisms for its re-
moval. The calculations are rolled back to a consistent
state by sending out antimessages. It is obvious that in
order to allow rollback, all the results of the previous cal-
culations have to be recorded. The key advantages and
disadvantages of conservative and optimistic protocols are
summarized in (Banks, 1998).

Memory management. While the discussion above is con-
cerned with the minimization of simulation time, a related
question is that of optimizing memory resource manage-
ment. In the case of optimistic and hybrid algorithms
all the reported schemes control the memory usage, but
only indirectly. Another class of schemes uses memory
management for “optimism control”. We can distinguish
two approaches to limit memory utilization in Time Warp:
passive and active schemes.

Passive techniques include infrequent and incremen-
tal state saving (Lin, 1994; Nicol and Fujimoto, 1994;

Soliman, 1999). When the state vector is large and only a
small part is modified in each event execution, incremen-
tal state saving may be applied—only changes in the state
are recorded. An alternative approach is saving the entire
state vector with the reduced frequency.

Passive techniques reduce the average memory us-
age but do not allow for recovering unused memory dur-
ing processing. Active schemes can reclaim memory on
demand. Various approaches are proposed and described
in (Jefferson, 1990; Nicol and Fujimoto, 1994).

2. Software Environments

In order to efficiently perform simulation experiments,
good software tools are needed. A present, there are two
basic directions to follow when developing such software
packages: the development of problem dedicated (spe-
cialized) systems (Di and Mouftah, 2002; Niewiadomska-
Szynkiewicz, 2002; NS-2, 1995; OMNeT++, 1992),
which are specific for a given type of processes, and the
creation of general purpose (universal) systems. The ad-
vantage of a specialized system is that one can have typi-
cal algorithms for identification and control as well as pro-
cess simulators built-in in the software environment. The
disadvantage of such a software environment is that it has
restricted use and is difficult for the user to modify when
new features need to be introduced. Universal systems al-
low us to set up simulation experiments and to analyze dif-
ferent types of processes. However, one must pay for this
universal applicability with having to prepare—for each
particular case study—those software modules which are
specific to this study.

Since parallel and distributed simulation is becoming
a dominant form of model execution, the focus is on ex-
periments carried out on parallel and distributed hardware
platforms. In the last years numerous integrated environ-
ments for parallel and distributed processing have been
developed (HLA, 1998). These software tools apply vari-
ous techniques for synchronization and memory manage-
ment, and focus on various aspects of parallel implemen-
tation. Many of them are built in Java (Kreutzeret al.,
1997; Nicolet al., 1997).

A natural solution to consider is parallel and dis-
tributed simulation using Java, as Java offers a potential
for using many different capabilities to complex simula-
tion models. One of the advantages of Java is that threads
are built directly into the language. The second is the RMI
(Remote Method Invocation) mechanism for performing
distributed calculations in computer networks. Java pro-
vides a rich assortment of classes and methods for graph-
ical applications. The graphical interface is an important
component of the simulation software. One advantage of
Java over C++ is its relatively simple and direct syntax for



Application of a Java-based framework to parallel simulation of large-scale systems 539

expressing exception handling and data management. So,
in practice, it is much easier to implement open architec-
ture software tools in Java.

This paper deals with the description of a Java-based
framework for parallel simulation and its application to
the analysis of complex control systems.

3. CSA&S/PV—An Integrated Framework
for Parallel Simulation

3.1. Description of CSA&S/PV

CSA&S/PV (Complex Systems Analysis & Simulation—
Parallel Version) is a parallel software environment in Java
for the simulation of various types of real systems. It
has its origin in CSA&S, a sequential simulator written
in C (Niewiadomska-Szynkiewiczet al., 1995). The main
idea of this system is to minimize the user’s effort during
the design and simulation of complex physical processes.
CSA&S/PV provides a framework which allows us to
perform simulations on parallel computers. It offers the
graphical environment (shell) for supporting implementa-
tion of the case study considered and a library of functions
providing communication between the user’s applications
and the system interface. CSA&S/PV manages calcula-
tions and communication between running processes and
provides tools for on-line monitoring of the computed re-
sults.

An asynchronous version of simulation is applied.
Each node (logical process) maintains its own local clock
and event list. The local times (LVT) of different nodes
may advance asynchronously. LPs can operate in two
modes:

Time-Driven Mode: The increment in the LVT of a lo-
cal logical process (LP) is fixed and defined during
the preparatory stage. The LP is executed every de-
fined time step (repetition time), which means that
the LVT changes at regular intervals. We assume that
for different LPs different repetition times may be in-
troduced.

Event-Driven Mode: Logical processes are executed af-
ter each event occurrence. LVTs change at irregular
intervals. A conservative scheme similar to the CMB
algorithm is used for synchronization. The events
are executed only when it is certain that no event
with an earlier time-stamp can arrive. At the current
time t each logical process LPi computes the mini-
mum time LVTi = minj∈N(i)(tij + τij), where tij
is the time-stamp of the last message received from
the LPj process,N(i) is a set of processes trans-
mitting data to LPi and τij is a transmission delay
from node j to i (transfer cost). Next, each LPi

receiver flags time transmission data

address stamp delay

Fig. 1. Contents of a message from each user application
(a node of the simulated system graph).

simulates all the events with the time-stamps less
than LVTi. The processes exchange messages as pre-
sented in Fig. 1. When the execution of the analysed
events begins, LPi sends to all its neighbours null
messages with the time-stamp LVTi + ∆Ti, where
∆Ti denotes the pending event time. It contains in-
formation about the earliest possible time of the next
event execution. Null messages are used to announce
the absence of messages with new data.

Both the types of LPs can be executed during
the same simulation experiment. All calculation pro-
cesses communicate with each other via shared memory.
The mechanism for parallel implementation is based on
threads (see Fig. 2).

CSA&S

module
calculation Main thread

Thread 1 Thread 2 Thread N

User
application 1

User User
application 2 application N

CSA&S Shell

library (socket)
CSA&S communiaction

User library User libraryUser library

Fig. 2. Architecture of the CSA&S/PV system.

3.2. CSA&S/PV Structure

The CSA&S/PV software package consists of five com-
ponents (see Fig. 2): theshell—the graphical interface,
responsible for user-system interaction, thecalculation
module (manager)—the system kernel that manages cal-
culations and communication between running processes,
the communication library—the library of functions that
provides communication between the graphical shell and
the system kernel, theuser library—the library of func-
tions providing an interface between the user application



E. Niewiadomska-Szynkiewicz et al.540

and the “manager” (system kernel), theuser application—
LPs’ simulators of the physical systems (developed by the
user).

The interface is graphical. It was written in the Java
language and may operate under MS-Windows, Windows-
NT and Unix operating systems. The main component
of the CSA&S/PV software package is themanager—the
system kernel. Because the CSA&S/PV system is het-
erogeneous (theshell and themanager may operate un-
der different operating systems) it was necessary to de-
velop a library of functions that provide communication
between the user interface process and the system kernel
process. These processes communicate with each other
via sockets—simple mechanisms for interprocess com-
munication.

3.3. User Application

The user’s task is to implement simulators of the subsys-
tems corresponding to the nodes of the graph considered.
These modules may be written in Java, C or C++. As was
mentioned above, the CSA&S/PV package supplies the li-
brary of functions providing the interface between the ap-
plication programs and the system kernel. This allows the
user to focus on the numerical part of the program only. In
addition, if the functions unique to the operating system
are not used by the user, the applications can be moved as
needed between different computing platforms.

In general, each user’s application consists of six
functions:csasInit, the task of which is to prepare the en-
vironment for future calculations and to calculate the ini-
tial conditions,csasExecuteArgs, gathering data for cal-
culations from CSA&S/PV,csasExecute, providing cal-
culations (the main part of the user’s application),csa-
sExecuteResults, which sends the results of calculations
to CSA&S/PV,csasStore, the task of which is to store all
current calculation results after system termination (simu-
lation can be continued), andcsasEnd, an additional func-
tion for removing all data structures dynamically allocated
during the program operation.

Communication between the user’s application and
the system kernel is provided by the CSA&S/PVuser li-
brary.

3.4. Simulation under CSA&S/PV

During a simulation experiment performed under
CSA&S/PV, one can distinguish two main stages: a
preparatory stage and an experimental stage. At the
preparatory stagethe model and the properties of the
system to be simulated are investigated. The calculation
process is partitioned into several subsystems (subtasks)
with respect to functionality and data requirements. The

directed graph of the analysed systemG = (N,A) is
created using the CSA&S/PV graph editor (see Fig. 9)
or can be read from an XML file. The set of nodes is
equal toN with node i representing thei-th subsystem
(i = 1, . . . , N ). The presence of an arc(i, j) indicates
the possibility that thei-th subsystem influences the
j-th subsystem. Each node of the graph represents the
program executing the tasks of the node. This program
has to be prepared by the user and it must be ready to run.
As far as the CSA&S/PV system is concerned, the goal of
this node application program is to gather data from the
connected nodes and to generate other data for the other
nodes. Within the next step the user is asked to provide
information related to the nodes of the graph considered.
The information includes: the name of the calculation
program corresponding to each node, the repetition time
period (if necessary), the decision delay, i.e. the time
required to execute the events in the physical application.
Next the user is asked to provide some information related
to all the inputs of these nodes: the name of each input,
the transmission delay related to data transmission to a
particular location. The currently considered graph of the
simulated system may be saved into the disc file in the
XML format. In this way the implemented system can be
used in many future simulations.

Theexperimental stagebegins when all decisions re-
garding the simulated system are made. The simulation
time horizon is defined and the experiment starts. The pro-
grams corresponding to the nodes of the system graph are
executed and the results of the calculations are displayed,
Fig. 4. The user employs the monitoring and analysis of
the current situation. All results may be recorded into the
disc file during the experiment. There is a possibility to
extend the simulation horizon if desired.

4. Practical Examples

CSA&S/PV allows for setting up simulation experiments
and the analysis for different types of processes. It does
not involve any restrictions regarding the size of the sim-
ulation, but such restrictions may be caused by the avail-
able computer (for PC computers the suggested number of
threads is less than 100). In general, CSA&S/PV is dedi-
cated to coarse granularity parallel implementations. The
speed up of the parallel simulation with respect to the se-
quential approach strongly depends on the application and
its decomposition.

CSA&S/PV has already proved to be very useful
when performing the analysis of different control mech-
anisms for flood control in multireservoir systems and a
preliminary analysis/tuning of routing and flow control for
data networks. The presented case studies show the pos-
sible range of the discussed software system applications.



Application of a Java-based framework to parallel simulation of large-scale systems 541

The last example is focused on the effectiveness of paral-
lel implementations.

All numerical experiments described below were
performed on a SUN HPC E10000 Starfire computer with
twelve 400MHz processors running the Solaris 7 operat-
ing system.

4.1. Routing in a Data Network

The first considered case study was related to routing
in data networks. There are many well known rout-
ing algorithms. They can be easily simulated under
CSA&S/PV. The simple asynchronous shortest path al-
gorithm Adaptive-Scheme(AS), similar to theBellman-
Ford (BF) one (Bertsekas and Gallager, 1992), was imple-
mented and tested. A detailed description of this scheme
can be found in (Pondarzewskiet al., 1999). In the case
of the BF algorithm, the shortest pathDi,des from each
nodei of the computer network to a destination nodedes
is calculated and recorded in the routing table. The follow-
ing iteration is executed at thei-th node:

Di,des = min
j∈N(i)

[dij + Dj,des ] (1)

using the last estimatesDj,des received from its neigh-
boursj ∈ N(i) (hereN(i) denotes the set of the current
neighbours of nodei) and the latest status and lengths
of the outgoing linksdij from nodei. The algorithm re-
quires that each nodej transmit its latest estimateDj,des

to all its neighbours from time to time.

TheAdaptive Schemesimilar to the Bellman-Ford al-
gorithm calculates the minimal distances from each node
to the destination node. It differs from the BF in that in
the case of the AS scheme the interprocess communica-
tion and the volume of the transmitted data are minimized.
The nodes do not have to transmit their current routing
tables. The shortest path distances are estimated on-line
using the data carried by routed messages. No assump-
tions are made on their initial values (the routing tables
are empty in the beginning). Another difference is that
instead of one length parameterdij of the outgoing link
from nodei to nodej, we consider two values connected
with sending and receiving data, i.e.dij = costOut i(j)+
costInj(i) (here costOut i(j) denotes the cost of send-
ing data from nodei to node j and costInj(i) is the
cost of receiving data from nodei by node j). We as-
sume that thei-th node knows only its transmission cost
tablescostOut i and costIni. Nodesi and j exchange
messages as presented in Fig. 3. Each message contains
transmitted data and additional information: addresses of
the sender (sen) and destination (des) nodes, the last es-
timate of the distance from thesen-th node to thei-th
node, Dsen,i increased by sending costs through thej-
th output, Dsen,i(j) = Dsen,i + costOut i(j) and the

sender addressdestination addressdistance distance data

sen des Dsen,i(j) Di,des(j)

Fig. 3. Contents of a message from thei-th to the j-th node.

expected distance from the currenti-th node to the desti-
nation des node decreased by sending costs through the
j-th output Di,des(j) = Di,des − costOut i(j). The cur-
rent estimates of the shortest distances from nodei to all
other nodes are recorded in a two-dimensional routing ta-
ble RTi(N(i), N − 1), whereN(i) denotes the number
of the neighbours of nodei. The following algorithm is
executed at each nodej, as a result of a new message from
node i:

Dsen,j = Dsen,i(j) + costInj(i), (2)

Dj,des = Di,des(j)− costInj(i), (3)

The routing table is updated. Two cases are recognized:

• If Dj,des ≥ mink∈N(j) RTj(k, des) (the current
shortest distance to nodedes is less than or equal
to the actual estimate), then

if Dsen,j < RTj(i, sen) then
RTj(i, sen) = Dsen,j

else if Dsen,i > RTj(i, sen) then
RTj(i, sen) = RTj(i, sen) + w.

In the case whenDsen,j < RTj(i, sen), the cur-
rently calculated shortest path from nodesen to
node i is recorded in the routing table. Otherwise,
the value of RTj(i, sen) is increased by a small
value w depending on the difference between the
real and expected costs. In this case the values in
the routing table increase in small steps. Such an ap-
proach is proposed because of the mistakes that may
occur in the computer network.

• If Dj,des < mink∈N(j) RTj(k, des) (the current es-
timate of the shortest distance to nodedes is greater
than the actual estimate), then the current value of the
expected cost todes is calculated:

Dj,des = min
k∈N(j)

RTj(k, des) + costInj(i)

and sent back to nodej.

This is a basic version of the proposed algorithm. It must
then be tested and (if needed) modified prior to the im-
plementation. The contents of a message, as presented
in Fig. 3, would be possible in IPv6. In the case of IPv4
the expected values of the examined distancesDsen,i and
Di,des must be sent as additional messages. The main
question is how often they should be sent.



E. Niewiadomska-Szynkiewicz et al.542

A hypothetical computer network model consisting
of 24 nodes was simulated. All tests were performed un-
der the following assumptions: each node could generate
a limited number of initial messagesM , the destination
of each generated message was randomly chosen from
N − 1 nodes, and the horizon considered was equal to
1000 time units.

The network was implemented in the CSA&S/PV
system using 24 units representing the nodes of the net-
work and one additional global unit for the presentation
of the results. The trajectories presented in Fig. 4 show
the number of all transmitted messages and the costs (time
delay) of their transmission at the time instant considered.
In general, we can distinguish two phases: the adaptation
phase and the working phase (see Fig. 4). It can be ob-
served that the costs of data transmission are quite high in
the first phase. The length of the adaptation phase depends
on the number of the messagesM generated by each
node: the smallerM , the longer the adaptation phase.
The costs trajectory is quite smooth in the second phase,
even in the case of some modifications ofcostIn tables
(see Fig. 4, time instant 260). The fluctuations are higher
in the case of a smaller number of the initial messagesM
(see Table 1).

Table 1. Possible transmission delays of messages.

M (initial messages) adaptation phaseworking phase

5 360–600 50–200

10 195–280 30–68

Fig. 4. Transmitted messages and time delays (each node generates 10 initial messages).

We did not observe a serious speed up of calculations
in the case of the parallel implementation. This example
and the next one presented below are fine granularity par-
allel applications. A potential reduction in the computa-
tion time should be observed after increasing the size of
the systems considered.

4.2. Optimization Network Flow Control

The second examined case study was related to the opti-
mization approach to flow control in communication net-
works. The asynchronous link algorithm for the pricing of
network services based on the Price Method was imple-
mented and tested. A detailed description of this method
together with the discussion of its convergence can be
found in (Low and Lapsey, 1999).

Consider a network consisting of a setL =
{1, . . . , Ln} of unidirectional links of capacitiescl,
l ∈ L and a set S = {1, . . . , Sm} of traffic
sources. Each source is defined by the quadruple
(L(s), Us(xs), xsmin , xsmax), wherexs denotes the trans-
mission rate,Us(xs) stands for the source utility func-
tion defined over the intervalXs = [xsmin , xsmax ] ⊆ R+,
xsmin and xsmax are minimum and maximum transmis-
sion rates, respectively. For each linkl, let S(l) be the
set of the sources that usel, so l ∈ L(s) if and only
if s ∈ S(l). The objective is to maximize the aggregate
source utility over their transmission rates, so the flow op-
timization problem can be formulated as follows:

max
xs∈Xs

∑
s

Us(xs),
∑

s∈S(l)

xs ≤ cl, l ∈ Ln. (4)



Application of a Java-based framework to parallel simulation of large-scale systems 543

If the feasible set is nonempty and the performance func-
tion is strictly concave, then the unique maximizerx̂ ex-
ists (Low and Lapsey, 1999).

The optimization problem (4) can be solved by the
Price Method (the dual method using price coordination,
cf. (Findeisenet al., 1980)) in parallel or distributed envi-
ronments.

Define the Lagrange function of (4):

L(x, λ) =
∑

s

Us(xs)−
∑

l

λl

 ∑
s∈S(l)

xs − cl



=
∑

s

Us(xs)− xs

∑
l∈L(s)

λl

+
∑

l

λlcl, (5)

where λl ≥ 0, i.e. the Lagrange multipliers associated
with capacity constraints denote the link prices.

We can formulate the local (source) and coordinator
level optimization problems:

LPs: s = 1, . . . , Sm, for given λl find a maximum with
respect toxs of the local performance index

max
xs∈Xs

Ls(xs, λ) = Us(xs)− xs

∑
l∈L(s)

λl

 . (6)

CP: For the results of the LPs find a minimum with re-
spect toλl of the coordinator performance index

min
λl≥0, l=1,...,Ln

[
ϕ(λ) =

∑
s

Ls(x̂s, λ
s) +

∑
l

λlcl

]
,

(7)
whereλs =

∑
l∈L(s) λl.

Synchronous and asynchronous distributed algorithms for
computing prices were proposed by Low and Lapsley. In
the synchronous version thel-th link price at the iteration
instantk + 1 is calculated as follows:

λl(k + 1) =
[
λl(k)− γ

∂ϕ(λ(k))
∂λl

]
+

=

λl(k) + γ

 ∑
s∈S(l)

x̂s(k)− cl


+

, (8)

where [y]+ = max(y, 0) and γ is a sufficiently small
step size.

Thus, in the approach defined by (8) all sources re-
ceive, at a given time instantk, prices λl(k), compute
the respective source pricesλs(k) and calculate optimal
source rateŝxs(k) solving LP problems. The obtained

values of the source rateŝxs(k) are then sent to the links,
and the new link pricesλl(k+1) are computed according
to (8).

In the case of an asynchronous approach both sources
and link algorithms use the weighted averages of the past
values of the link prices and the locally optimal source
rates. So, thel-th link price at the iteration instant
k + 1 is calculated according to (8) assuminĝxs(k) =∑k

k′=k−k0
als(k

′
, k)xs(k

′
) with

∑k
k′=k−k0

als(k
′
, k) =

1, for all k, l and s ∈ S(l); k0 denotes the length
of past window taken into account. Furthermore, thes-
th source rate at timek + 1 is calculated solving LPs,
assumingλs(k) =

∑
l∈L(s)

∑k
k′=k−k0

bls(k
′
, k)λl(k

′
)

with
∑k

k′=k−k0
bls(k

′
, k) = 1, for all k, s and l ∈ L(s).

The algorithm was applied to flow control in an ex-
perimental computer network, as presented in Fig. 5. It
consists of nine nodes: three sources, three routers, three
destination nodes and eight bidirectional links. The max-
imal capacity of the linksRouter1–Router2 andRouter2–
Router3 was equal to 290. The capacity of other links
was unlimited. The network was implemented in the
CSA&S/PV system using nine calculation processes. The
processes exchanged messages as presented in Fig. 1,
containing adequate data: link prices—messages from
routers and source rates—messages from sources. All
the calculation processes corresponding to the nodes in
Fig. 5 could communicate and update their controls asyn-
chronously at different time instants, with different fre-
quencies and transmission delays. The utility functions
Us of the sources were set toαs log(1 + xs), with αs =
104 for all sources. Only the last received ratexs(τ) for
τ ∈ k − k0, . . . , k was used to estimate the locally opti-
mal source rates and the link prices. Each source transmit-
ted data for a total of 120 000 time units;source 1 started
transmission at time 0,source 2 at time 40 000,source 3
at time 80 000. The whole simulation horizon was equal
to 240 000 time units. The goal was to test the conver-
gence of the algorithm with respect to the value of the
step size in (8) and transmission delays in the network.
Several experiments were performed taking into account
different values of the step sizeγ = {1E–3, 1E–4, 1E–5},

Fig. 5. Analysed IP network under the CSA&S/PV system.



E. Niewiadomska-Szynkiewicz et al.544

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

Router1 - Router2 Router2 - Router3

lin
k

ba
nd

w
id

th
pr

ic
e

time [10000× time unit]

Fig. 6. Link prices forγ =1E–3 andτD = 1.

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160

180

200

Target1 - Router3 Target2 - Router3 Target3 - Router3

ra
te

s

time [10000× time unit]

Fig. 7. Source rates forγ =1E–3 andτD = 1.

Table 2. Percentage of rejected packages for different
values ofγ and τD.

τD = 1 τD = 10 τD = 100

γ = 1E–3 14.59 15.62 98.41

γ = 1E–4 63.54 63.55 65.51

γ = 1E–5 92.22 92.23 92.28

and different transmission delaysτD = {1, 10, 100}
expressed in time units. It was assumed that the trans-
mission was delayed for all links. The results are pre-

sented in Table 2 and Figs. 6 and 7. Table 2 contains
the percentage of the rejected data packets with respect
to all packets passed during the experiment. Figures 6
and 7 show respectively the link prices and the source
rates. We can observe that the source rates adjusted dy-
namically as new sources started or stopped transmitting.
As expected, the number of rejected packages increased
for longer transmission delays. ForτD = 100 and the
step sizeγ = 1E–3 the algorithm was not convergent to
the optimum (see Tab. 2). After decreasing the step size
a better solution was achieved. On the other hand, de-
creasingγ made it longer for the algorithm (8) to arrive
at proper price values. In the case of the very small value
(γ = 1E–5) the algorithm seemed to track the optimum
but the solution was not reached. The presented results
show that the examined pricing algorithm for flow con-
trol is very sensitive to the value of the step size. The
estimation of the properγ may involve many problems
especially in the case of a huge network traffic.

4.3. Flood Control in a Multireservoir System

This case study is related to a hierarchical control struc-
ture for flood operation in the Upper Vistula river-basin
system in the southern part of Poland. Three retention
reservoirs, located on the Soła, Raba and Dunajec rivers,
were considered. The optimal release problem was de-
fined as the problem of minimizing the flood damages
related to the peak flows at the measurement points in
the whole river system. The hierarchical control mech-
anism (HDM) for reservoirs management was investi-
gated. This mechanism is based on the application of
the repetitive optimization of the outflow trajectories, us-
ing predicted inflows (Niewiadomska-Szynkiewiczet al.,
1996; Niewiadomska-Szynkiewicz, 2002). It incorporates
two decision levels, as presented in Fig. 8: the upper level
with the control centre (coordinator) and the local level
formed by the operators of the reservoirs. The local de-
cision rules are designed in such a way that a central au-
thority, the coordinator, may adjust them in the process
of periodic coordination so as to achieve the coordination
of reservoirs in minimizing the global damages. Hence,
the decision problem of thei-th local reservoir operator
(i = 1, 2, 3) at time tl is as follows:

min
ui

[
qi

(
ui(·), ai

)
= max

t∈[tl,tf ]

(
ui(t)αi(t)

)]
, (9)

where [tl, tf ] denotes the local level optimization hori-
zon, qi is the local cost function, and theai’s mean
parameters specified by the coordinator. The vectorai

of coordinating parameters for thei-th reservoir is re-
lated to the weighting functionαi(·) defined as follows:
αi(t) = 1 + (ci − 1) · 1(t − T ?

i ), i.e. αi(t) = 1 for
t ∈ [tl, T ?

i ) and αi(t) = c for t ∈ [T ?
i , tf ].



Application of a Java-based framework to parallel simulation of large-scale systems 545

CONTROL CENTRE (central operator)

FLOOD WAVE TRANSFORMATION (river basin)

reservoir
operator 1

reservoir
operator 2

reservoir
operator m

hydrological
station 1

hydrological
station m+1

hydrological
station m+2

hydrological
station m+k

hydrological
station 2

hydrological
station m

reservoir capacity

reservoir outflow 1

flows at the
measurement stations

reservoir outflow 2 reservoir outflow m

inflow forecast 1

inflow forecast 1

side inflow forecast 1 side inflow forecast kside inflow forecast 2

inflow forecast 2 inflow forecast m

inflow forecast m

....

....

Fig. 8. Flood control in the Vistula reservoir system.

The goal of the control centre is to calculate optimal
values of the parametersa in the sense of minimizing the
damages in the whole river basin:

min
a∈A

J(Q[tc,tf ]),

Q(t) = F
(
Q(tc), û[tc,t](a), d tc

[tc,t]

)
, (10)

where [tc, tf ] denotes the control centre optimization
horizon (tc ≤ tl), Q(t) is the vector of flows at the mea-
surement points,Q(tc) denotes the vector of real flows
measured at timetc, d tc stands for the vector of forecasts
of all the inflows calculated at timetc, û is the vector of
optimal outflows from the reservoirs (associated with the
vector of parametersa), andJ(Q[tc,tf ]) denotes a perfor-
mance (loss) function. In each iteration of the optimiza-
tion process, the value ofJ(·) is computed based on the
simulation of the lower decision level (reservoir operators)
and the flow transformation in the whole river basin.

The presented control structure was implemented un-
der CSA&S/PV, cf. Fig. 9. The whole system was de-
composed into several subsystems (processes) associated
with the nodes in Fig. 8: a control centre, (coordination
parameters calculation), reservoir operators (releases cal-
culation), hydrological stations (inflow forecasts comput-
ing), and rivers (flow transformation). Simulations were
performed for a set of historical data. The results obtained
for this control system were compared with the central-
ized decision mechanism (CDM), where decisions about
all outflows are made by the central operator, with the case
of autonomous control of each reservoir LDM, based on
the local decision mechanism and the traditional control
rules TR—the instructions that have been used in oper-
ational flood control in Poland so far. In the simulation

River basin

Operator 1

Operator 2

Operator 3

Forecast 1

Forecast 2

Forecast 3

Forecast 4

Forecast 5

Forecast 6

Center

Fig. 9. Implementation of HDM control under CSA&S/PV.

study the inflow forecasts were calculated based on two
different models provided by the Institute of Meteorol-
ogy and Water Management, denoted by CFM and WFM.
The reductions of the flood damages with respect to the
uncontrolled flood wave are presented in Fig. 10. A de-
tailed description of multiple experiments performed for
a set of historical hydrograms of major flood events that



E. Niewiadomska-Szynkiewicz et al.546

occurred between the years 1960 and 1974 can be found
in (Niewiadomska-Szynkiewicz, 2003).

Fig. 10. Average reduction of the global damages with respect
to the uncontrolled flood (theVistula river system).

In this example the sequential part of the
application—control centre simulation—strongly in-
fluences the calculation time. Because of this, the
acceleration factor with respect to the sequential simula-
tion is about 2. A way to speed up the calculations is to
apply a parallel optimization method to solve the central
dispatcher decision problem. It can be developed using
Java threads.

4.4. Parallel Global Optimization

The last presented application under CSA&S/PV was the
the global optimization problem. The goal was to calcu-
late the minimum of the following test function (the so-
called Acley function):

f(x) = −20 exp

−0.2

√√√√ 1
100

100∑
i=1

x2
i


− exp

(
1

100

100∑
i=1

cos(2πxi)

)
+ 20 (11)

subject to the constraints−30 ≤ xi ≤ 30, i =
1, . . . , 100. There is one global minimum, which occurs
at the pointx = (0, . . . , 0).

The co-evolution algorithm described in
(Michalewicz, 1994) was used to solve the optimization
problem. This technique is easily adaptable to parallel
environments. In the described implementation several
instances of the evolution algorithm were executed, each
being represented by a CSA&S/PV calculation unit.
From time to time the units interchanged a few randomly
chosen elements from their current population with four
neighbours.

Several series of experiments considering different
numbers of units were performed. When the global op-
timum was reached with the accuracy 0.1, the algorithm
stopped. The goal was to present the effectiveness of the
parallel CSA&S/PV implementation. Table 3 shows the
speed up of calculations with respect to the number of log-
ical processes (the CSA&S/PV units).

Table 3. Speed up of the calculations performed under
CSA&S/PV versus the number of logical processes.

LPs number 1 2 3 8 12 16 24 30 36 64

simulation
517 264 177 110 91 82 75 71 67 65

time [s]

Similarly to the previous examples, all tests were per-
formed on a SUN computer with 12 processors. It should
be pointed out that the time of calculations strongly de-
pends on the application partitioning. In some cases the
problem decomposition intom logical processes, where
m > p (p is the number of the available processors), may
speed up the calculations with respect to the decomposi-
tion with m = p.

5. Conclusion

All the presented applications demonstrate the effective-
ness and efficiency of the CSA&S/PV system. The par-
allel, asynchronous simulation adopted in the package al-
lows us to perform fast simulation of large-scale systems.
The user is able to perform an analysis of given system be-
haviour in various conditions and operating systems with-
out writing separate user applications for each case. He
or she can influence the simulation process, record and
browse through all the results of calculations. As a fi-
nal observation, we can point that general-purpose paral-
lel software environments should be developed to allow
programmers to focus on the numerical algorithm with-
out worrying additionally about functions for calculation
synchronization and memory management.

Acknowledgements

This work was supported by the Research and Aca-
demic Computer Network (NASK) and the Polish
State Committee for Scientific Research (KBN) Grant
No. 7 T11A 022 20.

References

Banks J. (Ed.) (1998):Handbook of Simulation. — New York:
Wiley.



Application of a Java-based framework to parallel simulation of large-scale systems 547

Bertsekas D. and Gallager R. (1992):Data Networks. — New
Jersey: Pentice-Hall.

Di Z. and Mouftah H.T. (2002):QUIPS-II: A simulation tool for
the design and performance evaluation of diffserv-based
networks. — Comput. Comm., Vol. 25, No. 1, pp. 1125–
1131.

Findeisen W., Bailey F.N., Brdyś M., Malinowski K. and Woź-
niak A. (1980):Control and Coordination in Hierarchical
Systems. — London: Wiley.

HLA (1998) (High Level Architecture). Available athttp://
www.dmso.mil/public/transition/hla/

Jefferson D.R. (1985):Virtual time. — ACM Trans. Program.
Lang. Syst., Vol. 7, No. 3, pp. 404–425.

Jefferson D.R. (1990):Virtual time II: Storage management
in distributed simulation. — Proc. 9th Ann. ACM Symp.
Principles of Distributed Computing, New York, USA,
pp. 75–89.

Kheir N.A. (Ed.) (1996):Systems Modeling and Computer Sim-
ulation. — New York: Marcel Dekker.

Kreutzer W., Hopkins J. and van Mierlo M. (1997):SimJava—
A framework for modeling queueing networks in Java. —
Proc. 1997Winter Simulation Conf., Atlanta, pp. 483–488.

Lin Y.B. (1994): Memory management algorithms for parallel
simulation. — Inf. Sci., Vol. 77, No. 1, pp. 119–140.

Low S. and Lapsey D.E. (1999):Optimization flow control I:
Basic algorithm and convergence. — IEEE/ACM Trans.
Networking, Vol. 7, No. 6, pp. 861–874.

Mehl H. (1991): Speedup of conservative distributed discrete-
event simulation methods by speculative computing. —
Adv. Parall. Distrib. Simul., SCS Simul. Ser., Vol. 23,
No. 1, pp. 163–166.

Michalewicz Z. (1994):Genetic Algorithms + Data Structures
= Evolution Programs. — Berlin-Heidenberg: Springer.

Misra J. (1986):Distributed discrete-event simulation. — Com-
put. Surveys, Vol. 18, No. 1, pp. 39–65.

Nicol D.M. and Fujimoto R. (1994):Parallel simulation today.
— Ann. Oper. Res., Vol. 53, pp. 249–285.

Nicol D.M., Johnson M., Yoshimura A. and Goldsby M. (1997):
Performance modeling of the IDES framework. — Proc.
WorkshopParallel and Distributed Simulation, Locken-
haus, Austria, pp. 38–45.

Niewiadomska-Szynkiewicz E., Pośnik P., Bolek P. and
Malinowski K. (1995): Software environment for
complex systems analysis and simulation. — Prep.
IFAC/IFORS/IMACS Symp.Large Scale Systems: Theory
and Applications, London, pp. 147–152.

Niewiadomska-Szynkiewicz E., Karbowski A. and Malinowski
K. (1996):Predictive methods for real time control of flood
operation of a multireservoir system—Methodology and
comparative study. — Water Res. Res., Vol. 32, No. 9,
pp. 2885–2895.

Niewiadomska-Szynkiewicz E. (2002):Software environment
for simulation of flood control in multiple-reservoir sys-
tems. — Proc. 5th Int. Conf.Hydro-Science and Engineer-
ing, ICHE 2002, Warsaw, Poland, pp. 2885–2895.

Niewiadomska-Szynkiewicz E. (2003):Computer-based analy-
sis and design of control mechanisms for flood operation
in multireservoir systems, In: Modelling and Control of
Floods (J. Napiórkowski, Ed.). — Publications of the In-
stitute of Geophysics, Polish Academy of Sciences, E–3
(365), pp. 97–117.

NS-2 (1995) (network simulator). — Available athttp://
www.isi.edu/nsnam/ns/ns-documentation.html

OMNeT++ (1992) (Objective Modular Network Testbed
in C++). — Available at http://www.hit.bme.
hu/phd/vargaa/omnetpp.htm

Pondarzewski A., Niewiadomska-Szynkiewicz E. andŻmuda
M. (1999): Software environment for distributed comput-
ing and simulation; user guide and applications. — Tech.
Rep. Inst. Contr. Eng., Warsaw University of Technology,
No. 99–55 (in Polish).

Soliman H.M. (1999):On the selection of the state saving strat-
egy in time warp parallel simulation. — Trans. Soc. Comp.
Simul., Vol. 16, No. 1, pp. 32–36.

Received: 10 February 2003
Revised: 25 July 2003


