
Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 4, 577–583

WWW-BASED BOOLEAN FUNCTION MINIMIZATION

SEBASTIAN P. TOMASZEWSKI∗, ILGAZ U. CELIK∗∗

GEORGEE. ANTONIOU ∗∗∗

∗ BAE SYSTEMS Controls
600 Main Street, Johnston City, NY 13790, USA

e-mail:sebastian.tomaszewski@baesystems.com

∗∗ 121 Communicatins Inc., 857 Avenue of the Americas
Suite 1800, New York, NY 10001, USA

e-mail:ucelik@web121.com

∗∗∗ Image Processing and Systems Laboratory
Department of Computer Science, Montclair State University

Upper Montclair NJ 07043, USA
e-mail:george.antoniou@montclair.edu

In this paper a Boolean minimization algorithm is considered and implemented as an applet in Java. The applica-
tion is based on the Quine-McCluskey simplification technique with some modifications. The given application can
be accessed on line since it is posted on the World Wide Web (WWW), with up to four variables, at the URL
http://www.csam.montclair.edu/ ∼antoniou/bs . After extensive testing, the performance of the algorithm
has been found to be excellent. The proposed application is a useful aid for students and professors in the fields of electrical
and computer engineering and computer science as well as a valuable tool for digital designers.

Keywords: digital logic, logic design, Boolean functions, Boolean minimization, Quine-McCluskey metod

1. Introduction

The modified Quine-McCluskey (M Q-M) method is a
very simple and systematic technique for minimizing
Boolean functions. Why do we want to minimize a
Boolean expression? By simplifying the logic function
we can reduce the original number of digital components
(gates) required to implement digital circuits. Therefore
by reducing the number of gates, the chip size and the
cost will be reduced, and the speed will be increased.

Logic minimization uses a variety of techniques to
obtain the simplest gate-level implementation of a logic
function. The heart of digital logic design is the Boolean
algebra (Boole, 1954). A few dacades later C.E. Shannon
showed how the Boolean algebra can be used in the design
of digital circuits (Shannon, 1938). Using Boolean laws
it is possible to minimize digital logic circuits (Hunting-
ton, 1904). Since minimization with the use of Boolean
laws is not systematic nor suitable for computer imple-
mentation, a number of algorithms were proposed in or-
der to overcome the implementation issue. Karnaugh pro-
posed a technique for simplifying Boolean expressions
using an elegant visual technique, which is actually a
modified truth table intended to allow minimal sum-of-

products (SOP) and product-of-sums (POS) expressions
to be obtained (Karnaugh, 1953). The Karnaugh Map
(K-Map) based technique breaks down beyond six vari-
ables. Quine and McCluskey proposed an algorithmic-
based technique for simplifying Boolean logic functions
(McCluskey, 1956; Quine, 1952). The Quine-McCluskey
(Q-M) method is a computer-based technique for simpli-
fication and has mainly two advantages over the K-Map
method. Firstly, it is systematic for producing a minimal
function that is less dependent on visual patterns. Sec-
ondly, it is a viable scheme for handling a large number
of variables. A number of methods have been developed
that can generate optimal solutions directly at the expense
of additional computation time. Another algorithm was
reported by Petrick (1959). This algorithm uses an alge-
braic approach to generate all possible covers of a func-
tion. A popular tool for simplifying Boolean expressions
is the Espresso, but it is not guaranteed to find the best
two-level expression (Katz, 1994).

In this paper an Internet based implementation is proposed
for simplifying two to four-variable Boolean functions,
using a Modified Quine-McCluskey (M Q-M) method.
The M Q-M technique is implemented as an applet in Java,

S.P. Tomaszewski et al.578

and can be accessed on line, up to four variables, since it
is posted on the World Wide Web. Due to the algorithmic
nature of the technique, the proposed method and its im-
plementation can easily be expanded to cover more than
four variables.

2. Modified Quine-McCluskey Algorithm

The main difference between the proposed algorithm and
the Q-M method starts when the Q-M method groups the
elements according to the number of ones in each element,
but in the proposed algorithm grouping is not required. In
the following steps the M Q-M follows Q-M up to the first
step of the prime implicant table, which is identifying the
essential prime implicants. For the next step, the Q-M
uses several different techniques to eliminate the impli-
cants efficiently. The M Q-M method simulates the elim-
ination process of minterms and finally, when the most
efficient combination is reached, it is taken out from the
table.
The M Q-M algorithm is presented using the following
step-by-step approach:

I. Input:

1.1 Enter the input of a Boolean expression either into
the K-map, Truth Table, or as a Boolean expres-
sion.

1.2 Obtain the binary representation of each term from
the input data.

II. Calculations:
2.1 Compare each of the terms one with another in or-

der to find the terms that are logically adjacent.
The following rules have to be followed when
combining the terms:

(a) Combine two terms only if they differ by only
one bit.

(b) Once there are two terms that differ by one bit,
create the new term with the same exact bits or
characters, except replacing the bit that is differ-
ent from the ‘–’ symbol in both of those terms.

(c) Once the new term is created, mark both of the
old terms, indicating that both of the terms are
combined.

2.2 Swap all of the combined terms (new terms) and
terms that were not combined at all.

2.3 Repeat Steps 2.1 and 2.2 until it is impossible to
combine the terms.

III. Table:
3.1 Make sure that there is only one term alike. That

is, get rid of a term if it is a duplicate of another
term in the content.

3.2 Create a prime implicant chart.

3.3 Identify the essential prime implicants and con-
sider them as the first terms which will make up the
result. After each implicant is put into the result
term area, the implicant chart should be updated.

3.4 If there are any more minterms left over, proceed
as follows:

(a) Look into the prime implicant chart for the im-
plicants which have exactly the same minterms
and eliminate the one that is least efficient.

(b) Try selecting out one of the terms and see
whether or not the term cancels out all of the
implicants.

(c) If it cancels out all of the implicants, put the
term back into the result term area.

(d) If it does not cancel out all of the implicants,
repeat Step (b), with a higher combination of the
terms to be taken out.

IV. Display:
Display the values out of the result term area.

3. Implementation

The algorithm was first implemented using simple Java.
Then it was converted into the object oriented language.
To make sure that the conversion was correct, the program
was retested with the same method like previously. Cur-
rently the structure of this program is shown in Fig. 1.

In the following section, two step-by-step examples
are given illustrating the proposed technique.

4. Examples

Example 1.Simplify the following Boolean function:

F = abcD + aBcD + aBCD + aBCd + ABcd

+ ABcD + ABCD + AbCD. (1)

Applying the algorithm, we have the following results:

I. Input:

1.1 Input the expression in either way as shown in
Fig. 2.

1.2 In order to obtain a binary representation of the
terms, you will have to know that lower case let-
ters such asa, b, c, andd are negative variables.
Thusa is (notA) or a binary zero.
In our example, the binary representation of the
terms is as follows:

0001 (1) 1100 (C)
0101 (5) 1101 (D)
0111 (7) 1111 (F)
0110 (6) 1011 (B)

WWW-based Boolean function minimization 579

Fig. 1. Structure of the program.

II. Calculations:

2.1 and 2.2. According to the rules of combining the
terms, the result of combining is as follows:

Old Terms New Terms Swapped Terms

X 0001 (1) 0–01 (1,5)

X 0101 (5) 01–1 (5,7)

X 0111 (7) –101 (5,D)

X 0110 (6) 011– (7,6)

X 1100 (C) –111 (7,F)

X 1101 (D) 110– (C,D)

X 1111 (F) 11–1 (D,F)

X 1011 (B) 1–11 (F,B)

As it is seen, the result of combining the terms cre-
ates only eight new terms and there are no swapped
terms since the old terms were combined.

2.3 Repeat Steps 2.1 and 2.2:

Old Terms New Terms Swapped Terms

0–01 (1,5) –1–1 (5,7,D,F) –1–1 (5,7,D,F)
X 01–1 (5,7) –1–1 (5,D,7,F) –1–1 (5,D,7,F)
X –101 (5,D) 0–01 (1,5)

011– (7,6) 011– (7,6)
X –111 (7,F) 110– (C,D)

110– (C,D) 1–11 (F,B)
X 11–1 (D,F)

1–11 (F,B)

S.P. Tomaszewski et al.580

Fig. 2. Boolean function input.

The result of combining the terms creates two new
terms, but after swapping there are six terms alto-
gether. The reason behind this is that there were
four terms among the old ones that were not com-
bined with any of the other terms. That is the rea-
son why ‘X’ does not mark all of the terms.

Since the swapped terms cannot be combined any
further, Steps 2.1 and 2.2 are not repeated again.

III. Table:

3.1 By combining the terms and swapping, the follow-
ing terms are present:

–1–1 (5,7,D,F)
–1–1 (5,D,7,F)
0–01 (1,5)
011– (7,6)
110– (C,D)
1–11 (F,B)

After getting rid of duplicates, the following terms
are present:

–1–1 (5,D,7,F)
0–01 (1,5)
011– (7,6)
110– (C,D)
1–11 (F,B)

3.2 The prime implicant chart (cf. Table 1) is cre-
ated to indicate what terms given at the beginning
were combined to create the resulting terms or the
minterms. For example, the term –1–1 was com-
bined with four terms, which explains why there is
an ‘X’ under (5), (7), (D), and (F).

Table 1. Prime implicant chart.

1 5 7 6 C D F B

–1–1 X X X X

0–01 X X

011– X X

110– X X

1–11 X X

3.3 The next step is to find the essential prime impli-
cants. These are prime implicants that cover the
minterms which are not covered by other prime
implicants. In our example, the essential prime im-
plicants are 0–01, 011–, 110–, and 1–11.

3.4 After the previous step, there are no minterms that
are not covered.

IV. Display:
Initially, the given Boolean expression had the form

0001+0101+0111+0110+1100+1101+1111+1011,

which is equivalent to (1).

After the application of the procedure, the following
simplified expression is derived:

0–01 + 011– + 110– + 1–11,

or
F ′ = acD + aBC + ABc + ACD. (2)

The expression (2) is the optimal solution for the given
Boolean function (1).
It is noted that the same result (2) is given in Fig. 3,
using our on-line implementation. �

Example 2.Simplify the following Boolean function:

F = abcd + abcD + abCD + aBcd + aBCD

+ ABcd + ABcD + ABCD (3)

Applying the algorithm, we have
I. Input:

1.3 Input the expression in either way as shown in
Fig. 4.

1.4 In our example the binary representation of the
terms is as follows:

0000 (0)
0001 (1)
0011 (3)
0100 (4)
0111 (7)
1100 (C)
1101 (D)
1111 (F)

WWW-based Boolean function minimization 581

Fig. 3. Boolean function result.

Fig. 4. Boolean function input.

II. Calculations:

2.1 and 2.2

Old Terms New Terms Swapped Terms

X 0000 (0) 000– (0,1)

X 0001 (1) 0–00 (0,4)

X 0011 (3) 00–1 (1,3)

X 0100 (4) 0–11 (3,7)

X 0111 (7) –100 (4,C)

X 1100 (C) –111 (7,F)

X 1101 (D) 110– (C,D)

X 1111 (F) 11–1 (D,F)

As can be seen, the result of combining the terms
creates only eight new terms and there are no
swapped terms since the old terms were combined.

2.3 Since the swapped terms cannot be combined any
further, Steps 2.1 and 2.2 are not repeated.

III. Table:

3.1 As a result of combining the terms, the following
terms are present:

000– (0,1)
0–00 (0,4)
00–1 (1,3)
0–11 (3,7)
–100 (4,C)
–111 (7,F)
110– (C,D)
11–1 (D,F)

Since there is no other repeating term, we can skip
this part of the method.

3.2 The respective prime implicant chart is given in
Table 2.

Table 2. Prime implicant chart.

0 1 3 4 7 C D F

000– X X

0–00 X X

00–1 X X

0–11 X X

–100 X X

–111 X X

110– X X

11–1 X X

3.3 The next step is to find the essential prime impli-
cants. In our example there are no essential prime
implicants, since by looking at Table 2 there are
no prime implicants that cover the minterms which
are not covered by other prime implicants.

3.4

(a) Looking at the prime implicant chart, we de-
duce that there are no implicants which have the
same exact minterms, and therefore none of the
terms will be eliminated. The next step is to
try selecting the terms which will cancel out all
of the terms, since trying to select one, two or
three term(s) will not cancel out all of the terms.
Therefore Steps (b), (c), and (d) of the algorithm

S.P. Tomaszewski et al.582

will be repeated until it reaches the four terms
that will cancel out all of the terms.

IV. Display:
Initially, the given Boolean expression had the form

0000+0001+0011+0100+0111+1100+1101+1111

which is equivalent to (3).

After the application of the procedure, the following
simplified expression is derived:

000– + 0–11 + –100 + 11–1,

or
F ′ = abc + aCD + Bcd + ABD. (4)

The above expression (4) is the optimal solution for
the given Boolean function (3).

Fig. 5. Boolean function result.

Note that the same result (4) is given in Fig. 5 using
our on-line implementation.

5. Algorithm Performance

The computational complexity for the Quine-McCluskey
method isO(N log3

2 log2 N), with input lengthN = 2n

(Wegener, 1987). Mileto and Putzolu investigated the av-
erage running time of the algorithm for randomly chosen
Boolean functions (Mileto and Putzolu, 1964; 1965). The
running time according to variables and the number of
ones present is illustrated in Fig. 6.

The performance was measured in milliseconds for
all of 65 535 possibilities using Java Object Oriented pro-
gramming. In simulations a SUN Ultra Enterprise 450
Server with dual modular UltraSPARC II CPU’s was used,
with Java v. 1.3.0.

It should be emphasized that the algorithm was tested
correctly for all 65 535 possibilities, using four-variable
combinations in conjunction with the K-map based mini-
mization algorithm for Palm-based personal assistant de-
vices (Bitincka and Antoniou, 2001).

6. Conclusion

In this paper, a new modified Quine-McCluskey al-
gorithm for minimizing Boolean expressions has been
proposed and implemented. The application which
was implemented in Java using up to four variables,
can be accessed on the Internet. The results of this
paper can easily be extended to cover more than
four variables. This application can be a great aid
for students and professors in digital logic design
courses and a valuable tool for the digital logic design-
ers. The proposed application can be accessed on-line at
http://www.csam.montclair.edu/ ∼antoniou/bs .

Acknowledgements

The authors would like to thank Professor Carl Bredlau
of the Department of Computer Science, Montclair State
University, for his valuable advice on JAVA programming.
Also we would like to thank the anonymous reviewers for
their valuable comments.

References

Bitincka L. and Antoniou G.E. (2001):Boolean function simpli-
fication on a Palm-based environment. — Proc. Int. Conf.
Computing and Information Technologies, Montclair, NJ,
pp. 221–228.

Boole G. (1954):An Investigation of the Laws of Thought. —
New York: Dover Publications.

Huntington E.V. (1904):Sets of independence postulates for the
algebra of logic. — Trans. Amer. Math. Soc., Vol. 5, No. 3,
pp. 288–309.

Karnaugh M. (1953):The map method for synthesis of combi-
natorial logic circuits. — Trans. AIEE Comm. Electron.,
Vol. 72, No. 4, pp. 593–598.

Katz R.H. (1994):Contemporary Logic Design. — Redwood
City, CA: Benjamin/Cummings.

McCluskey E.J. (1956):Minimization of Boolean functions. —
Bell System Tech. J., Vol. 35, No. 5, pp. 1417–1444.

WWW-based Boolean function minimization 583

Modified McCluskey Timing

�

�

� �

���

���

� �

���

� �

� �

�	�

� �

���

��

 �

� �

���

��

� � � � �
 � � � � ��� � � � � ��� ��� �

Number of Selected Cells in the K-Map

A
ve

ra
ge

 T
im

e
(m

s)

Fig. 6. Running time.

Mileto T. and Putzolu G. (1964):Average values of quanti-
ties appearing in Boolean function minimization. — IEEE
Trans. El. Comp., Vol. 13, No. 2, pp. 87–92.

Mileto T. and Putzolu G. (1965):Statistical complexity of al-
gorithms for Boolean function minimization. — J. ACM,
Vol. 12, pp. 364–375.

Petrick S.K. (1959):On the minimization of Boolean functions.
— Proc. Int. Conf.Information Processing, Paris: Unesco,
pp. 422–423.

Quine W.V. (1952):The problem of simplifying truth tables. —
Amer. Math. Month., Vol. 59, No. 8, pp. 521–531.

Shannon C.E. (1938):A symbolic analysis of relay and switching
circuits. — Trans. AIEE, Vol. 57, No. 6, pp. 713–723.

Wegener I. (1987):The Complexity of Boolean Functions. —
New York: Wiley.

Received: 9 April 2002
Revised: 5 March 2003

