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ASYMPTOTIC BEHAVIOUR OF A DISCRETE DYNAMICAL SYSTEM GENERATED BY
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A simple model of phenotypic evolution is introduced and analysed in a space of population states. The expected values
of the population states generate a discrete dynamical system. The asymptotic behaviour of the system is studied with the
use of classical tools of dynamical systems. The number, location and stability of fixed points of the system depend on
parameters of a fitness function and the parameters of the evolutionary process itself. The influence of evolutionary process
parameters on the stability of the fixed points is discussed. For large values of the standard deviation of mutation, fixed
points become unstable and periodical orbits arise. An analysis of the periodical orbits is presented.
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1. Introduction

Although evolutionary algorithms have been recently
widely applied and examined, there is still a need for new
methods to describe and analyse complex population dy-
namics. The main reason behind searching for new meth-
ods is the fact that standard analytic tools are usually use-
less, especially in dealing with models of small popula-
tions. Equipped with a mathematical model of an evolving
population, we are interested in a long-term behaviour of
the population. An asymptotic analysis for a class of Ge-
netic Algorithms was proposed with the use of stochas-
tic Markov chain theory (Vose, 1999). In this paper we
take advantage of a special representation of populations
in the space of population states, where every point de-
scribes the whole population instead of particular individ-
uals (Galar and Karcz-Dulęba, 1994; Dulęba and Karcz-
Dulęba, 1996). The state-space approach facilitates the
analysis of the population as a whole. The population’s
evolution is naturally represented as a trajectory in the
state space. Consequently, classical tools of the theory of
dynamical systems can be used to answer important ques-
tions concerning the number of fixed points, their stability
and other phenomena. Obviously, when translated into the
evolutionary domain, the answers admit to discover many
interesting characteristics of the population. For example:
How fast and where does the population tend to? Is the
population stable after an infinite period of time? Can the
population exhibit a periodic behaviour?

In this paper the model of asexual phenotypic evo-
lution, based on the Darwinian theory of evolution, is
considered. Populations of individuals evolve according
to the rules of proportional selection and normally dis-
tributed mutation. The simplest case of evolution is anal-
ysed when a two-element population evolves in a one-
dimensional search space. These assumptions allow us to
characterize the populations analytically and to visualize
population states easily. The aim of keeping the number
of parameters as small as possible is to present phenom-
ena of evolution in the simplest and the most transpar-
ent way, without a mess caused by increasing their num-
ber. Despite the simplicity of the evolutionary process
presented, its behaviour seems to be quite complicated.
Evolutionary processes are usually governed by indeter-
ministic (stochastic) rules. The analysis of each particular
exemplification of the process is not informative enough
as it strongly depends on an initial distribution of the pop-
ulation and other parameters. Therefore, two alternatives
can be proposed. The first one is to perform a large num-
ber of experiments and to draw statistically reliable con-
clusions. The second alternative explained in this paper
is to observe the population as a whole rather than each
of its elements separately. Thus a macro behaviour of the
population can be investigated. The most important char-
acteristic describing a population is its expected position
in the consecutive iterations of the evolutionary process.
It appears that the expected position of the population can
be uniquely described by an appropriate discrete dynam-
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ical system. Its equations (coordinates) are derived from
the model of the evolutionary process. The asymptotic
behaviour of the evolutionary process is determined by
fixed points of the dynamical system. The fixed points
are located in the vicinity of optima of the fitness func-
tions and saddles between the optima. The stability of the
fixed points depends primarily on a parameter of the evo-
lutionary process — the standard deviation of mutation.
Fixed points could be stable, unstable or may form period-
ical orbits. Both the theoretical and simulation analysis of
the population evolution in the space of population states
shed a light on the dynamics of reaching an equilibrium
state by the population. If the number of fixed points is
greater than one, the state space is naturally decomposed
into separable components. Each component (set) is com-
posed of those points that are attracted by a given fixed
point. Those sets are called the basins later on. The struc-
ture of the basins of attraction is also presented.

The outline of the paper is as follows: in Section 2 a
description of the general model of phenotypic evolution
is given and made concrete for two-element populations.
The discrete dynamical system generated by the expected
values of the population states is given in Section 3. In
Section 4, an analysis of fixed points of the system is pro-
vided. The basins of attraction of fixed points are studied
in Section 5. The stability analysis of fixed points and pe-
riodic orbits is presented in Section 6. Conclusions are
drawn in Section 7.

2. Model of Phenotypic Evolution

2.1. Model of Evolution

The model of phenotypic evolution called theevolu-
tionary search with soft selectionis considered (Galar,
1985). A population consists ofm individuals x =
{x1,x2, . . . ,xm}. Each individual is described by an
n-dimensional vector of traits (type) xk ∈ Rn (k =
1, . . . ,m) and the non-negative quality indexq(xk) (fit-
ness). The successive generation is based on the current
generation and created with the use of two operators only:
selection and mutation. The simple form of selection, pro-
portional to the individual’s fitness, is applied. Descen-
dants inherit parental traits mutated with independent ran-
dom variables, normally distributed with identical stan-
dard deviationσ. The rules of proportional selection and
normally distributed mutation define the conditional dis-
tributionf i+1

xxx (x|xi) of a new individual’s position inRn,

f i+1
xxx (x|xi) =

m∑
k=1

α(xi
k)g(x,xi

k)

=
m∑

k=1

q(xi
k)

m∑
j=1

q(xi
j)

g(x,xi
k), (1)

where f i+1
xxx (x|xi) is the conditional distribution in the

(i+1)-st generation when the position of the population in
the i-th generation isxi, xi

k ∈ Rn stands for the type of
the k-th individual in thei-th generation,α(xi

k) denotes
the probability of selecting individualxi

k, q(xi
k) means

the fitness of individualxi
k, g(x,xi

k) is the distribution
of mutation of thek-th individual, g(x,xi

k) = N(xi
k, σ).

The distribution (1) is defined in thespace of types
(traits) T = Rn, where each coordinate depicts an indi-
vidual’s trait and a point represents a type of an individ-
ual. The whole population is described by a set ofm
points and evolution is described as a movement of the
set through the space of types. In the landscape of a fit-
ness function, evolution leads the population to areas of a
higher quality.

Another approach deals with a whole population rep-
resented by a single point in thespace of population states
S (Galar and Karcz-Dulęba, 1994; Dulęba and Karcz-
Dulęba, 1996; Karcz-Dulęba, 2000; Chorążyczewskiet
al., 2000; Karcz-Dulęba, 2002a). In the spaceS each
point (state) si = (xi

1,1, x
i
1,2, . . . , x

i
1,n, xi

2,1, x
i
2,2, . . . ,

xi
m,1, . . . , x

i
m,n) represents the whole population in thei-

th generation. The dimension of the state spaceS is equal
to the number of individuals multiplied by the number of
traits dim(S) = nm, but it is not just a product of type
spaces and it is not identical withRnm. The dynamics of
evolution are independent of the ordering of individuals
within the population. For example, the population state
(xi

1,1, x
i
1,2, . . . , x

i
1,n, xi

2,1, x
i
2,2, . . . , x

i
m,1, . . . , x

i
m,n) re-

presents the same state as(xi
2,1, x

i
2,2, . . . , x

i
2,n, xi

1,1, x
i
1,2,

. . . , xi
m,1, . . . , x

i
m,n). Therefore, the equivalence relation

U that identifies all the points corresponding to the per-
mutations of individuals in the population has to be de-
fined onS. The non-redundant space of population states
S becomes the factor (quotient) spaceSU = Rnm/U .
Although the structure ofS is rather complex, this ap-
proach facilitates the characterization of the population’s
evolution through the analysis of the population’s trajec-
tories in the quotient space.

Since the distributions (1) for every trial are the same
and independent of one another, the joint distribution
of the population state is just a product ofm distribu-
tions (1). In the quotient spaceSU corresponding to the
permuting equivalence relationU the distribution of the
population state in the(i + 1)-st iteration is given by the
density function

f̃ i+1
SU

(s|si) = m!
m∏

j=1

f i+1
x (xj |si)

= m!
m∏

j=1

m∑
k=1

α(xi
k)g(xj ,x

i
k). (2)

The probability of locating the population at a par-
ticular state s is determined by the current statesi,
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the fitness functionα(xi
k) and the mutation distribution

g(x,xi
k). The distribution (2) can be multimodal, cf.

Figs. 3(b) and (d).

2.2. Two-Element Population

In one-element populations evolution is not possible be-
cause selection requires at least two individuals. There-
fore, the simplest case of evolution when a two-element
population evolves in a one-dimensional space of types
(m = 2, n = 1) is considered. Even in such a simple
case, the analysis of evolution is far from trivial and it be-
comes analytically intractable asm and n are increased.

In order to define the space of population states for
the population of two individualsx = (x1, x2), the equiv-
alence relation is introduced:

R2 → SU : (xi
1, x

i
2) →

{
(xi

1, x
i
2) for xi

1 ≥ xi
2,

(xi
2, x

i
1) for xi

1 < xi
2.

The mapping shrinks the space by identifying points sym-
metric with respect to the lineX1 = X2, called theiden-
tity axis, and identifying the right half-plane with the fac-
tor spaceSU (Fig. 1). In the spaceSU , the distribu-
tion (2) of the two-individual population is given by

f̃ i+1
SU

(x1, x2|si)

= 2f i+1
x (x1|si)f i+1

x (x2|si)

= 2
(
α(xi

1)g(x1, x
i
1) + α(xi

2)g(x1, x
i
2)
)

×
(
α(xi

1)g(x2, x
i
1) + α(xi

2)g(x2, x
i
2)
)
, (3)

whereα(xi
k) = q(xi

k)/(q(xi
1) + q(xi

2)), k = 1, 2.

 
Fig. 1. Evolution of two-element populations in the coordi-

nate framesX1X2 (the unimodal fitness function (4),
a = 5, σ = 0.1; 50 generations are presented for initial
states marked with open circles).

The presentation in the quotient spaceSU becomes
more convenient after the rotation of the coordinate frame
X1X2 with the angleγ = π/4. The new coordinate
frame WZ is given by the transformationswi = (xi

1 −
xi

2)/
√

2 and zi = (xi
1 + xi

2)/
√

2. Therefore, the pop-
ulation state depicted by traitssi = (xi

1, x
i
2) is mapped

into the statesi = (wi, zi) and the quotient spaceSU

is transformed to the right half-plane(w ≥ 0) (Fig. 2).
The new coordinates(w, z) admit a nice interpretation.
The coordinatew describes a distance of the population
state from the identity axis and it may be considered as a
measure of the population’s diversity. The coordinatez
situates a state along the identity axis. In the new frame
the identity axis coincides with theZ-axis.

 
Fig. 2. Evolution of two-element populations in the coordinate

framesWZ (the unimodal fitness function (4),a = 5,
σ = 0.1; 50 generations are presented for initial states
marked with open circles).

In order to illustrate evolution dynamics, simulations
are performed in landscapes of uni- and multimodal one-
dimensional fitness functions. Unimodal fitness functions
allow us to check if and how fast the optimum is reached.
Multimodal fitness functions are selected to evaluate the
dynamics of crossing saddles between optima. As an ex-
ample of the unimodal symmetrical fitness function, the
following bell-shaped Gaussian function with the maxi-
mum located at zero is chosen:

q(x) = exp(−ax2). (4)

Multimodal fitness functions are represented by sums of
Gaussian functions

q(x) =
∑

k

hk exp
(
− a(x− dk)2

)
, (5)

wherehk, dk are real numbers andhk > 0.
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 evolution trajectories trajectories of the mean 

 
  

(a) s0 = (1.3, 1.5), Gs = 905 

   
(b) s0 = (0.6, 0.1), Gs = 895 

   
(c) s0 = (1.3, 0.0), Gs = 679 

   
(d) s0 = (0.7, 1.0), Gs = 668 

 Fig. 3. Population dynamics in the landscape of a bimodal fitness function (5) for four different initial statess0. Distributions of the
population states in the first generation (3) are presented in the left panels. The middle panels display examples of evolution
trajectories in 100 generations. In (c) and (d) two trajectories show possible jumps of states to distinct optima. Trajectories of
the expected states are presented in the right panels.Gs indicates the generation reaching a fixed point marked with an asterisk
(k = 2, a = 5, h1 = 1, h2 = 2, d1 = 0, d2 = 1, σ = 0.1).
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Simulations of evolution in the quotient space dis-
cover some characteristic properties of evolutionary dy-
namics (Figs. 2 and 3). The population quickly moves (al-
most jumps) toward states located near the identity axis.
Then it wanders slowly toward the optimum of the fitness
function. Finally, it maintains its stochastic equilibrium.
The jump in the vicinity of the identity axis indicates uni-
fication of the (initially diversified) population and it is
caused by the selection. The motion of an almost homo-
geneous population towards an optimum is effected by the
mutation. The trajectory may stay around local optima for
a relatively long period of time (for many iterations). This
phase of evolution can be called thequasi-equilibrium
phase. It can be abandoned if some individuals find a new,
higher peak of an optimum.

3. Discrete Dynamical System Generated
by Evolution

In the coordinate frameWZ, the expected values of the
population statesi = (wi, zi) in the next generation can
be calculated analytically using the density function (3).
The expected values of coordinatesw and z, Ei+1[w|si]
and Ei+1[z|si], in the (i + 1)-st generation are equal to

Ei+1[w|si] =

√
2
π

σ +
(
1−Ψi2

)
× σ

[
ϕ0

(
wi

σ

)
+

wi

σ
Φ0

(
wi

σ

)]
, (6)

Ei+1[z|si] = zi + Ψiwi, (7)

where

Ψi(w, z) =
q1 − q2

q1 + q2
, q1 = q(xi

1) = q

(
wi + zi

√
2

)
,

q2 = q(xi
2) = q

(
zi − wi

√
2

)
,

ϕ0(x) =
1√
2π

[
exp

(
−x2

2

)
− 1
]

,

Φ0(x) =
1√
2π

∫ x

0

exp
(
− t2

2

)
dt,

q is a fitness function, andϕ0 and Φ0 conform to the
normal distribution of mutation.

Equation (6) consists of two components. The first
depends only on the standard deviation of mutationσ.
The second depends also on the fitness function (the co-
efficient Ψ) and on the current value of coordinatew.
Since the fitness functionq(x) is non-negative, the co-
efficient Ψ ⊂ [−1, 1], so (1−Ψ2) ∈ [0, 1] and ϕ0 ≥ 0,
Φ0 ≥ 0, thereforeEi+1[w|si] ≥

√
2/πσ. The expected

value (6) is equal to
√

2/πσ for 1 − Ψ2 = 0, i.e. when
the differences in the individuals’ fitness values are sig-
nificant. The second component influencesEi+1[w|si]
when 1 − Ψ2 > 0, which happens for states in the vicin-
ity of axes W and Z. The expected value of coordinate
z in (7) depends on the sign of the coefficientΨ. The
value of coordinatez increases or decreases depending
on the ratio of the individuals’ qualitiesq(x2)/q(x1).

The expected values (6) and (7) generate a discrete
dynamical system in the spaceSU described by the fol-
lowing equations:

wi+1 =

√
2
π

σ + (1−Ψi2)

×σ

[
ϕ0

(
wi

σ

)
+

wi

σ
Φ0

(
wi

σ

)]
,

zi+1 = zi + Ψiwi.

(8)

Equation (6) defines two scalar mappings

(w, z) → F (w, z) =

[
F1(w, z)
F2(w, z)

]
. (9)

Exemplary trajectories of the deterministic dynamical sys-
tem (9) derived from the (stochastic) probability distribu-
tion (3) are depicted in Fig. 3. The trajectories exhibit
some characteristic properties. At first, a jump to a state
located in the vicinity of the identity axis is observed.
Then, the current state slowly moves toward the optimum.
Finally, the population maintains its equilibrium state.

4. Fixed Points of the Discrete Dynamical
System

Fixed points are important in the study of dynamical sys-
tems, since they represent stationary or repeatable be-
haviuor. Evolution directs a population to the state of
a selection-mutation equilibrium near the fixed point.
Reaching an equilibrium state by the population does not
necessarily mean that its elements are immobile. On the
contrary, the positions of each individual in the population
fluctuate but macroscopic behaviour of the population (the
mean value) does not change. The coordinates of the fixed
points of the dynamical system (9) are obtained from the
equations {

w = F1(w, z),

z = F2(w, z).
(10)

For any quality function, the equilibrium statesω =
(ws, zs) are characterized by the conditions{

ws ∼= 0.97σ, (11)

Ψ(ws, zs) = 0 ⇒ q1 = q2. (12)
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The w-coordinate of the fixed points (11) does not depend
on the fitness function. Since thew-coordinate indicates
the diversity of the population, from (11) it follows that in
an equilibrium state individuals do not have equal types
but their types differ with respect to the standard devia-
tion of mutation σ. The z-coordinate of an equilibrium
point depends on the fitness function and it satisfies the
condition

q

(
zs + ws

√
2

)
= q

(
zs − ws

√
2

)
. (13)

The solution of (13) is determined by the points of in-
tersection of two fitness functionsq1 and q2 shifted by
∆q =

√
2ws ∼= 1.37σ, cf. Figs. 4(a) and 5(a). The num-

ber of intersection points depends on the number of the
optima of the fitness function and on the shift∆q, i.e. on
the standard deviation of mutation. When the value ofσ
increases, the number of fixed points may decrease. Fixed
points are located in the neighborhood of optima and the
saddles between the optima.

In the landscape of any unimodal fitness function, the
dynamical system (9) has at most one fixed point (Karcz-
Dulęba, 2000). For symmetric fitness functions with the

 (a)

0.2 0.4 0.6 0.8
ws

-0.6

-0.4

-0.2

0.2

0.4

0.6

zs

(b)

Fig. 4. Dynamical system (9) in the landscape of a symmetric
bimodal fitness function (5) (a = 5.0, d1 = −1.0,
d2 = 1.0, h1 = h2 = 1.0, σ = 0.5): (a) the z coor-
dinates of fixed points obtained as intersection points of
two shifted functionsq1, q2, (b) location of fixed points
as a function ofws(≈ σ).

optimum placed at the origin (e.g. (8)), a fixed point of
the system lies on the axisW (zs = 0) at the distance of
0.97σ from the optimum. The fixed pointω = (0.97σ, 0)
can be called the optimum fixed point. The population
in its equilibrium state consists of two individuals with
equal fitness values, located symmetrically on the oppo-
site hillsides of the fitness function:x = (xs,−xs) with
xs ∼= 0.69σ. The evolution does not lead a population of
two individuals exactly to the optimum but to its neigh-
bourhood. However, the distance from the equilibrium
point to the optimum decreases as the value ofσ de-
creases. In this case the speed of reaching the equilib-
rium slows down as well. The asymmetry in the unimodal
fitness function influences the value of thez-coordinate
of the fixed point leaving itsw-coordinate unchanged
(Karcz-Dulęba, 2002a).

In the case of a bimodal fitness function, the dynam-
ical system (9) has one or three fixed points (Fig. 4(b)),
depending on the value of the standard deviation of muta-
tion. As an example of a symmetrical fitness function,
a sum of two bell-shaped functions with optima at the
same distance from the origin of the coordinate system

 (a)

0.2 0.4 0.6 0.8 1 1.2 1.4
 s
w

0.2

0.4

0.6

0.8

1

1.2

1.4

 s
z

(b)

Fig. 5. Dynamical system (9) in the landscape of an asymmet-
ric bimodal fitness function (5) (a = 5.0, d1 = 0.0,
d2 = 1.0, h1 = 1.0, h2 = 2.0, σ = 0.25): (a) the
z coordinates z of fixed points obtained as intersection
points of two shifted functionsq1, q2, (b) location of
fixed points as a function ofws(≈ σ).
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and equal hill hights (e.g. the function (5) withk = 2,
d1 = −d2 and h1 = h2 = 1) were used. In this case,
two symmetrical optima and one saddle fixed points ap-
pear. When the standard deviation of mutationσ sur-
passes its critical valueσg, two fixed points disappear and
one fixed point remains. For an asymmetrical bimodal fit-
ness function (e.g. the function (5) withd1 = 0, d2 = 1,
h1 = 1, h2 = 2), one fixed point is located near the
local optimum, the second one lying close to the saddle
and the third near the global optimum. As the value of
the standard deviationσ increases, the fixed points that
correspond to the local optimum and the saddle get closer
and closer and finally disappear leaving only one global
fixed point (Fig. 5(b)). When the standard deviationσ is
comparable with the distance between optima, individuals
may jump from one hill to another. In this case the global
fixed point approaches the saddle.

Generally, for a fitness function withk optima, the
number of fixed points may vary from one to2k + 1.
They are situated near the optima and saddles of the fit-
ness function. For a symmetric fitness function, one of the
points is always located on the symmetry axis while oth-
ers are symmetrically paired (Karcz-Dulęba, 2000). When
the value of σ is increased, fixed points around local
optima disappear and the global optimum fixed point re-
mains.

5. Basins of Attraction

The basin of attractionB(x) of a given fixed pointx is
a set composed of those initial points of the evolutionary
process at hand that converge (when iterated) to the fixed
point or, mathematically,

x =

(
w

z

)
, B

(
x|F (x) = x

)
=
{

x0|F i(x0) −→
i→∞

x
}

.

Now, basins of attraction of the dynamical system (9) in
landscapes of multimodal fitness functions will be consid-
ered. The shape of a basin depends on the parameters of
a fitness function (the slope of the hillside described by
the parametera, differences of heights between optima)
and the parameters of the dynamical system (the standard
deviation of mutationσ) (Karcz-Dulęba, 2002b).

Basins of attraction and landscapes of the mean fit-
ness are presented in Fig. 6 for sums of two and three
Gaussian functions (5). Interesting facts can be observed
in both cases. There exist states initiating trajectories that
are attracted by a lower optimum although the states are
located closer to a higher optimum. This phenomenon
can be explained by looking at the contribution of sepa-
rate optima characterized by parameters(hk, dk) of the
multimodal fitness function (5) and the probability distri-
bution of the population state (3). Let us define theimpact

area of a given optimum. The area is composed of the
states where the contribution to the mean value of the fit-
ness resulting from a particular optimum is higher than the
contribution of any other optimum considered separately,
cf. Fig. 7. For the bimodal fitness function depicted in
Fig. 7(a) the impact area of the lower hill is composed of
the states(w, z) characterized by the condition

h1 exp
(
− a(x1 − d1)2

)
+ h1 exp

(
− a(x2 − d1)2

)
> h2 exp

(
− a(x1 − d2)2

)
+h2 exp

(
− a(x2 − d2)2

)
,

wherex1 = (z + w)/
√

2, x2 = (z − w)/
√

2.

In the next generation, the distribution given
by (3) shifts the population towards the local optimum
(Fig. 3(a)). The initial states presented in Fig. 3 be-
long to different basins of attraction. The initial states
in Figs. 3(a) and (b) are attracted by a local optimum,
while those in Figs. 3(c) and (d) by the global optimum.
For some initial states the probability distributions (3)
are multimodal with similar heights of optima (Figs. 3(b)
and 3(d)). Although the states belong to the basin of at-
traction of a local or a global optimum, evolution from
these states may direct the trajectory to a local or a global
optimum (both the cases are illustrated in the figures).
The trajectories of the mean value started at these states
(thus being attractors of the states) are likely to be deter-
mined by the highest peak of the distribution (3). This
phenomenon shows the difference between the stochastic
behaviour of the evolving population and the deterministic
behaviour of its mean.

In the case of equally high optima, one may expect
that the space of states is split into two basins of attraction
separated by a saddle. In fact, the basins have more com-
plicated structures and they were located along separate
optima ridges (Fig. 8(a)). The foregoing arguments con-
firmed earlier observations (Chorążyczewskiet al., 2000)
that evolution is attracted mainly by ridges of fitness func-
tions and proceeds along ridges.

Varying the values of other parameters of the evo-
lutionary process (the standard deviation of mutationσ)
and fitness functions (the slopea and the heighth) in-
fluence basins of attractions. The slopea affects the size
of basins rather than their shape. When the parametera
is increased (the selection intensity), the number of gen-
erations Gs needed to achieve a fixed point decreases
and the precision of the optimum localization increases
(Karcz-Dulęba, 2002b). When the difference between the
heights of the optima decreases, the basin of attraction of
the lower hill is enlarged, Fig. 8. While increasing the
standard deviation of mutationσ, the basin of attraction
of the local optimum is shrunk and disappears when there
remains only one global fixed point (Fig. 5(b)).
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(a) 

  
(b) 

 Fig. 6. Basins of attraction (left panel) and landscapes of the mean fitness (right panel) for multimodal fitness functions
(a = 5.0, σ = 0.1): (a) a bimodal function (5),d1 = 0.0, d2 = 1.0, h1 = 1.0, h2 = 2.0, (b) function (5)
with three optima,d1 = 0.0, d2 = 1.0, d3 = 2.0, h1 = 1.0, h2 = 2.0, h3 = 3.0.

  
(a) (b) 

 Fig. 7. Impact area of optima for: (a) bimodal fitness function (5),a = 5.0, d1 = 0.0, d2 = 1.0, h1 = 1.0,
h2 = 2.0, (b) function (5) with three optima,a = 5.0, d1 = 0.0, d2 = 1.0, d3 = 2.0, h1 = 1.0,
h2 = 2.0, h3 = 3.0.
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(b) h1 = 1, h2 = 1.5, a = 5
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(c) h1 = 1, h2 = 2, a = 10
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(d) h1 = 2, h2 = 1, h3 = 3, a = 5

Fig. 8. Basins of attraction for multimodal fitness functions as
a function of the optimum height and the hillside slope
a: (a)–(c) bimodal function (5),d1 = 0.0, d2 = 1.0 ,
(d) function (5) with three optima,d1 = 0.0, d2 = 1.0,
d3 = 2.0, (σ = 0.1).

6. Stability of Fixed Points and Periodical
Orbits

The asymptotic behaviour of the dynamical system (9) de-
pends on the fitness function. The matrix of the linear ap-
proximation (the Jacobi matrix of partial derivatives) of
the system (9) at a fixed point is diagonal and its eigenval-
ues are equal toλ1 = Φ0(ws) and λ2 = ws∂Ψ/∂z + 1.
We have |λ1| < 1 becausews > 0. The value ofλ2

depends on the fitness function (coefficientΨ) and the
standard deviation of mutationσ(ws ∼= 0.97σ). Since at
fixed points Eqn. (13) is fulfilled, in order to determine
stability the following inequality has to be solved:

−2 < ws ∂Ψ
∂z

∣∣∣∣ws

zs
< 0. (14)

It appears that the saddle fixed points are always un-
stable whereas the stability of other fixed points depends
on the parameters of the fitness function and the evolution-
ary process (the standard deviation of mutationσ). Given
the parameters of the fitness function, the stability of the
system (9) depends on the standard deviation of mutation
σ only. Whenσ is increased, fixed points near local op-
tima disappear and only the fixed point close to the global
optimum remains.

Simulations and analytical studies of system stabil-
ity in the vicinity of fixed points show that for small val-
ues of σ fixed points are stable, for larger values ofσ
fixed points become unstable and a periodic orbit emerges
(Fig. 9). A general theoretical analysis of the stability of
fixed points is not possible because of system complexity.
Analytical results regarding the stability of fixed points
and a study of periodic orbits are presented for a simple
unimodal fitness function (Fig. 9(a)).

For a symmetric unimodal fitness function (4), the
stability of the unique fixed point(0.97σ, 0) depends on
the slope parametera and the standard deviation of mu-
tation σ. There exists either a single stable equilibrium
point, or a stable orbit with a period of two (Dulęba and
Karcz-Dulęba, 1996). The inequality (14) takes the form
−2 < −aws2

< 0, for which the right-hand side is always
true. Fixing the value of the parametera makes stability
dependent onσ. For small values ofσ the fixed point is
stable and while increasingσ it looses stability and be-
come unstable. The second eigenvalue isλ2 = −1 for
the critical value of the standard deviationσc ≈

√
2/a.

Mutation with a critical valueσc may move offspring of
the parent with optimal fitness to the area with very low
values of the fitness function (practically equal to zero).
Therefore, differences in the fitness of individuals are in-
significant, the selection intensity is much smaller and the
mutation (with largeσ) has a dramatic impact on the pop-
ulation.
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  (a) (b)

  (c) (d)

Fig. 9. Trajectories of the expectations in the landscape of various fitness functions. While varying the standard deviation of mutation,
stable fixed points and periodic orbits are observed,σ ∈ [0.1, 1.4] with a step of 0.1. Initial states, chosen from different
basins of attraction, are denoted by open circles and fixed points are denoted by asterisks: (a) symmetric unimodal fitness
function (4) (a = 5), trajectories initialized at states(0.2,−0.9) and (1.0, 1.2), (b) symmetric bimodal function (5) (a = 5,
d1 = −0.5, d2 = 0.5, h1 = h2 = 1.0), trajectories started at(0.6,−1.0) and (0.2, 1.2), (c) bimodal function (5),d1 = 0.0,
d2 = 1.0, h1 = 1.0, h2 = 2.0, trajectories from two initial states(0.5,−0.3) and (0.3, 1.7), (d) function (5) with three
optima, d1 = 0.0, d2 = 1.0, d3 = 2.0, h1 = 1.0, h2 = 2.0, h3 = 3.0, trajectories initialized at states(0.5,−0.5),
(0.3, 1.7) and (0.8, 3.0).

   
(a) (b) (c) 

 
Fig. 10. Graphical analysis of iteratingF2(w

s, z) starting at different initial points(σ = 0.8):
(a)z0 = 1.3, (b) z0 = −1.5, (c) z0 = 0.01.
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Above the value of σc the pitchfork (period-
doubling) bifurcation is observed: a fixed point becomes
unstable and a stable periodic orbit of period 2 appears
(Fig. 11). Figure 10 shows what happens whenF2(ws, z)
is iterated starting from different values ofz. In all cases,
trajectories finally alternate between two values of the pe-
riodic orbit. It can be noticed that a periodic orbit ap-
pears when the standard deviationσ reaches the value
where two ridges emerge in the surface of the average fit-
ness (Fig. 9(a)) and the orbit points are located on internal
slopes of the ridges. The ridges correspond to the states
when one of the individuals is almost optimal.

 
Fig. 11. Bifurcation diagram forF2(w

s, z) showing
the pitchfork bifurcation atσc = 0.63.

 
Fig. 12. Two populations (one denoted by open circles and

the other by asterisks) which formed the periodic or-
bit shown in the landscape of the fitness function (4),
σ = 0.8. The individuals of one population are con-
nected by a solid line, the parents and the offspring are
connected by a dotted line.

The periodic orbit consists of two states located
symmetrically on both the sides of the fitness function
(Fig. 12). In each state the population contains of two
individuals: one with a higher fitness value and the other
with a much smaller fitness value located on the other side
of the hill. The distance between the individuals is slightly
greater thanσ. In the next generation, the offspring “ex-
change” coordinates, i.e.xi+1

1 = −xi
2 and xi+1

2 = −xi
1.

For example, forσ = 0.8 the periodic orbit is com-
posed of two populations(xi

1, x
i
2) = (0.66,−0.33) and

(xi+1
1 , xi+1

2 ) = (0.33,−0.66). The Euclidean distance
between the parent and the offspring is aboutσ/2.

Simulations showed that for a bimodal fitness func-
tion the global optimum fixed point becomes unstable for
values ofσ greater than the distance between optima. The
critical value of the standard deviation practically does not
depend on the difference in the hill heights.

7. Conclusion

In this paper the asymptotic behaviour of the discrete dy-
namical system generated by the evolutionary model was
presented. Despite the simplicity of the analysed pro-
cess, its behaviour is surprisingly complex. Two phases
in the trajectories of the expected states of the popula-
tions were observed. The first phase was a fast jump to-
wards the vicinity of the identity axis (the concentration
of a population) while the second phase relied on a slow
drift, of a nearly homogenous population, towards the op-
timum of the fitness function. The system converges to
fixed points. Their number depended on the modality of
the fitness function. The fixed points are usually located
in a neighbourhood of the optima and saddles of the fit-
ness function. The stability of the fixed points depends
on the standard deviation of mutation. Fixed points of the
optima are asymptotically stable for smallσ. For larger
values of σ the evolution process does not converge to
a fixed point but forms a periodical orbit. The stability
analysis of fixed points indicates a considerable influence
of the standard deviation of mutation on the efficiency of
the evolutionary process. Larger values ofσ accelerate
finding optima and crossing saddles, but too large a value
of σ may cause some unstability of fixed points disturb-
ing the convergence to optima. Thus, the standard devi-
ation of mutation can be regarded as the most important
parameter affecting the evolutionary process.
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