
Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 1, 53–61

KERNEL HO-KASHYAP CLASSIFIER WITH GENERALIZATION CONTROL

JACEK ŁĘSKI∗

∗ Institute of Electronics
Silesian University of Technology

ul. Akademicka 16, 44–100 Gliwice, Poland
e-mail: jl@boss.iele.polsl.gliwice.pl

This paper introduces a new classifier design method based on a kernel extension of the classical Ho-Kashyap procedure.
The proposed method uses an approximation of the absolute error rather than the squared error to design a classifier, which
leads to robustness against outliers and a better approximation of the misclassification error. Additionally, easy control of the
generalization ability is obtained using the structural risk minimization induction principle from statistical learning theory.
Finally, examples are given to demonstrate the validity of the introduced method.

Keywords: kernel methods, classifier design, Ho-Kashyap classifier, generalization control, robust methods

1. Introduction

Kernel-based methods in machine learning are concerned
with increasing the computational power of linear meth-
ods by mapping the data into a high-dimensional feature
space. This field of study was developed in the early 1990s
and has recently played an important role in many en-
gineering fields, such as pattern recognition, approxima-
tion, modeling, character recognition, data mining (Boser
et al., 1992; Mülleret al., 2001; Schölkopfet al., 1998,
1999). The following should be enumerated as examples
of powerful kernel-based methods: support vector ma-
chines (Boseret al.,1992; Vapnik, 1995), kernel princi-
pal component analysis (Schölkopfet al., 1998, 1999a),
kernel Fisher discriminant (Mikaet al., 1999; Baudat and
Anouar, 2000). A kernel classifier design method is of
special interest in the paper. It implements the idea of
mapping the input vectorsx into a high (possibly in-
finite) dimensional feature spaceF through some non-
linear mapping. In this space, a linear separating hyper-
plane is constructed (Boseret al.,1992; Vapnik, 1995).
Two problems arise in the above approach, a conceptual
and a technical one (Vapnik, 1998; Mülleret al., 2001):
(i) How to find a separating hyperplane that generalizes
well? The dimension of the feature space is huge and it
is known from statistics that as for a function of the space
dimensionality, we need exponentially many patterns to
sample this space properly. (ii) How do we treat such a
high-dimensional space computationally? For example, to
construct a third-degree polynomial in a50-dimensional
space, hyperplanes in a22100-dimensional space must be
constructed!

Some very useful tools for solving the first prob-
lem (conceptual) are offered by statistical learning theory
(the Vapnik-Chervonenkis (VC) theory). Let the expected
risk (expected misclassification error rate) be denoted by
R(α), where α denotes a parameter vector of a classi-
fier. The empirical risk (misclassification error rate on a
training set) is denoted byRemp(α). Using the above no-
tions, the following theorem can be proved (Vapnik, 1998;
1999): With probability1−η, the following bound holds:

R(α) ≤ Remp(α)

+

√
hV C(log(2N/hV C)+1)−log(η/4)

N
, (1)

whereN is the cardinality of the training set andhV C is
the Vapnik-Chervonenkis (VC) dimension that is a mea-
sure of the complexity of the set of functions from which
the classifier is selected. The minimization ofR(α) re-
quires simultaneous minimization of both the terms on the
right-hand side of (1), the first depending on the empirical
risk Remp(α) and the other on the VC dimension. The
VC dimension for a set of functions is defined as the max-
imum number of data (from the training set) that can be
shattered by these functions.

The most important issue in the VC theory is the
Structural Risk Minimization (SRM) induction principle.
Note that the second term on the right-hand side of (1) de-
pends on the chosen class of functions, whereas the first
term depends on the particular function chosen in the pro-
cess of training. Let the set of functionsΨ used be com-
posed of the nested subsetsΨk, Ψ1 ⊂ Ψ2 ⊂ · · · ⊂ Ψn,
such thathV C(Ψ1) < hV C(Ψ2) < · · · < hV C(Ψn). The

J. Łęski54

SRM principle suggests that for a given training set we
choose a subsetΨk and a particular function fromΨk

for which the sum of terms on the right-hand side of (1)
is minimal. In other words, the SRM principle suggests
a tradeoff between the quality of the classification on the
training set and the complexity of the classifier. So, we
should select a classifier with the smallest VC dimension
and the smallest misclassification error on the training set
to achieve a good generalization capability. If the second
term in (1) is large, then we could minimize the empir-
ical risk down to zero, but the error rate on the test set
might be important. In this case, the so-called overfitting
(or overtraining) effect occurs.

From the above we see that the generalization ability
is influenced by the complexity of the classifier rather than
by the dimensionality of its input space. Thus, a classifier
generalizes well when in a high-dimensional feature space
it is chosen from a simple class of functions, for example,
a linear class.

To solve the second problem (technical), a highly ef-
fective trick for computing the scalar product in the fea-
ture spaces is used (Vapnik, 1998; Mülleret al., 2001).
For certain feature spaces, using a kernel function instead
of a scalar product in the original space corresponds to
mapping this space into a scalar product in the feature
space.

The support vector classifiers (SVC) inspired by VC
theory try to find separation hyperplanes such that the
expected misclassification error rate is minimized. The
construction of the SVC leads to a quadratic program-
ming (QP) problem with bound constraints and one lin-
ear equality constraint (Vapnik, 1998). In the literature,
there are many classifiers, including the following kinds:
statistical, linear discriminant,K-nearest neighbor, neu-
ral network, classification tree, and many more (Duda
and Hart, 1973; Tou and Gonzalez, 1974; Ripley, 1996;
Webb, 1999). But linear classifiers are of special interest,
due to their simplicity and easy expansibility to nonlinear
classifiers. One of the most powerful classical methods
of designing linear classifiers is the least mean-squared
error procedure with Ho-Kashyap modification (Ho and
Kashyap, 1965, 1966). Two main disadvantages of this
approach are: (i) the use of the quadratic loss function that
leads to a poor approximation of the misclassification er-
ror rate, as well as to a non-robust method, (ii) the inability
to control the VC dimension of the designed classifier.

The goal of this work is to introduce a kernel ex-
tension of the classical Ho-Kashyap procedure. This new
method uses an approximation to the absolute loss func-
tion, resulting in robustness to outliers and a better ap-
proximation to the misclassification error. Additionally,
this method controls the VC dimension of the designed
classifier.

In the previous work (Łęski, 2003a), a linear Ho-
Kashyap classifier with generalization control was intro-
duced. Its nonlinear extension based on fuzzy if-then rules
was shown in (Łęski, 2003b). The generalization of the
above approach to the so-calledε-margin classifier using
both local and global learning was presented in (Łęski,
2004). The remainder of this work is concerned with the
kernel extension of the Ho-Kashyap classifier to a two-
class problem. However, the proposed method can be eas-
ily generalized to multi-class problems using the class-rest
or the class-class methodology (Tou and Gonzalez, 1974).

This paper is organized as follows: Section 2
presents a reformulation in scalar product space of the tra-
ditional Ho-Kashyap classifier design procedure with gen-
eralization control and approximation to the absolute loss
function. Section 3 recalls nonlinear algorithms in ker-
nel feature space and presents a nonlinear extension of the
Ho-Kashyap procedure with generalization control. Sim-
ulation results and discussion for the classification of sim-
ple synthetic two-dimensional data and real-world high-
dimensional data are shown in Section 4. Finally, conclu-
sions are drawn in Section 5.

2. Ho-Kashyap Classifier in Scalar Product
Space

A classifier is designed on the basis of a set of data called
the training set,Tr(N) = {(x1, y1), (x2, y2), · · · ,
(xN , yN)}, whereN is the data cardinality, and each in-
dependent datum (pattern)xi ∈ Rt has a corresponding
dependent datumyi ∈ {+1,−1}, which indicates the as-
signment to one of two classes,ω1 or ω2,

yi =

{
+1, xi ∈ ω1,

−1, xi ∈ ω2.
(2)

We seek a weight vectorw ∈ Rt and a biasw0 ∈ R
such that

d(xi) , w>xi + w0

{
> 0, xi ∈ ω1,

< 0, xi ∈ ω2,
(3)

where d(xi) is called the linear discrimination (or deci-
sion) function.

If the conditions (3) are satisfied for all members of
the training set, then the data are said to be linearly sep-
arable. For overlapping classes, it is impossible to find
a weight vectorw such that the conditions (3) are sat-
isfied for all data. If we multiply by−1 all patterns of
the training set that are members of theω2 class, then
(3) can be rewritten in the formyi(w>xi + w0) > 0 for
i = 1, 2, . . . , N . To improve the generalization ability of a
classifier, a margin of separationε is introduced (Vapnik,

Kernel Ho-Kashyap classifier with generalization control 55

1998): yi(w>xi +w0) ≥ ε for i = 1, 2, . . . , N . Indeed,
these inequalities are invariant under a positive scaling of
w, w0 and ε. Thus, we can define a canonical hyperplane
such thatyi(w>xi + w0) ≥ 1. For the points closest to
the canonical hyperplane, we haveyi(w>

i x + w0) = 1.
Let xp and xq be the closest points on the opposite sides
of the separating hyperplane:w>xp + w0 = 1 and
w>xq + w0 = −1. The margin is defined as the perpen-
dicular distance between the hyperplanes through the clos-
est points. The normal vector to the separating hyperplane
is w/‖w‖. Thus, the margin is given by the projection of
xp − xq onto this vector and it is equal toM = 2/‖w‖.
In this case, the VC dimensionhV C is bounded accord-
ing to (Vapnik, 1995):hV C < R2/M2 + 1, whereR is
the diameter of the smallest ball around the data. Hence,
if we bound the margin from below, we can control the
VC-dimension of the class of separating hyperplanes.

Let us take into account a nested structure of the sep-
arating hyperplanes

Ψk = {w>x + w0 : ‖w‖2 < ak}, k = 1, 2, . . . ,

whereak < ak+1.

In accordance with the SRM principle, a good gener-
alization ability can be obtained by selecting the structure
Ψj and a particular function from it with the smallest em-
pirical misclassification error and the smallest VC dimen-
sion.

Let X1 be an(`1 × t)-dimensional matrix

X1 ,

x>1
x>2
...

x>`1

 ,
wherex1, . . . ,x`1 are patterns from theω1 class, and let
X2 be an(`2 × t)-dimensional matrix

X2 ,

x>`1+1

x>`1+2
...

x>`1+`2

 ,
wherex`1+1, . . . ,x`1+`2 (`1+`2 = N) are patterns from
the ω2 class. Note that for notational simplicity it is as-
sumed that the patterns are ordered according to their class
membership, that is, the first̀1 patterns belong to the
classω1.

Indeed, we seek a weight vectorw and a biasw0

such that {
X1w + w01`1×1 ≥ 1`1×1,

−X2w − w01`2×1 ≥ 1`2×1,
(4)

where1`1×1 denotes the vector of dimension`1×1 with
all entries equal to1. To obtain a solution in scalar prod-
uct space, we assume that the vectorw is the following
linear combination of all patterns:w = [X>

1 , −X>
2]Γ,

where Γ = [γ1, γ2, · · · , γN]>. Defining an (N × N)-
dimensional matrix

K =

[
X1X>

1 −X1X>
2

−X2X>
1 X2X>

2

]
= [yiyjx>i xj]Ni,j=1, (5)

and a vectorθ`1,`2 = [1>`1×1, −1>`2×1]
>, the inequalities

(4) take the following form:

KΓ + w0θ`1,`2 − 1N×1 ≥ 0N×1.

In order to solve the above system of inequalities,
it is replaced by the linear system of equationsKΓ +
w0θ`1,`2 − 1N×1 = b, b ≥ 0N×1. We define the er-
ror vector ase = KΓ + w0θ`1,`2 − 1N×1 − b. If the
p-th component ofe is non-negative, then thep-th pat-
tern falls on the right-hand side of the separation hyper-
plane, and by increasing the respective component ofb
(bp), ep can be reduced to zero. If thep-th component
of e is negative, then thep-th pattern falls on the wrong
side of the separation hyperplane, and it is impossible to
prevent the conditionbp ≥ 0 by decreasingbp. Thus, the
misclassification error may be written in the form

I =
N∑

i=1

H(−ei), (6)

where H(·) denotes the unit step pseudo-function,
H(ei) = 1, for ei > 0, and zero otherwise. We should
minimize the criterion (6), but due to its non-convexity
this optimization problem is NP-complete (Haykin, 1999).

To make this optimization problem tractable, we ap-
proximate (6) by a convex one

I =
N∑

i=1

|ei| (7)

or

I =
N∑

i=1

(ei)2. (8)

The above approximations are possible due to the fact that
the positive value of the error can be reduced to zero by
increasing the respective components ofb.

In real life applications, data from the training set are
corrupted by noise and outliers. Thus, classifier design
methods need to be robust. According to Huber (Huber,
1981), a robust method should have the following proper-
ties: (i) it should have a reasonably good accuracy at the
assumed model, (ii) small deviations from the model as-
sumptions should impair the performance only by a small

J. Łęski56

amount, (iii) larger deviations from the model assump-
tions should not cause a catastrophe. In the literature
there are many robust loss functions (Huber, 1981). In this
work, due to its simplicity, the absolute error loss function
is of special interest.

The criterion (7) is a better approximation of (6) and
additionally leads to a robust method, but for a mathemat-
ical reason, that is, the simplicity of the solution, we start
from the criterion (8).

Now, we seekΓ, b andw0 by the following mini-
mization:

min
Γ∈RN

b>0N×1
w0∈ R

I(Γ,b, w0)

, (KΓ + w0θ`1,`2 − 1N×1 − b)>

×D(KΓ+w0θ`1,`2−1N×1−b)+τΓ>KΓ, (9)

where D = diag(d1, d2, . . . , dN) and di is the weight
corresponding to thei-th pattern that can be interpreted
as the reliability attached to this pattern. The criterion
function (9) is the squared error weighted by coefficients
di with the second term related to the minimization of
the Vapnik-Chervonenkis dimension (complexity) of the
classifier. The parameterτ ≥ 0 controls the trade-off
between the classifier complexity and the amount up to
which the errors are tolerated.

Optimality conditions are obtained by differentiating
(9) with respect toΓ, b, w0 and equating the results to
zero:
τKΓ+K>DKΓ+w0K>Dθ`1,`2 =K>D(1N×1+b),
θ>`1,`2DKΓ+w0θ

>
`1,`2Dθ`1,`2 =θ>`1,`2D(1N×1+b),

e = KΓ + w0θ`1,`2 − 1N×1 − b = 0N×1.
(10)

When defining the matrix

Ξ =

[
DK + τI Dθ`1,`2

θ>`1,`2DK θ>`1,`2Dθ`1,`2

]

and taking into account thatK is symmetric, from the first
two equations of (10) we obtain[

Γ
w0

]
= Ξ−1

[
D(1N×1 + b)
θ>`1,`2D(1N×1 + b)

]
. (11)

From (11) we see that the vectorΓ and the bias
w0 depend onb. The vectorb may be called a mar-
gin vector because its components determine the distance
from patterns to the separating hyperplane. For fixedΓ,
if a pattern lies on the right side of the hyperplane, the
corresponding margin can be increased to obtain a zero
error. However, if a pattern lies on the wrong side of

the hyperplane, then the error is negative, and we can
decrease the error only by decreasing the corresponding
margin value. To prevent the positivity ofb, we start
with b ≥ 0N×1 and refuse to decrease any of its com-
ponents using an iterative algorithm proposed by (Ho and
Kashyap, 1965, 1966). Now, this algorithm can be ex-
tended to our weighted squared error criterion with regu-
larization. The vectorΓ and the parameterw0 are deter-
mined on the basis of (11), that is,[

Γ(k)

w
(k)
0

]
=

[
D(k)K + τI D(k)θ`1,`2

θ>`1,`2D
(k)K θ>`1,`2D

(k)θ`1,`2

]−1

×

[
D(k)(1N×1 + b(k))
θ>`1,`2D

(k)(1N×1 + b(k))

]
, (12)

where the superscript(k) denotes the iteration index. The
components of vectorb are modified by the components
of the error vectore, but only in the case when it results in
an increase in the components ofb; otherwise, the com-
ponents ofb remain unmodified,

b(k+1) = b(k) + ρ(e(k) + |e(k)|), (13)

where0 < ρ < 1 is a parameter.

Now, we shall show a method of selecting param-
eters di. This method leads to an approximation of the
minimum absolute misclassification error (the criterion
(7)). This approximation is easy to obtain by taking
di = 1/|ei| for i = 1, 2, . . . , N , where ei is the i-th
component of the error vector. However, the error vector
depends onΓ and w0. So, we use the vectorΓ and the
bias w0 from the previous iteration. This procedure is
based on the claim that sequential vectorsΓ(k) andw(k)

0

differ imperceptibly near the optimum solution. The pro-
cedure of classifier design can be summarized in the fol-
lowing steps:

1. Fix τ ≥ 0, 0 < ρ < 1 and D(1) = I. Initialize
b(1) ≥ 0N×1. Set the iteration indexk = 1.

2. Calculate vectorΓ(k) and biasw(k)
0 for the k-th

iteration using (12).

3. Set e(k) = KΓ(k) + w
(k)
0 θ`1,`2 − 1N×1 − b(k).

4. Set d(k)
i = 1/|e(k)

i | for i = 1, 2, . . . , N , D(k+1) =
diag(d(k)

1 , . . . , d
(k)
N).

5. Set b(k+1) = b(k) + ρ(e(k) + |e(k)|).
6. If ‖b(k+1) − b(k)‖2 > ξ, then k = k + 1 and go to

Step 2, otherwise stop.

Remark 1. The quantity ξ is a pre-set parameter. If
Step 4 in this algorithm is omitted, then the squared er-
ror minimization procedure is obtained. In practice, the

Kernel Ho-Kashyap classifier with generalization control 57

divide-by-zero error in Step 4 does not occur. This fol-
lows from the fact that some components of vectore tend
to zero ask →∞. But in this case the convergence of (9)
to the minimum is slow and the condition in Step 6 stops
the algorithm. Appendix shows that for0 < ρ < 1 and
any diagonal matrixD, the above algorithm is convergent
to a local minimum of (9).

3. Kernel Ho-Kashyap Classifier

In the previous section the Ho-Kashyap method of classi-
fier design is reformulated in such a way that only scalar
products are used. Thus, now it is easy to introduce its
nonlinear version using the idea of kernels. In this section,
kernel functions are first recalled and then a nonlinear ver-
sion of the Ho-Kashyap method is introduced.

3.1. Kernel Functions

Let Φ : x ∈ Rt 7−→ Φ(x) ∈ F be a nonlin-
ear transformation of the input vectorsx into a feature
space F . Depending on this transformation the fea-
ture space may be high- or even infinite-dimensional.
Let us recall a simple example given by Vapnik (1995).
If x = [x1, x2]> and Φ(x) = [x2

1,
√

2x1x2, x
2
2]
>,

then the scalar product in the feature space yields
Φ(x)>Φ(x′) = [x2

1,
√

2x1x2, x
2
2][x

′2
1 ,
√

2x′1x
′
2, x

′2
2]> =

([x1, x2][x′1, x
′
2]
>)2 = (x>x′)2 , k(x,x′). Thus, in or-

der to compute scalar products in the feature spaceF , we
use a kernel representationk, without explicitly using the
transformationΦ. It is a direct consequence of (Müller,
2001): every linear algorithm that only uses scalar prod-
ucts can be easily extended to a nonlinear version by using
kernels.

Mercer’s theorem of functional analysis gives the an-
swer to the question which functionk corresponds to a
scalar product in some feature spaceF (Haykin, 1999):
If k is the continuous kernel of a positive integral opera-
tor on a Hilbert spaceL2({) on a compact set{ ⊂ Rt,
that is,∫

{
k(x,x′)f(x)f(x′) dxdx′ ≥ 0 for all f ∈ L2({),

then k can be expanded into a uniformly convergent se-
ries of its orthogonal eigenfunctions{ψi}

k(x,x′) =
NF∑
i=1

λiψi(x)ψi(x′),

whereNF ≤ ∞, λi > 0 are eigenvalues.

In this case, the mappingΦ : x 7−→
[
√
λ1ψ1(x),

√
λ2ψ2(x), . . . ,

√
λNFψNF (x)]> is a trans-

formation of x into the feature spaceF such thatk rep-
resents the scalar productΦ(x)>Φ(x′) = k(x,x′). We

shall call Φ a feature map associated with (or induced by)
kernel k. A short list of commonly used kernel functions
is given in Table 1.

Table 1. Commonly used kernel functions.

Name Form of k(x,x′)

Polynomial (αx>x′ + 1)d, d ∈ N, α ∈ R
Gaussian exp(−γ‖x− x′‖2), γ ∈ R+

Sigmoidal tanh(γ(x>x′) + α), γ ∈ R, α ∈ R
Multiquadratic

√
‖x− x′‖2 + α2, α ∈ R+

Inverse Multiquadratic
1√

‖x− x′‖2 + α2
, α ∈ R+

3.2. Nonlinear Version of the Ho-Kashyap Classifier

Now, our goal is to construct a linear Ho-Kashyap clas-
sifier in the feature spaceF . Equivalently, it means that
we obtain a nonlinear Ho-Kashyap classifier in the origi-
nal data spacex. If, instead of using the scalar product in
x in (5), the kernel function is used,

K =
[
yiyjΦ(xi)>Φ(xj)

]N

i,j=1

= [yiyjk(xi,xj)]
N
i,j=1 , (14)

then we obtain a linear classifier in the feature spaceF ,
i.e., is a nonlinear one in the original input space. Thus, a
nonlinear version of the Ho-Kashyap classifier is obtained
by replacing matrixK in the algorithm from the previous
section by the one given in (14). Now, we can represent
the decision function of the classifier for an input pattern
x as

d(x) = sign

(N∑
i=1

yiγiΦ(x)>Φ(xi) + w0

)

= sign

(N∑
i=1

yiγik(x,xi) + w0

)
,

where {xi}N
i=1 denotes pattern from the training set,

{yi}N
i=1 stands for pattern indicators to one of two classes,

ω1 or ω2, and {γi}N
i=1, w0 are parameters of the classi-

fier obtained in the training process.

4. Numerical Experiments and Discussion

In all experiments b(1) = 10−6 1N×1 was used.
The iterations were stopped as soon as the Euclidean
norm in a successive pair ofb vectors was less than
10−4. All computations were run on a Pentium IV

J. Łęski58

1.6 GHz computer running Windows NT4 and MAT-
LAB environment. Benchmark databases were obtained
via the Internet, cf.http://ida.first.gmd.de/~raetsch/data,
ftp://markov.stats.ox.ac.uk/pub/PRNN, as well as the site
http://www.ics.uci.edu/~mlearn.

4.1. Simple Synthetic Two-Dimensional Data

The purpose of this experiment was to compare the pro-
posed method of classifier design with the support vec-
tor classifier and other classical classifiers. The simula-
tions were performed for data generated by Ripley (1996).
These data consist of patterns having two features and
assigned to two classes. Each class has a bimodal dis-
tribution obtained as a mixture of two normal distribu-
tions. The class distribution was chosen to allow the best-
possible error rate of about8%. The training set consists
of 250 patterns (125 patterns belong to each class), and
the testing set consists of1000 patterns (500 patterns be-
long to each class).

The parameterτ was in the range from0 to 10, and
the parameterρ was equal to0.99. For each value ofτ
after the training stage (a classifier design on the training
set), the generalization ability of the classifier was deter-
mined as the misclassification error rate on the test set.
The following kernel functions were used: Gaussian, sig-
moidal and polynomial of orders2, 3, 4. Table 2 shows
the minimal error rate determined on the testing set for
each kernel function.

Table 2. Simulation results for Ripley’s two-class problem.

Kernel Minimal error rate Parameters

Gaussian 8.6% τ = 2.6, γ = 1.7

Sigmoidal 10.5% τ = 0.1, γ = 0.1,

α = 1

Polynomial order2 9.4% τ = 0.1, α = 0.5

Polynomial order3 9.4% τ = 0.3, α = 0.5

Polynomial order4 9.3% τ = 0.3, α = 0.5

The best generalization, equal to8.6%, is obtained
for τ = 2.6 and the Gaussian kernel (γ = 1.7). The de-
cision function of the best generalizing classifier is pre-
sented with the testing set in Fig.1. This error rate is
superior to the support vector machine (10.6%) and the
relevance vector machine (9.3%) (Tipping, 2001). The
nearest-prototype classifier with deterministic annealing
optimization (Miller et al., 1996) leads to the error rate
equal to 8.6% for 12 prototypes, and the neuro-fuzzy
classifier (Czogała and Łęski, 2000) leads to the error rate
8.8% for 2 fuzzy if-then rules.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

First Feature

S
ec

on
d

Fe
at

ur
e

Fig. 1. Testing set for Ripley’s two-class problem and the
classifier line with the best generalization ability.

4.2. Real High-Dimensional Data

The main goal of these experiments was to examine the
usefulness of the proposed method in the classification of
real-world high-dimensional data. In order to investigate
the performance of the proposed method, it is compared
with the following methods: regularized AdaBoost, sup-
port vector machine and kernel Fisher discriminant, on8
standard benchmarking datasets from the IDA repository
(http://ida.first.gmd.de/~raetsch/data). For each dataset
this repository includes100 predefined splits into train-
ing and testing samples, and simulation results for sev-
eral kernel-based and boosting methods with a summary
including means and standard deviations of average mis-
classification error rates on the test sets. Some of these
results are recalled in Table 3. In this table, all re-
sults are presented in percentages in the columns with
the following abbreviations: AdaBoost — regularized Ad-
aBoost (Rätschet al., 2001), SVM — Support Vector
Machine, KFD — Kernel Fisher Discriminant and KHK
— Kernel Ho-Kashyap. The Gaussian kernel was used
for the KHK method. For each dataset in Table 3 the
best result is in bold face and the best but one is un-
derlined. This table also includes the parameter value
for which the best generalization is obtained. Several
observations can be made based on this table. First of
all, it should be noted that for all databases the best
generalization is obtained for a non-zero parameterτ .
It must also be noted that the proposed method leads
to the best generalization forbanana, heart and titanic
datasets. Forbreast cancer and thyroid datasets the best
result but one is obtained. For theFlare solar dataset,
the best result but one is obtained by KFD and KHK
methods. However, the KHK method produces a smaller
standard deviation. Finally, it can be noted that the pro-
posed algorithm converges after tens of iterations and its

Kernel Ho-Kashyap classifier with generalization control 59

Tab. 3. Comparison between the regularized Adaboost (RAB), support vector machine (SVM),
kernel Fisher discriminant (KFD) and kernel Ho-Kashyap classifier (KHK) on bench-
mark datasets. The best result for each dataset is marked in bold face and the
best but one is underlined. The results for RAB, SVM and KFD are taken from
(http://ida.first.gmd.de/~raetsch/data).

Database RAB SVM KFD KHK τ γ

Banana 10.85± 0.42 11.53± 0.66 10.75± 0.45 10.49± 0.47 0.4 1.0

Breast Cancer26.51± 4.47 26.04± 4.74 24.77± 4.63 25.42± 4.24 1.8 0.1

Diabetis 23.79± 1.80 23.53± 1.73 23.21± 1.63 23.85± 1.60 1.9 0.1

Flare Solar 34.20± 2.18 32.43± 1.82 33.16± 1.72 33.16± 1.46 4.5 0.3

German 24.34± 2.08 23.61± 2.07 23.71± 2.20 23.68± 2.19 0.9 0.05

Heart 16.47± 3.51 15.95± 3.26 16.14± 3.39 15.62± 3.53 1.8 0.01

Thyroid 4.55± 2.19 4.80± 2.19 4.20± 2.07 4.26± 1.95 3.4 0.8

Titanic 22.64± 1.20 22.42± 1.02 23.25± 2.05 22.36± 1.01 0.1 0.6

running time is several times shorter compared with the
support vector machine. The Support Machine Toolbox
by Steve Gunn was chosen as the SVM implementation.
The Matlab code of this toolbox is available athttp://
www.isis.ecs.sofon.ac.uk/resources/svminfo/download.php.
For thediabetis dataset, the running time of the support
vector machine was about80 times larger compared with
the KHK method.

5. Conclusions

A new classifier design method is introduced. This
method is a kernel extension of the classical Ho-Kashyap
methodology which uses an approximation of the abso-
lute loss function rather than the quadratic one. This re-
sults in robustness to outliers and a better approximation
of the misclassification error. Additionally, the proposed
method minimizes the Vapnik-Chervonenkis dimension
that results in an easy control of the generalization ability
of the classifier. Numerical examples are given to illus-
trate the validity of the presented method. These examples
show that the proposed method has excellent generaliza-
tion performance on real-world high-dimensional data. A
comparison of the generalization ability of the kernel Ho-
Kashyap method with the state-of-the-art classifiers, such
as the regularized Adaboost, the support vector machine
and the kernel Fisher discriminant shows that the kernel
Ho-Kashyap classifier outperforms other methods on most
datasets.

From the computational point of view the inverse of
a matrix is needed in the kernel Ho-Kashyap method in-
stead of a quadratic programming problem in the support
vector machine and an eigenvector/eigenvalue problem in
the kernel Fisher discriminant. This must be viewed as

an advantage because calculating the inverse of a matrix is
probably one of the best numerical methods established.
The kernel Ho-Kashyap method shows that not only a
sparse but also a dense classifier has a good generaliza-
tion ability.

References
Baudat G. and Anouar F. (2000):Generalized discriminant anal-

ysis using a kernel approach. — Neural Comput., Vol. 12,
No. 10, pp. 2385–2404.

Boser B.E., Guyon I.M. and Vapnik V. (1992):A training al-
gorithm for optimal margin classifiers. — Proc. 5th Ann.
ACM Workshop Computational Learning Theory, Pitts-
burgh, USA, pp. 144–152.

Czogała E. and Łęski J.M. (2000):Fuzzy and Neuro-Fuzzy In-
telligent Systems. — Heidelberg: Physica-Verlag.

Duda R.O. and Hart P.E. (1973):Pattern Classification and
Scene Analysis. — New York: Wiley.

Gantmacher F.R. (1959):The Theory of Matrices. — New York:
Chelsea Publ.

Haykin S. (1999):Neural Networks. A Comprehensive Founda-
tion. — Upper Saddle River: Prentice-Hall.

Ho Y.-C. and Kashyap R.L. (1965):An algorithm for linear
inequalities and its applications. — IEEE Trans. Elec.
Comp., Vol. 14, No. 5, pp. 683–688.

Ho Y.-C. and Kashyap R.L. (1966):A class of iterative proce-
dures for linear inequalities. — SIAM J. Control., Vol. 4,
No. 2, pp. 112–115.

Huber P.J. (1981):Robust Statistics. — New York: Wiley.

Łęski J.M. (2003a):Ho-Kashyap classifier with generalization
control. — Pattern Recogn. Lett., Vol. 24, No. 2, pp. 2281–
2290.

J. Łęski60

Łęski J.M. (2003b):Fuzzy if-then rule-based nonlinear classi-
fier. — Int. J. Appl. Math. Comput. Sci., Vol. 13, No. 2,
pp. 101–109.

Łęski J.M. (2004):An ε -margin nonlinear classifier based on
if-then rules. — IEEE Trans. Sys. Man Cybern. – Part B:
Cybernet., Vol. 34, No. 1, pp. 68–76.

Mika S., Rätsch G., Weston J., Schölkopf B. and Müller K.-R.
(1999):Fisher discriminant analysis with kernels, In: Neu-
ral Networks in Signal Processing IX (Y.H. Hu, J. Larsen,
E. Wilson and S. Douglas, Eds.). — New York: IEEE
Press, pp. 41–48.

Miller D., Rao A.V., Rose K. and Gersho A. (1996):A global
optimization technique for statistical classifier design. —
IEEE Trans. Signal Process., Vol. 44, No. 12, pp. 3108–
3121.

Müller K.-R., Mika S., Rätsch G., Tsuda K. and Schölkopf
B. (2001): An introduction to kernel-based learning al-
gorithms. — IEEE Trans. Neural Netw., Vol. 12, No. 2,
pp. 181–202.

Rätsch G., Onoda T. and Müller K.-R. (2001):Soft margins for
AdaBoost. — Mach. Learn., Vol. 42, No. 3, pp. 287–320.

Ripley B.D. (1996):Pattern Recognition and Neural Networks.
— Cambridge: Cambridge University Press.

Schölkopf B., Smola A.J. and Müller K.-R. (1998):Nonlinear
component analysis as a kernel eigenvalue problem. —
Neural Comput., Vol. 10, No. 6, pp. 1299–1319.

Schölkopf B., Burges C.J.C. and Smola A.J. (1999):Advances
in Kernel Methods – Support Vector Machine. — Cam-
bridge: MIT Press.

Schölkopf B., Mika S., Burges C.J.C., Knirsch P., Müller K.-
R., Rätsch G. and Smola A.J. (1999a):Input space vs. fea-
ture space in kernel-based methods. — IEEE Trans. Neural
Netw., Vol. 10, No. 5, pp. 1000–1017.

Tipping M.E. (2001): Sparse Bayesian learning and the rel-
evance vector machine, — J. Mach. Learn. Res., Vol. 1,
No. 2, pp. 211–244.

Tou J.T. and Gonzalez R.C. (1974):Pattern Recognition Prin-
ciples. — London: Adison-Wesley.

Vapnik V. (1995): The Nature of Statistical Learning Theory.
— New York: Springer-Verlag.

Vapnik V. (1998):Statistical Learning Theory. — New York:
Wiley.

Vapnik V. (1999):An Overview of Statistical Learning Theory.
— IEEE Trans. Neural Netw., Vol. 10, No. 5, pp. 988–999.

Webb A. (1999):Statistical Pattern Recognition. — London:
Arnold.

Appendix

The first equation of (10) can be rewritten in the form
K>De = −τKΓ. Thus, for τ > 0 all elements of the

error vector cannot be zero. This is true in both linearly
separable and nonseparable cases. If we define

Ξ−1 =

[
∆11 ∆12

∆21 ∆22

]
,

then the use of the extension principle1 yields (Gant-
macher, 1959):

∆11 = (DK + τI)−1 +
1
β′

(DK + τI)−1

×Dθ`1,`2θ
>
`1,`2DK(DK + τI)−1,

∆12 = − 1
β′

(DK + τI)−1Dθ`1,`2 ,

∆21 = − 1
β′

θ>`1,`2DK(DK + τI)−1,

∆22 =
1
β′
,

where

β′ = θ>`1,`2Dθ`1,`2 − θ>`1,`2DK(DK + τI)−1Dθ`1,`2 .

Write e(k)
+ , e(k)+|e(k)|. Using (12) and (13), we obtain

e(k+1) = e(k) + ρ(K∆11D +K∆12θ
>
`1,`2D

+ θ`1,`2∆21D + θ`1,`2∆22θ
>
`1,`2D− I)e(k)

+

and

Γ(k+1) = Γ(k) + ρ(∆11D + ∆12θ
>
`1,`2D)e(k)

+ .

From the second equation of (10) we obtain

θ>`1,`2De+ = e>+Dθ`1,`2 = 0.

Using the above result yields

e(k+1) = e(k) + ρ(K∆11D + θ`1,`2∆21D− I)e(k)
+

and

Γ(k+1) = Γ(k) + ρ∆11De(k)
+ .

1 The extension principle is formulated as follows:[
Z u

v> β

]−1

=

 Z−1 + Z−1uv>Z−1

β′ − Z−1u
β′

− v>Z−1

β′
1
β′

,

where β′ = β − v>Z−1u. In our case,Z = DK + τ I , v> =
θ>`1,`2

DK, u = Dθ`1,`2 and β = θ>`1,`2
Dθ`1,`2 .

Kernel Ho-Kashyap classifier with generalization control 61

Substitution of the above results in (9) gives

I(k+1)

= I(k) + 2ρe(k)>D(K∆11D + θ`1,`2∆21D−I)e(k)
+

+ρ2e(k)>
+ (D∆>

11K+D∆>
21θ

>
`1,`2−I)

×D(K∆11D + θ`1,`2∆21D− I)e(k)
+

+2τρΓ(k)>K∆11De(k)
+

+τρ2e(k)>
+ D∆>

11K∆11De(k)
+ .

From the first equation of (10) we have

K>De = −τKΓ.

Using the above results and the equality

2ρe(k)>D(K∆11D + θ`1,`2∆21D− I)e(k)
+

= ρe(k)>
+ D(K∆11D + θ`1,`2∆21D− I)e(k)

+ ,

after some simple algebra, we obtain

I(k+1) − I(k)

= ρ(ρ− 1)e(k)>
+ De(k)

+

−ρ2e(k)>
+ DK(DK + τI)−1De(k)

+

−ρ
2

β′
e(k)>
+ D(DK+τI)−1

×KDθ`1,`2θ
>
`1,`2DK(DK + τI)−1De

(k)
+ .

The matrices

DK(DK + τI)−1D

and

D(DK + τI)−1KDθ`1,`2θ
>
`1,`2DK(DK + τI)−1D

are symmetric and positive semidefinite. As a result,
the second and third terms are negative or zero. For
0 < ρ < 1 the first term is negative or zero. Thus, the
sequenceI(1), I(2), . . . is monotonically decreasing. For
both linearly separable and nonseparable cases, conver-
gence requires thate(k)

+ tends to zero (no modification
in (13)), while e(k) is bounded away from zero, due to
K>De = −τKΓ.

Received: 18 August 2003
Revised: 5 January 2004

