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In this paper we use the theory of monotone operators to generalize the linear shell model presented in (Blouza and Le Dret,
1999) to a class of physically nonlinear models. We present a family of nonlinear constitutive equations, for which we prove
the existence and uniqueness of the solution of the presented nonlinear model, as well as the convergence of the Galerkin
method. We also present the physical discussion of the model.
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1. Introduction and Motivation

Koiter (1970) formulated a two-dimensional mathemati-
cal problem of the linearly elastic thin shell, in which the
unknown is the field of the displacement of the shell mid-
dle surface. The proof of the existence and uniqueness of
the solution of Koiter’s model was first given by Bernar-
dou and Ciarlet (1976). The most recent overview of shell
theory can be found in a book by Ciarlet (2000). Blouza
and Le Dret (1999) gave more elegant results with more
relaxed assumptions than those of Bernardou and Ciar-
let (they allow shells whose middle surface is parameter-
ized by a function with discontinuous second derivative).
The nonlinearity can be introduced to linear shell models
in two ways. Firstly, one can consider nonlinear strain-
displacement relationships. Such models are called geo-
metrically nonlinear. They are widely discussed in (Cia-
rlet, 2000). Secondly, one can consider models physi-
cally nonlinear by using nonlinear stress-strain relation-
ships (constitutive equations). This paper presents a gen-
eralization of the model presented by Blouza and Le Dret
to shells governed by a family of nonlinear constitutive
equations.

Physically nonlinear shells are used in technical
models; however, for the justification of their use they
need a rigorous mathematical statement. The linear shell
model is, for instance, insufficient to express the be-
haviour of sophisticated biological materials like the tis-
sue that constitutes the wall of an artery. We expect that

the physically nonlinear shell presented here can model
the control system that changes its elastic properties of
the arterial wall with the changing rate of strain. The de-
scribed nonlinear model has been used to model the wall
of an artery in (Kalita, 2003).

The proof of the existence and uniqueness of the so-
lution for the nonlinear shell problem is based on the the-
ory of monotone operators presented in (Gajewskiet al.,
1974) and (Ciarletet al., 1969). Moreover, the theory of
monotone operators allows us to obtain the convergence
of Galerkin approximations in finite-element spaces to the
exact variational solution of the shell problem. We refer
the reader to (Chapelle and Bathe, 1998) and (Kerdid and
Mato Eiroa, 2000) for the finite-element approximation of
the solution of the shell problem.

Monotone operators for the problems in thin domains
were also considered in a different context in (Gaudiello
et al., 2002). The physical significance of monotonicity
assumptions for constitutive equations in elasticity were
verbosely discussed by Antman (1995).

In Sections 2 and 3 we recall some necessary facts
from the theory of monotone operators and the theory of
thin shells, respectively. The formulation of nonlinear
shell problems together with the main results of this pa-
per is given in Section 4. Section 5 delivers the physical
discussion of the presented model and the numerical ex-
ample comparing the behaviour of the shell in the linear
and nonlinear cases. Proofs of some lemmas formulated
in Section 5 are postponed to Appendix.
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2. Strongly Monotone Operators

From now on we shall denote byV a reflexive real Ba-
nach space, byV ∗ the space of linear continuous func-
tionals onV , and by 〈·, ·〉 a duality pairing betweenV
and V ∗. By ‖ · ‖ we shall denote the norm inV and
by ‖ · ‖∗ the norm in V ∗. In the following definitions
(see Definitions 1.1,1.2,1.3, Section III in (Gajewskiet al.,
1974)) we will recall several properties of (not necessarily
linear) mappings fromV into V ∗.

Definition 1. An operatorA : V → V ∗ is monotoneif

∀ y, z ∈ V : 〈Ay −Az, y − z〉 ≥ 0. (1)

Definition 2. An operatorA : V → V ∗ is strictly mono-
toneif

∀ y, z ∈ V : y 6= z ⇒ 〈Ay −Az, y − z〉 > 0. (2)

Definition 3. An operatorA : V → V ∗ is strongly
monotonewith a constantα ≥ 0 if

∀ y, z ∈ V : 〈Ay −Az, y − z〉 ≥ α‖y − z‖2. (3)

Of course, a mapping that is strongly monotone is
strictly monotone. Furthermore, a mapping that is strictly
monotone is monotone.

Definition 4. An operatorA : V → V ∗ is radially con-
tinuous if for each y, z ∈ V a mappings → 〈A(y +
sz), z〉 is continuous on[0, 1].

Definition 5. A : V → V ∗ is Lipschitz continuous on
bounded setsif

∀ r > 0, ∃L > 0, ∀ y, z ∈ V :

‖y‖ ≤ r, ‖z‖ ≤ r ⇒ ‖Ay −Az‖∗ ≤ L‖y − z‖. (4)

It is obvious that a mapping that is Lipschitz contin-
uous on bounded sets is radially continuous.

Definition 6. An operatorA : V → V ∗ is said to be
coerciveif there exists a functionγ : [0,∞) → R such
that

lim
t→∞

γ(t) = ∞, (5)

∀y ∈ V : 〈Ay, y〉 ≥ γ(‖y‖)‖y‖. (6)

A mapping that is strongly monotone is coercive (see
Remark 1.4, Section III in (Gajewskiet al., 1974)).

Now let A : V → V ∗, and f ∈ V ∗. By {V k}∞k=1

we denote a sequence of finite dimensional subspaces of
V such that

∞⋃
k=1

V k = V. (7)

We consider the following problems:

(P) Find u ∈ V such that 〈Au, v〉 = 〈f, v〉 for
everyv ∈ V .

(Pk) Find uk ∈ V k such that〈Auk, v〉 = 〈f, v〉 for
everyv ∈ V k.

We quote the following theorems (see Theorem 5.3.4
in (Ciarletet al., 1969) and Theorems 2.1,2.2,3.1,3.3, Sec-
tion III in (Gajewskiet al., 1974)).

Theorem 1. If A is radially continuous, monotone and
coercive then the set of solutions of Problem (P) is
nonempty, convex and weakly closed.

Theorem 2. If A is radially continuous, strictly mono-
tone and coercive, then

(i) Problem (P) has exactly one solutionu,

(ii) Problem (Pk) has exactly one solutionuk,

(iii) the sequenceuk converges tou weakly inV .

Theorem 3. If A is strongly monotone with a constant
α > 0 and Lipschitz continuous on bounded sets, then

(i) Problem (P) has exactly one solution,

(ii) the mapping A−1 : V ∗ → V is Lipschitz-
continuous,

(iii) Problem (Pk) has exactly one solution,

(iv) there exists a constantK > 0 independent of the
choice of V k such that the following inequality is
satisfied:

‖uk − u‖ ≤ K inf{‖v − u‖; v ∈ V k}.

The second part of the last theorem gives us the sta-
bility of Problem(P) with respect to the functionalf . The
last part (which is equivalent to the Cea lemma) gives us
not only the convergence of the solutionsuk of the finite-
dimensional problems(Pk) (which can be solved numeri-
cally) to the solutionu of the infinite-dimensional prob-
lem (P), but also the estimate of the error of the numerical
method.

3. Linear Shell Problem

We will use the model of the linear elastic shell defined
in (Blouza and Le Dret, 1999) that allows for a disconti-
nuity of the curvature of the shell middle surface. From
now on Greek indices and exponents will belong to the
set {1, 2} while Latin indices and exponents will belong
to {1, 2, 3} . We also use the summation convention. By
u · v we denote the scalar product inR3, by u × v the
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vector product inR3 and by | · | the Euclidean norm in
R3. Let ω denote an open, bounded, Lipschitz domain
of R2 (such that the Sobolev Imbedding Theorem is sat-
isfied). By ϕ we will denote an injective mapping which
belongs toW 2,∞(ω; R3) such that two vectors

aα(x) = ∂αϕ(x)

are linearly independent at eachx ∈ ω. Vectors a1(x)
and a2(x) span the plane tangent to the middle surface of
the shell. By

a3(x) =
a1(x)× a2(x)
|a1(x)× a2(x)|

we denote the normal versor on the midsurface at point
x. Vectorsai(x) span the covariant basis at it. Byai(x)
we denote the contravariant basis which is defined by the
relations

ai(x) · aj(x) = δi
j ,

where δi
j stands for the Kronecker symbol. Furthermore,

we let
a(x) = |a1(x)× a2(x)|2,

so that
√
a is the area element of the midsurface in the

chartϕ. Finally, by

Γρ
αβ = aρ · ∂βaα

we denote the Christoffel symbols of the midsurface.

One can easily verify from the regularity ofϕ, ω
and the linear independence ofaα that for eachx ∈ ω
we have

ai(x) ∈W 1,∞(ω; R3), (8)

ai(x) ∈W 1,∞(ω; R3), (9)

a(x) ∈W 1,∞(ω), (10)

0 < C ≤ a(x), (11)

Γρ
αβ ∈ L

∞(ω). (12)

Now we define the space of admissible displacements for
the shell problem

V = {v ∈ H1
0 (ω; R3) : ∂αβv · a3 ∈ L2(ω)}. (13)

The spaceV equipped with the norm

‖v‖ = (‖v‖2
H1(ω;R3) +

∑
α,β

‖∂αβv · a3‖2
L2(ω))

1
2

becomes a Hilbert space (Blouza and Le Dret, 1999).

Now we define the linearized strain tensor of the shell
and the linearized change of curvature tensor of the shell.

We assume the linear geometry of the shell, i.e. the dis-
placement gradients are sufficiently small

γαβ(v) =
1
2
(∂αv · aβ + ∂βv · aα), (14)

Υαβ(v) = (∂αβu− Γρ
αβ∂ρv) · a3. (15)

One can easily see thatγαβ(v) ∈ L2(ω) and Υαβ(v) ∈
L2(ω) for v ∈ V .

Let us now formulate the linear shell problem. By
e(x) ∈ L∞(ω) we denote the shell thickness such that

0 < C ≤ e(x) (16)

almost everywhere inω with some constantC. By
aαβρσ ∈ L∞(ω) we denote the constitutive tensor. We
assume that it is symmetric (aαβρσ = aρσαβ) and coer-
cive, i.e. there exists a positive constantC1 such that for
each symmetric tensorτ = (ταβ) and almost allx ∈ ω
we have

aαβρσταβτρσ ≥ C1(ταβταβ).

Finally, let P ∈ L2(ω; R3) be an external load density.
We define the bilinear form onV × V by

b(u, v) =
∫

ω

(
eaαβρσ(γαβ(u)γρσ(v)

+
e2

12
Υαβ(u)Υρσ(u))

√
a
)

dx, (17)

and a linear functional onV by

f(v) =
∫

ω

P · v
√
adx. (18)

It can be easily seen thatf ∈ V ∗. The displacement of
the shell is the solution to the following problem:

(LSP) Find u ∈ V such that b(u, v) = f(v) for
everyv ∈ V .

The proof of the existence and uniqueness of solu-
tions to the above problem was given in (Blouza and Le
Dret, 1999) and it is based on the following theorem:

Theorem 4. Under the above hypotheses the expression

|||v||| =
( ∑

α,β

‖γαβ(v)‖2
L2(ω) +

∑
α,β

‖Υαβ(v)‖2
L2(ω)

) 1
2

defines a norm onV which is equivalent to‖ · ‖.

The above theorem implies theV -ellipticity of the
form b defined by (17). The existence and uniqueness of
solutions of Problem(LSP)follow from the Lax Milgram
lemma (cf. e.g. (Gajewskiet al., 1974)). Moreover, by the
Cea lemma we obtain the convergence of the solutions of
appropriate finite-dimensional problems.

In the following part of the paper we will generalize
the above result to a family of forms which are nonlinear
with respect to their first argument.
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4. Nonlinear Shell Problem

In this section we assume thatV is defined by (13),
γαβ(v) by (14), Υαβ(v) by (15) andaαβρσ, e, P satisfy
the assumptions of Section 3. By{V k}∞k=1 we denote
the sequence of finite-dimensional subspaces ofV that
satisfy the condition (7). We shall introduce the follow-
ing notation for the membrane energy density and flexural
energy density:

|u|γ = (aαβρσγαβ(u)γρσ(u))
1
2 ∈ L2(ω), (19)

|u|Υ = (aαβρσΥαβ(u)Υρσ(u))
1
2 ∈ L2(ω). (20)

We define the nonlinear constitutive operators ac-
cording to the following formulae:

aρσ
N

(
γ11(u), γ12(u), γ22(u)

)
= φ(·, |u|γ)aαβρσγαβ(u), (21)

Aρσ
N

(
Υ11(u),Υ12(u),Υ22(u)

)
= ψ(·, |u|Υ)aαβρσΥαβ(u). (22)

In the above formulae,φ : ω × [0,∞) → R and ψ :
ω × [0,∞) → R are functions which bring nonlinearity
to our model. If φ ≡ 1 and ψ ≡ 1, then the model
simplifies to the linear one.

Further on, for simplicity, the operators in (21) and
(22) are denoted byaρσ

N (γαβ(u)) andAρσ
N (Υαβ(u)), re-

spectively. Having defined the nonlinear operators, we in-
troduce the following form onV × V :

aN (u, v) =
∫

ω

(
e
(
aρσ

N (γαβ(u))γρσ(v)

+
e2

12
Aρσ

N (Υαβ(u))Υρσ(u)
)√
a
)

dx. (23)

The formaN is linear with respect to the second variable,
and, through the presence of functionsφ and ψ, nonlin-
ear with respect to the first variable.

Assuming thatf is given by (18), we can formulate
the nonlinear shell problem and the corresponding finite-
dimensional problems:

(NLSP) Findu ∈ V such thataN (u, v) = f(v) for
everyv ∈ V .

(NLSPk) Find uk ∈ V k such that aN (uk, v) =
f(v) for all v ∈ V k.

The formulated problems are well defined due to the
following two theorems:

Theorem 5. If φ : ω×[0,∞) → R andψ : ω×[0,∞) →
R satisfy the following assumptions:

(i) φ(·, t) and ψ(·, t) are Lebesgue measurable for all
t ∈ [0,∞),

(ii) φ(x, ·) and ψ(x, ·) are continuous for almost all
x ∈ ω,

(iii) there existM > 0 and m > 0 such that for all
t ∈ [0,∞) and almost allx ∈ ω we have

m ≤ φ(x, t) ≤M and m ≤ ψ(x, t) ≤M, (24)

(iv) for all t ≥ s ≥ 0 and almost allx ∈ ω we have

φ(x, t)t− φ(x, s)s ≥ 0, (25)

ψ(x, t)t− ψ(x, s)s ≥ 0, (26)

(v) for all r > 0 there existsl > 0 such that for any two
real numberst ∈ [0, r] and s ∈ [0, r] and almost
all x ∈ ω we have

|φ(x, t)t− φ(x, s)s| ≤ l|t− s|, (27)

|ψ(x, t)t− ψ(x, s)s| ≤ l|t− s|, (28)

then the solution set of Problem(NLSP)is nonempty, con-
vex and weakly closed.

Proof. In the course of the proof we will formulate several
lemmas which will be proved in Appendix. First we show
that the problem can be formulated in the dual spaceV ∗.
This is true due to the following result:

Lemma 1. If the assumptions (i), (ii) and (iii) of Theo-
rem 5 are satisfied, then for eachu, v ∈ V the form (23)
is well defined. Furthermore, for a givenu ∈ V the map-
ping v → aN (u, v) belongs toV ∗.

The above lemma implies that we can define the op-
eratorAN : V → V ∗ such that

〈ANu, v〉 = aN (u, v).

It is now enough to show that the assumptions of Theo-
rem 1 are satisfied. The following lemma gives the condi-
tion for the operatorAN to be coercive.

Lemma 2. If there exists a real constantm > 0 such that
for every t ≥ 0 and almost everywhere inω we have

φ(x, t) ≥ m, (29)

ψ(x, t) ≥ m, (30)

thenAN is coercive.

The next lemma gives us the monotonicity ofAN .

Lemma 3. If the assumption (iv) of Theorem 5 is satisfied,
thenAN is monotone.

The last property we need is the radial continuity. We
prove the stronger property which is the Lipschitz conti-
nuity on bounded sets.
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Lemma 4. If the assumption (v) of Theorem 5 is satis-
fied, thenAN defined by (23) is Lipschitz continuous on
bounded sets.

We showed that all the assumptions of Theorem 1 are
satisfied, which completes the proof.

Theorem 6. If φ : ω×[0,∞) → R andψ : ω×[0,∞) →
R satisfy the following assumptions:

(i) φ(·, t) and ψ(·, t) are Lebesgue measurable for all
t ∈ [0,∞),

(ii) φ(x, ·) and ψ(x, ·) are continuous for almost all
x ∈ ω,

(iii) there existsM > 0 such that for allt ∈ [0,∞) and
almost all x ∈ ω we have

φ(x, t) ≤M and ψ(x, t) ≤M, (31)

(iv) there existsm > 0 such that for allt ≥ s ≥ 0 and
almost all x ∈ ω we have

φ(x, t)t− φ(x, s)s ≥ m(t− s), (32)

ψ(x, t)t− ψ(x, s)s ≥ m(t− s), (33)

(v) for all r > 0 there existsl > 0 such that for any two
real numberst ∈ [0, r] and s ∈ [0, r] and almost
all x ∈ ω we have

|φ(x, t)t− φ(x, s)s| ≤ l|t− s|, (34)

|ψ(x, t)t− ψ(x, s)s| ≤ l|t− s|, (35)

then

A. Problem(NLSP)has exactly one solutionu,

B. Problem(NLSP) is stable with respect to the shell
load,

C. Problem(NLSPk) has exactly one solutionuk,

D. there exists a constantK > 0 independent of the
choice of V k such that the following inequality is
satisfied:

‖uk − u‖ ≤ K inf{‖v − u‖ : v ∈ V k}.

Proof. It is easy to see that the assumptions of Theorem 6
imply that the assumptions of Theorem 5 are also satisfied.
We also notice that in the proof of Theorem 5 we showed
that AN is Lipschitz continuous on bounded sets. Due
to Theorem 3, in order to obtain the thesis, it is therefore
sufficient to show the strong monotonicity ofAN . This is
true due to the following result:

Lemma 5. If the assumption (iv) of Theorem 6 is satisfied,
thenAN is strongly monotone.

The proof of this lemma is postponed to Appendix.

Looking at the assumptions of Theorem 6 it is easy
to see that the necessary condition for the functionsφ and
ψ to satisfy them is that there existm > 0 andM > 0
such that for every positivet ∈ [0,∞)

m ≤ φ(x, t) ≤M, m ≤ ψ(x, t) ≤M. (36)

Now we give the sufficient condition for the func-
tions φ andψ to satisfy the assumptions of Theorem 6.

Corollary 1. If φ : ω × [0,∞) → R and ψ : ω ×
[0,∞) → R satisfy the following assumptions:

(i) φ(·, t) and ψ(·, t) are Lebesgue measurable for all
t ∈ [0,∞),

(ii) φ(x, ·) and ψ(x, ·) are C1[0,∞) for almost all
x ∈ ω,

(iii) there existM > 0 and m > 0 such that for all
t ∈ [0,∞) and almost allx ∈ ω we have

m ≤ φ(x, t) ≤M and m ≤ ψ(x, t) ≤M, (37)

(iv) φ(x, ·) and ψ(x, ·) are increasing,

then they also satisfy the assumptions of Theorem 6.

Proof. It is sufficient to prove the assumptions (iv) and (v)
of Theorem 6. For the proof of the assumption (iv) let us
take 0 ≤ s ≤ t. We have

(t− s)m ≤ φ(x, s)(t− s) = φ(x, s)t− φ(x, s)s

≤ φ(x, t)t− φ(x, s)s.

For the proof of the assumption (v) it suffices to notice that
for t ∈ [0, r] the first derivative ofφ(x, t) (with respect
to t) is bounded and therefore so is the first derivative of
φ(x, t)t. The mean value theorem completes the proof.
The proof forψ is analogous.

The last corollary allows us to give examples of func-
tions that can be used in our constitutive equations. Such
examples will be given in the next section.

In particular, the necessary condition (36) implies
that the graphs ofφ(x, t)t and ψ(x, t)t should be in-
cluded between two straight lines as depicted in Fig. 1.

5. Mechanical Aspects of the Presented
Nonlinear Model

In the previous section we have suggested nonlinear three-
dimensional stress-strain relationships ((21) and (22)) and
we gave the conditions for the problem of finding the dis-
placement of the shell governed by those relationships to
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Fig. 1. Illustration to the necessary condition (36).

have only one solution which can be effectively approxi-
mated by the Galerkin method. Now we give some physi-
cal properties of the proposed equations:

(i) The equations satisfy the principle of determinism
as the behaviour of each material point at timet is
specified in terms of the behaviour of its arbitrarily
small neighbourhood at the same time moment,

(ii) The tensorial form of expressions for| · |γ and | · |Υ
(see (19) and (20)) implies that they are invariant
with respect to the rigid motion of spatial coordi-
nates. Furthermore, the functionsφ and ψ are also
invariant with respect to the rigid motion of spatial
coordinates and therefore the suggested equations
satisfy the principle of material objectivity.

(iii) If we take φ and ψ independent ofx, the equa-
tions can satisfy the principle of material isomor-
phism, e.g. they are invariant to a specific subgroup
of the full orthogonal group of transformations of
material coordinates (through the invariance of the
tensoraαβρσ with respect to this subgroup).

The fact that our constitutive equations satisfy the
above principles implies that they are physically correct
(Cemal Eringen, 1962; Noll and Truesdell, 1965).

Now we provide two examples of functionsφ(x, t)
that satisfy the assumptions of Corollary 1. The first is
a piecewise polynomial (see Fig. 2 for the graph that ex-
plains the symbols used in the equation):

φ(x, t)=



m for t ∈ [0, t0 − δ],

− (M −m)(t− t0)3

4δ3
+

3(M −m)(t− t0)
4δ

+
M +m

2
for t ∈ (t0 − δ, t0 + δ),

M for t ∈ [t0 + δ,∞).
(38)

Fig. 2. Graph of a function of the type (38).

The second example concers a scaled and translated
arcus tangent (see Fig. 3 for the graph that explains the
symbols):

φ(x, t) =
M −m

π
arctan

t− t0
δ

+
M +m

2
. (39)

Fig. 3. Graph of a function of the type (39).

We remark here that any increasingC1[0,∞) con-
stitutive law of the type (21) and (22), e.g., such that the
nonlinearity depends only on the energy density of the
solution can be rendered to satisfy the assumption (37)
by choosing an arbitrarily smallε > 0 and substituting
m ≤ φ(x, t) and m ≤ ψ(x, t) for t ∈ [0, ε) such that
both functions remainC1 with respect tot and, sim-
ilarly, by choosing the large (nonphysical) energy den-
sity N and settingφ(x, t) = const = φ(x,N) and
ψ(x, t) = const = ψ(x,N) for t ≥ N . For a rigor-
ous derivation of such a law see (Schaefer and Sędziwy,
1999).

The assumption (iv) of Corollary 1, e.g., the fact that
φ and ψ are increasing functions oft means that the
elastic modulus of the material increases with the increas-
ing energy norm of strain. This means that with the grow-
ing strain the material strengthens itself. This is the case
with the tissue constituting the walls of human (and mam-
malian) arteries. Nylon-like collagen fibres included in
arteries cause a nonlinear passive response which can be
interpreted using the presented formalism. For details of
application of the presented model to the wall of human
artery see (Kalita, 2003).

Now we present the benchmark for which we per-
formed the finite-element simulation of the proposed
equations. We used the setting suggested for shell bench-
marks by Chapelle and Bathe (1998). The problem is
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Fig. 4. Benchmark problem used as a numerical example.

(a) (b) (c)

Fig. 5. Displaced shells: linear case (a), nonlinearity of the type (38) (b), nonlinearity of the type (39) (c).

(a) (b) (c)

Fig. 6. Perpendicular cross sections of displaced shells: linear case (a),
nonlinearity of the type (38) (b), nonlinearity of the type (39) (c).
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shown in Fig. 4. The undeformed shell midsurface is a
full cylinder with clamped edges (which corresponds to
the homogenous Dirichlet boundary conditions enclosed
in the definition of the space (13)). We note that for such
geometry the shell problem is membrane dominated and
therefore the influence of the bending term on the solution
is neglectable. The cylinder is loaded by a periodic field
of pressurep = p0 cos(2ξ2/R), whereξ2 is the radial co-
ordinate in the parameterization of the cylinder. The con-
stants used were the following:e = 0.1 cm, R = 1 cm,
E = 500000 Pa, ν = 0.4, p0 = 10000 Pa. Note that
these constants correspond to the tissue of human arter-
ies (Berne and Levy, 1983). The chosen type of elements
were the simple P2 Lagrange triangles. The number of
elements was1250.

For the solution of the finite-dimensional nonlinear
system resulting from nonlinear problems we used the
quickly convergent Newton method (see (Kalita, 2003)
for numeric details), with the Conjugate Gradient solver
for the tangent linear system.

In the nonlinear simulations we used two different
functionsφ:
• the one described by the ‘spline’ formula (38) with

the constantsδ = 20, t0 = 60, M = 3, m = 1, and
• the one described by the ‘arcus tangent’ formula (39)

with the constantsδ = 1, t0 = 60, M = 3, m = 1.

In Fig. 5 we can see the deformed shell in the linear
case, the nonlinear case with the ‘arcus tangent’ nonlinear-
ity (middle) and ‘spline’ nonlinearity. In Fig. 6 we depict
the middle cross section perpendicular to the axis of the
shell.

Looking at the graphs, we can observe that for both
nonlinear cases the results are similar, which means that in
this specific case the nonlinear behaviour does not depend
on the employed representation. Furthermore, we see that
the nonlinearity made the material stronger, which inhib-
ited the collapse of the shell under the same load — this
fits the feature of the wall of an artery which is well pro-
tected against negative pressures which may occur, e.g., in
the branching areas.

6. Conclusions

Here is a brief summary of the contributions provided by
this paper:
• We restricted our study to a class of nonlinear consti-

tutive formulae that are sufficiently flexible to model
the behaviour of physically nonlinear shells com-
posed of a wide range of materials.

• The presented model can be used for materials which
strengthen themselves (e.g. their elastic modulus in-
creases) with the increasing strain rate. As an exam-
ple, we can give the tissue constituting the arterial

wall in the circulatory system of mammals. A non-
linear passive behaviour of the arterial wall is due to
the nylon-like fibres of collagen included in it.

• We gave a rigorous mathematical statement of the
problem for the given class of materials. For that
statement we proved the existence, uniqueness and
stability of the solution, as well as the convergence
of the numerical method. The given proofs verify the
correctness of the models used in physics, engineeer-
ing and biomechanics, which can be included in the
presented formalism.

• We showed that the constitutive equations of the pre-
sented type are physically correct, and presented an
effective method of constructing them.

• We verified by simulation the strain strengthening
the behaviour of the material due to the presented
nonlinearity. We also showed that for the bench-
mark case the behaviour of the nonlinear material
does not depend on the representation used as well
as that the nonlinearity prevents the shell from col-
lapsing. These results show that the proposed formu-
lation may be useful for modelling arterial walls.
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Appendix: Proofs of the Lemmas

The following simple corollary gives some properties of
| · |γ and | · |Υ.

Corollary 2. For eachu, v ∈ V the following inequali-
ties hold for almost allx ∈ ω:

aαβρσγαβ(u)γρσ(v) ≤ |u|γ |v|γ , (40)

aαβρσΥαβ(u)Υρσ(v) ≤ |u|Υ|v|Υ, (41)

|u+ v|γ ≤ |u|γ + |v|γ , (42)

|u+ v|Υ ≤ |u|Υ + |v|Υ. (43)

Proof. Let us fix x ∈ ω such thatu(x), v(x), |u|γ ,
|u|Υ, |v|γ and |v|Υ are defined. Such points consti-
tute a set of full measure inω. Write R3 3 ξ =
(ξ11, ξ12, ξ22). We set ξ21 = ξ12. Define F (ξ, ζ) =
aαβρσξαβζρσ which is a bilinear, symmetric, positive
definite form onR3. Therefore if satisfies the Cauchy-
Schwartz inequalityF (ξ, ζ) ≤

√
F (ξ, ξ)

√
F (ζ, ζ). Set-

ting ξ = (γ11(u(x)), γ12(u(x)), γ22(u(x))) and ζ =
(γ11(v(x)), γ12(v(x)), γ22(v(x))), we get (40). Inequal-
ity (42) is a Minkowski inequality which follows directly
from (40). For detailed proofs, see any textbook on func-
tional analysis, e.g. (Rudin, 1973). The proofs of In-
equalities (41) and (43) are analogous to those of (40)
and (42).

Now we give proofs of Lemmas 1–4 and 5.

Lemma 6. If

(i) φ(·, t) and ψ(·, t) are Lebesgue measurable for all
t ∈ [0,∞),

(ii) φ(x, ·) and ψ(x, ·) are continuous for almost all
x ∈ ω,

(iii) there existM > 0 and m > 0 such that for all
t ∈ [0,∞) and almost allx ∈ ω we have

m ≤ φ(x, t) ≤M and m ≤ ψ(x, t) ≤M, (44)

then for eachu, v ∈ V the form (23) is well defined. Fur-
thermore, for a givenu ∈ V the mappingv → aN (u, v)
belongs toV ∗.

Proof. For a given u ∈ V the functionsφ(x, |u|γ)
and ψ(x, |u|Υ) are measurable and bounded almost ev-
erywhere. Therefore they belong toL∞(ω). From the
formulae (21) and (22) one can see thataρσ

N (γαβ(u)) ∈
L2(ω) and Aρσ

N (Υαβ(u)) ∈ L2(ω). Therefore the
form (23) is well defined. The Schwartz inequality for
L2(ω) and the application of the Theorem 4 complete the
proof.

Lemma 7. If there exists a real constantm > 0 such
that for everyt ≥ 0 and almost everywhere inω we have

φ(x, t) ≥ m, (45)

ψ(x, t) ≥ m, (46)

thenAN is coercive.

Proof. Let us fix y ∈ V . We have

〈ANy, y〉 =
∫

ω

e
√
a
[
φ(x, |y|γ)aαβρσγαβ(y)γρσ(y)

+
e2

12
ψ(x, |y|Υ)aαβρσΥαβ(y)Υρσ(y)

]
dx

≥
∫

ω

e
√
a
[
m|y|2γ +

e2

12
m|y|2Υ

]
dx ≥ D|||y|||2.

The proof is thus complete.

Lemma 8. If for every t ≥ s ≥ 0 and almost everywhere
in ω we have

φ(x, t)t− φ(x, s)s ≥ 0, (47)

ψ(x, t)t− ψ(x, s)s ≥ 0, (48)

thenAN is monotone.
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Proof. (Cf. Lemma 1.6, Section III from (Gajewskiet al.,
1974).) For everyy, z ∈ V we have the following in-
equalities:

〈ANy −ANz, y − z〉

=
∫

ω

e
√
a
[
φ(x, |y|γ)aαβρσγαβ(y)(γρσ(y)−γρσ(z))

+
e2

12
ψ(x, |y|Υ)aαβρσΥαβ(y)(Υρσ(y)−Υρσ(z))

−φ(x, |z|γ)aαβρσγαβ(z)(γρσ(y)−γρσ(z))

− e2

12
ψ(x, |z|Υ)aαβρσΥαβ(z)(Υρσ(y)−Υρσ(z))

]
dx

≥
∫

ω

e
√
a
[
φ(x, |y|γ)(|y|γ2−|y|γ |z|γ)

+
e2

12
ψ(x, |y|Υ)(|y|2Υ−|y|Υ|z|Υ)

−φ(x, |z|γ)(|y|γ |z|γ−|z|γ2)

− e2

12
ψ(x, |z|Υ)(|y|Υ|z|Υ−|z|2Υ)

]
dx

=
∫

ω

e
√
a
[
(φ(x, |y|γ)|y|γ−φ(x, |z|γ)|z|γ)

× (|y|γ−|z|γ) +
e2

12
(ψ(x, |y|Υ)|y|Υ

−ψ(x, |z|Υ)|z|Υ)(|y|Υ−|z|Υ)
]
dx ≥ 0.

During the derivation, we applied Corollary 2.

Lemma 9. If for every positive real constantr there ex-
ists a positive real constantl such that for any two real
numberst and s belonging to the interval[0, r] and al-
most everywhere inω we have

|φ(x, t)t− φ(x, s)s| ≤ l|t− s|, (49)

|ψ(x, t)t− ψ(x, s)s| ≤ l|t− s|, (50)

then AN defined by (23) is Lipschitz continuous on
bounded sets.

Proof. (Cf. Lemma 1.9, Section III from (Gajewskiet al.,
1974)) Let us fixr > 0. Then there existsl such that
Inequalities (49) and (50) are satisfied. Let us first take
s = 0 and t ∈ [0, r]. We have

|φ(x, t)‖t| ≤ l|t|,

and
|ψ(x, t)‖t| ≤ l|t|.

Hence fort 6= 0 we have

|φ(x, t)| ≤ l, (51)

and

|ψ(x, t)| ≤ l. (52)

The continuity of φ(x, ·) and ψ(x, ·) implies that the
above bounds are valid fort = 0 too. Let us further fix
y, z, v ∈ V such that‖y‖ ≤ r and ‖z‖ ≤ r. We have
the following estimations:

〈ANy −ANz, v〉

=
∫

ω

e
√
a
[
φ(x, |y|γ)aαβρσγαβ(y)γρσ(v)

− φ(x, |z|γ)aαβρσγαβ(z)γρσ(v)

+
e2

12
(
ψ(x, |y|Υ)aαβρσΥαβ(y)Υρσ(v)

− ψ(x, |z|Υ)aαβρσΥαβ(z)Υρσ(v)
)]

dx

=
∫

ω

e
√
a
[
φ(x, |y|γ)aαβρσ(γαβ(y)− γαβ(z))γρσ(v)

+ (φ(x, |y|γ)− φ(x, |z|γ))aαβρσγαβ(z)γρσ(v)

+
e2

12
(
ψ(x, |y|Υ)aαβρσ(Υαβ(y)−Υαβ(z))Υρσ(v)

+(ψ(x, |y|Υ)−ψ(x, |z|Υ))aαβρσΥαβ(z)Υρσ(v)
)]

dx.

We estimate the last integral using the linearity ofγ and
Υ and Corollary 2:

〈ANy −ANz, v〉 ≤
∫

ω

e
√
a
[
φ(x, |y|γ)|y − z|γ |v|γ

+ (φ(x, |y|γ)− φ(x, |z|γ))|z|γ |v|γ

+
e2

12
(
ψ(x, |y|Υ)|y − z|Υ|v|Υ

+ (ψ(x, |y|Υ)− ψ(x, |z|Υ))|z|Υ|v|Υ
)]

dx

=
∫

ω

e
√
a
[(
φ(x, |y|γ)|y − z|γ + φ(x, |y|γ)|y|γ

−φ(x, |y|γ)|y|γ +φ(x, |y|γ)|z|γ−φ(x, |z|γ)|z|γ
)
|v|γ

+
e2

12
(
ψ(x, |y|Υ)|y − z|Υ + ψ(x, |y|Υ)|y|Υ

− ψ(x, |y|Υ)|y|Υ + ψ(x, |y|Υ)|z|Υ

− ψ(x, |z|Υ)|z|Υ
)
|v|Υ

]
dx.
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For further estimations we use the bounds (51) and (52),
the triangle inequality and the assumptions (49) and (50):

〈ANy −ANz, v〉

≤
∫

ω

e
√
a
[(
φ(x, |y|γ)|y − z|γ + φ(x, |y|γ)‖z|γ−|y|γ |

+ |φ(x, |y|γ)|y|γ − φ(x, |z|γ)|z|γ |
)
|v|γ

+
e2

12
(
ψ(x, |y|Υ)|y − z|Υ + ψ(x, |y|Υ)‖z|Υ − |y|Υ|

+ |ψ(x, |y|Υ)|y|Υ − ψ(x, |z|Υ)|z|Υ|
)
|v|Υ

]
dx

≤
∫

ω

e
√
a
[(

2φ(x, |y|γ)|y − z|γ + l‖y|γ − |z|γ |
)
|v|γ

+
e2

12
(
2ψ(x, |y|Υ)|y−z|Υ+l‖y|Υ−|z|Υ|

)
|v|Υ

]
dx

≤ 3l
∫

ω

e
√
a
[
|y − z|γ |v|γ +

e2

12
|y − z|Υ|v|Υ

]
dx.

Now we use the fact that forv ∈ V we have |v|γ ∈
L2(ω), |v|Υ ∈ L2(ω), e(x) ∈ L∞(ω) and a(x) ∈
L∞(ω). We have

〈ANy −ANz, v〉

≤ 3l
( ∫

ω

e
√
a[|y − z|2γ +

e2

12
|y − z|2Υ] dx

) 1
2

×
( ∫

ω

e
√
a[|v|2γ +

e2

12
|v|2Υ] dx

) 1
2

≤ 3lD‖|y − z|‖ ‖|v|‖,

whereD is a positive constant independent ofr.

Hence, using Theorem 4, we obtain

‖ANy −ANz‖∗ ≤ lD‖y − z‖,

where D is a positive constant independent ofr. The
proof is thus complete.

Lemma 10. If there exists a real constantm > 0 such
that for everyt ≥ s ≥ 0 and almost everywhere inω we
have

φ(x, t)t− φ(x, s)s ≥ m(t− s), (53)

ψ(x, t)t− ψ(x, s)s ≥ m(t− s), (54)

thenAN is strongly monotone.

Proof. (Cf. Lemma 1.9, Section III from (Gajewskiet al.,
1974).) First we remark that the assumed inequalities are
stronger then the assumptions (47) and (48) of Lemma 3.
Let

φ = φ1 + φ2, φ1(x, t) = m,

ψ = ψ1 + ψ2, ψ1(x, t) = m.

Note thatφ2 is non-negative as substitutings = 0 in (53)
we haveφ(x, t) ≥ m > 0 for t 6= 0. From the continuity
of φ this is also valid fort = 0. Further, asφ is bounded,
both φ1 and φ2 are bounded. Moreover, we have

φ2(x, t)t−φ2(x, s)s = (φ(x, t)−m)t−(φ(x, s)−m)s

= φ(x, t)t− φ(x, s)s+m(s− t)

≥ m(t− s) +m(s− t) = 0.

An analogous estimate is satisfied forψ2. Therefore, if
we define the nonlinear operators

aρσ
N (γαβ(u)) = φ2(x, |u|γ)aαβρσγαβ(u),

A
ρσ

N (Υαβ(u)) = φ2(x, |u|Υ)aαβρσΥαβ(u),

then, by Lemma 3, the corresponding mappingAN given
by

〈ANu, v〉 =
∫

ω

e(aρσ
N (γαβ(u))γρσ(v)

+
e2

12
A

ρσ

N (Υαβ(u))Υρσ(u))
√
adx

is monotone. Now we will decompose the nonlinear oper-
ator aN into the sum of the linear operator and a strongly
monotone one:

〈ANy −ANz, y − z〉

=
∫

ω

e
√
a
[
(m+ phi2(x, |y|γ))aαβρσ

× γαβ(y)(γρσ(y)− γρσ(z)) +
e2

12
(m+ ψ2(x, |y|Υ))

× aαβρσΥαβ(y)(Υρσ(y)−Υρσ(z))

− (m+ φ2(x, |z|γ))aαβρσγαβ(z)(γρσ(y)− γρσ(z))

− e2

12
(m+ ψ2(x, |z|Υ))aαβρσ

×Υαβ(z)(Υρσ(y)−Υρσ(z))
]
dx

= 〈ANy −ANz, y − z〉+mb(y − z, y − z).

In the last equationb is the bilinear form defined by (17).
As it is V-elliptic (cf. Theorem 4) and the mappingAN is
monotone, we have

〈ANy −ANz, y − z〉 ≥ α‖y − z‖2,

whereα equalsmK andK is the coercivity constant of
the form b.
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