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This paper proposes a nonlinear regression structure comprising a wavelet network and a linear term. The introduction of
the linear term is aimed at providing a more parsimonious interpolation in high-dimensional spaces when the modelling
samples are sparse. A constructive procedure for building such structures, termed linear-wavelet networks, is described.
For illustration, the proposed procedure is employed in the framework of dynamic system identification. In an example
involving a simulated fermentation process, it is shown that a linear-wavelet network yields a smaller approximation error
when compared with a wavelet network with the same number of regressors. The proposed technique is also applied to the
identification of a pressure plant from experimental data. In this case, the results show that the introduction of wavelets
considerably improves the prediction ability of a linear model. Standard errors on the estimated model coefficients are also
calculated to assess the numerical conditioning of the identification process.
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1. Introduction

A wavelet network is a nonlinear regression structure that
implements input-output mappings as the superposition
of dilated and translated versions of a single function,
which is localized both in the space and frequency do-
mains (Zhang and Benveniste, 1992). Such a structure can
approximate any square-integrable function to an arbitrary
precision, given a sufficiently large number of network el-
ements (called “wavelets”).

The main advantage of wavelet networks over simi-
lar architectures such as multi-layer perceptrons and net-
works of radial basis functions (RBF) (Haykin, 1998) is
the possibility of optimizing the wavelet network struc-
ture by means of efficient deterministic construction al-
gorithms (Kan and Wong, 1998; Zhang, 1997). However,
owing to the localized nature of the wavelet basis func-
tions, wavelet networks may not be well-suited to dealing
with high-dimensional data. In fact, constructing and stor-
ing a wavelet basis of large dimension may be computa-
tionally prohibitive (Benvenisteet al., 1994). To circum-

vent this problem, Zhang (1997) proposed a construction
technique which takes into account only those wavelets
whose support contains at least one modelling sample.
However, even by doing so, there remains the problem
of providing interpolation over those regions of the input
space in which modelling data are not available. Such a
problem clearly intensifies with the number of inputs to
the network.

In the present work, this limitation is alleviated by
adding a linear term to the basic wavelet network ar-
chitecture, resulting in a structure termed “linear-wavelet
network” (Galvão and Becerra, 2002). Linear regressors
can be seen as appropriate complements to wavelets and
vice-versa. In fact, linear functions can more easily pro-
vide interpolation when the modelling samples are sparse,
whereas wavelets can account for nonlinearities in the sys-
tem to be identified. Notice that in the approximation of
functions that display only small deviations from linear-
ity, linear regressors may replace a much larger number of
wavelets, thus allowing a more parsimonious representa-
tion to be obtained.
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It should be emphasized that the introduction of lin-
ear regressors does not impair the approximation capabil-
ities of the wavelet network, since it is equivalent to ex-
panding the library of functions from which the elements
of the network are selected. In fact, a similar strategy was
adopted in (Galvãoet al., 1999; Souza Jr.et al., 2002),
where a bias function was added to the wavelets in order
to improve the approximation of functions with localized
low-frequency features.

A constructive procedure for building a linear-
wavelet network on the basis of a given set of input-output
pairs is also presented. The procedure is aimed at achiev-
ing an accurate representation of the input-output data re-
lationship with the smallest possible number of regressors.
For this purpose, a mechanism for redundance (that is,
collinearity between the regressors) avoidance is explic-
itly employed.

For illustration, the proposed modelling technique is
employed in a nonlinear system identification framework.
The modelling of nonlinear dynamic input-output map-
pings from experimental measurements is a problem of
relevance in many engineering applications (Ljung, 1999).
The goal is to obtain a model that can be used to predict
the future behaviour of the process from measurements
taken up to the present moment. The model can also be
used as a mathematical surrogate of the actual system dur-
ing the design of a controller.

When no particular insight into the system prop-
erties is employed, the modelling procedure is termed
“black-box” modelling. Among the classical approaches
to black-box modelling, one could cite the use of Kernel
estimators (Naradaya, 1964; Watson, 1964), Volterra ex-
pansions (Rugh, 1981), and B-splines (Schumaker, 1981).
More recently, regression structures inspired by artifi-
cial intelligence paradigms have been popularized, such
as artificial neural networks (Narendra and Parthasarathy,
1990; Poggio and Girosi, 1990), fuzzy (Takagi and
Sugeno, 1985) and neuro-fuzzy models (Jang and Sun,
1995).

The representation capabilities of the wavelet net-
work have been exploited for system identification in a
number of works (Cannon and Slotine, 1995; Liuet al.,
2000; Souza Jr.et al., 2002; Zhang, 1997). The black-
box approach employed by those authors will be adopted
in two examples presented in this work. In the first of
them, the linear-wavelet network is compared to a con-
ventional wavelet network in the identification of a sim-
ulated fermentation process (Zhang, 1997). The second
example employs experimental data from a real pressure
plant. Standard errors on the estimated model coefficients
are presented to check the numerical conditioning of the
identification process.

This paper is organized as follows: Section 2
presents the wavelet network structure considered in this
work and introduces the proposed linear-wavelet network.
Section 3 describes the constructive procedure to build a
linear-wavelet network from a given set of input-output
data. The examples using simulated and experimental data
are presented in Sections 4 and 5, respectively. Conclud-
ing remarks and suggestions for future work are given in
Section 6.

1.1. Notation

Scalars are represented in italic lowercase, vectors in bold
type lowercase and matrices in bold type capitals. The
symbol ‖x‖ means the Euclidean norm ofx. The i-
th element ofx is denoted byxi. The hat symbol ‘ˆ’
indicates an estimated value. The Fourier transform of
f is denoted byFf . L2(Rd) is the space of func-
tions that are square-integrable inRd, that is,L2(Rd) =
{f : Rd → R s.t.

∫
Rd |f(x)|2 dVx < ∞}, where

dVx = dx1 dx2 · · · dxd is a volume element inRd.

2. Linear-Wavelet Networks

2.1. Wavelet Networks

A wavelet network with one outputy, d inputs
{x1, x2, . . . , xd} and L nodes can be parameterized as
follows (Zhang, 1997; Zhang and Benveniste, 1992):

y = fwav(x) =
L∑

j=1

wjvaj ,bj
(x), (1)

wherex = [x1 x2 · · · xd]
T is the vector of inputs. Func-

tions vaj ,bj , called wavelets, are dilated and translated
versions of a single functionv : Rd → R:

vaj ,bj
(x) = a

−d/2
j v

(
x− bj

aj

)
. (2)

Functionv, termed the “mother wavelet”, is required
to have zero mean, that is,∫

Rd

v(x) dVx = 0, (3)

and also to be localized both in the space and frequency
domains (in the sense that|v(x)| and |Fv(ω)| rapidly
decay to zero as‖x‖ → ∞ and ‖ω‖ → ∞, respec-
tively) (Daubechies, 1992). A number of methods (Can-
non and Slotine, 1995; Zhanget al., 1995) are available
to construct multidimensional mother wavelets (i.e., with
d > 1) from one-dimensional functionsψ : R → R
with fast decay in space and frequency. For the pur-
poses of this work, the radial approach is adopted, that
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is, v(x) = ψ(‖x‖). This is the choice made, for instance,
in (Zhang, 1997).

In (2), the dilation parameteraj ∈ R∗ controls the
spread of the wavelet, whereas the translation parameter
bj ∈ Rd determines its central position. It can be shown
that, if pairs(aj ,bj) are taken from a gridΛ given by

Λ =
{
(αm,nβαm); m ∈ Z,n ∈ Zd

}
(4)

for convenient values ofα > 1 and β > 0, then any
function f ∈ L2(Rd) can be approximated by (1) to
an arbitrary precision, given a sufficiently large number
of wavelets (Daubechies, 1992; Zhang, 1997). Typical
choices forα, β are α = 2, β = 1, and they are adopted
throughout this work.

It is worth noticing that in many practical situations,
the function f to be approximated may not belong to
L2(Rd). Linear functions, for instance, are not square-
integrable, and thus cannot be approximated as a linear
combination of wavelets over the entireRd. However,
this limitation can be circumvented because in several ap-
plications the approximation only needs to be performed
over a compact setX ⊂ Rd (Cannon and Slotine, 1995).
For instance, suppose that an approximation to a certain
function f is to be constructed on the basis of a given
modelling set of input-output pairs{(x[k], f(x[k])), k =
1, . . . ,M}. For a finite M , the modelling pointsx[k]
will lie inside a compact setX ⊂ Rd. If the approxima-
tion of f(x) for x outsideX is not an issue (that is, one
is not attempting to perform extrapolation), then the tar-
get functionf can be replaced by a modified functioñf
defined as

f̃(x) =

{
f(x), x ∈ X ,

0, otherwise.
(5)

If f is square-integrable inX , then f̃ is square-
integrable inRd and can thus be approximated to an ar-
bitrary precision by a wavelet network.

It should be noticed that this discussion is mainly of
theoretical interest, because an explicit definition ofX is
not required in the construction algorithm to be presented
later. However, the reasoning discussed above is useful
to relax the conditions required for the input-output map-
ping f to be approximated. Thus, henceforth it will be as-
sumed thatf is square-integrable in a region sufficiently
large to cover all thex modelling points.

Remark 1. The requirement of a zero mean forv
can be restated for the functionψ used in its genera-
tion. In fact, by using the hyperspherical coordinates
(r, γ1, γ2, . . . , γd−1) defined in Appendix, the integral

in (3) can be rewritten in the following manner:∫
Rd

v(x) dx =
∫

Rd

ψ
(
‖x‖

)
dx

=
∫ π

γ1=0

∫ π

γ2=0

· · ·
∫ π

γd−1=−π

(∫ ∞

r=0

ψ(r)rd−1 dr
)

×

d−2∏
j=1

(sin γj)
d−j−1

 dγ1dγ2 · · · dγd−1, (6)

It follows that a necessary and sufficient condition
for the last integral to equal zero is∫ ∞

r=0

ψ(r)rd−1 dr = 0 (7)

because(sin γj)d−j−1 > 0, ∀γj ∈ (0, π), j = 1, . . . ,
d− 2. Condition (7) is illustrated in the following exam-
ple.

Example 1. Consider the unidimensional Mexican hat
function given by

ψ(x) = (c− x2)e−0.5x2
, (8)

where c is a parameter which needs to be adjusted to
ensure thatψ(‖x‖) has zero mean. By introducing the
above expression forψ(x) in (7), it follows that∫ ∞

0

(c− r2)e−0.5r2
rd−1 dr = 0⇒ c

=

∫∞
0
e−0.5r2

rd+1 dr∫∞
0
e−0.5r2rd−1 dr

=
Id+1

Id−1
. (9)

By letting η = e−0.5r2
and dξ = rd−1 dr, Id−1

can be integrated by parts, yielding

Id−1 = ηξ|∞r=0 −
∫ ∞

r=0

ξ dη =
e−0.5r2

rd

d

∣∣∣∣∣
∞

r=0︸ ︷︷ ︸
0

+
1
d

∫ ∞

r=0

rd+1e−0.5r2
dr =

Id+1

d
. (10)

Thus, by using this result in (9), it follows thatc = d.
�

2.2. Structure of a Linear-Wavelet Network

The model structure proposed in this work has the form

y = flin(x) + fwav(x), (11)
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where

flin(x) = θ1×dxd×1 =
d∑

i=1

θixi, θi ∈ R (12)

is a linear term andfwav(x) is implemented by a network
of radial wavelets, as in (1). Henceforth, a model with the
structure given by (11) will be termed a “linear-wavelet”
network (see Fig. 1 for a graphical presentation).

ΣΣΣΣ

θθθθ a1,b1
v a2,b2

v aL,bL
v............

w1 w2 wL

y

x

Fig. 1. Structure of a linear-wavelet network. The circles repre-
sent wavelet functions with different dilation and trans-
lation parameters. The square represents the linear part
of the model, which consists of the inner product of the
input vectorx with the vector of parametersθ.

It should be noticed that in problems involving the
approximation of a function over a compact subsetX ⊂
Rd, the linear-wavelet network has the same approxima-
tion capabilities of a standard wavelet network. In fact,
linear functions are square-integrable over any compact
subset ofRd and thus, according to the discussion in the
previous subsection, they can be replaced by a linear com-
bination of wavelets. However, many wavelets may be
required to approximate a linear function, specifically in
high-dimensional domains, because linear functions are
not localized in space. Hence, if a function to be approx-
imated is only mildly nonlinear, the use of a linear term
may replace a large number of wavelets, thus leading to a
more parsimonious representation.

3. Building a Linear-Wavelet Network

A major advantage of wavelet networks over other neu-
ral architectures is the availability of efficient construction
algorithms for defining the network structure, that is, for
choosing convenient values for(m,n) in (4). After the
structure has been determined, the weightswj in (1) can
be obtained through linear estimation techniques.

In this work, a constructive method similar to that
introduced in (Zhang, 1997) is employed to build a linear-
wavelet network. It can be described as follows:

Algorithm 1. (Model construction) Suppose thatM
modelling samples are available in the form of input-
output pairs (x[k], y[k]), k = 1, . . . ,M , where
(x[k])d×1 is a column vector. Then

1) Normalize the input data to fit within the effective sup-
port H of the mother wavelet employed. For radial
wavelets,H is a hypersphere inRd with radiusR.
For computational simplicity,H is approximated as
a hypercube inscribed in the hypersphere with edges
parallel to the coordinate axis.

2) Choosemmin and mmax, the minimum and maxi-
mum scale levels to be employed.

3) For each samplex[k] in the modelling set, findIk,
the index set of wavelets whose effective supports con-
tain x[k]:

Ik =
{
(m,n) s.t. x[k] ∈ Hm,n ;

mmin ≤ m ≤ mmax,n ∈ Zd
}
, (13)

whereHm,n is a hypercube centred atnβαm with
edgesαmR

√
2.

4) Determine the pairs(m,n) which appear in at least
two sets Ik1 and Ik2, k1 6= k2. These are the
wavelets whose effective supports include at least two
samples. This step is different from the algorithm de-
scribed in (Zhang, 1997), which allows for wavelets
with effective supports containing only one sample.
Such wavelets are not included here because they
would introduce oscillations between neighbour mod-
elling points, which might compromise the generaliza-
tion ability of the model.

5) Let L be the number of wavelets obtained in the pre-
vious step. For notational simplicity replace the dou-
ble index (m,n) by a single indexj = 1, . . . , L.

6) Apply the L wavelets to theM modelling samples
and gather the results in a matrix form as follows:

V=


v1(x[1]) v1(x[2]) · · · v1(x[M ])
v2(x[1]) v2(x[2]) · · · v2(x[M ])

...
... · · ·

...

vL(x[1]) vL(x[2]) · · · vL(x[M ])


L×M

.

(14)

7) Gather the input-output modelling data in a matrix
form as

y =
[
y[1] y[2] · · · y[M ]

]
1×M

,

X =
[
x[1]x[2] · · · x[M ]

]
d×M

,
(15)

and use least-squares regression to estimate the row
vectors of linear weightsθ = [θ1 θ2 · · · θd] and



Linear-wavelet networks 225

wavelet weightsw = [w1 w2 · · · wL] as

[θ̂ ŵ] = yΦT (ΦΦT )−1, (16)

where

Φ =

[
X
V

]
(d+L)×M

. (17)

Remark 2.
1. In the last step of the above algorithm, it is assumed

that ΦΦT is non-singular. If necessary, QR decompo-
sition (Lawson and Hanson, 1974) or Principal Com-
ponent Analysis (Naes and Mevik, 2001) can be used
to deal with the numerical ill-conditioning.

2. The standard error of the estimate[θ̂ ŵ] is given by
the square root of the diagonal elements of matrixS
given by (Draper and Smith, 1981):

S =
(
ΦΦT

)−1
[
(y − ŷ)(y − ŷ)T

M − (d+ L)

]
, (18)

where ŷ = [θ̂ ŵ]Φ. Notice that the term in the square
brackets in (18) is the square of the standard error of
the estimate fory, adjusted for the number of observa-
tions (M ) and estimated variables (d+L) (Ezekiel and
Fox, 1959).

3. It is often the case that Steps 1 to 4 of the construction
process result in a large number of wavelets. In order
to avoid overfitting problems that result from an over-
parameterization of the model, it is then important to
select a reduced subset of wavelets. An algorithm for
the selection of wavelet regressors is described in the
next subsection.

3.1. Selection of Wavelet Regressors

In this work, the selection of convenient wavelet regres-
sors is done by choosing rows ofV in a stepwise manner,
according to their correlation withy and also with their
degree of independence with respect to the rows already
selected. This procedure can be described as follows:

Algorithm 2. (Selection of regressors)
S1) Let vj be thej-th row of V, that is,

vj =
[
vj(x[1]) vj(x[2]) · · · vj(x[M ])

]
, j = 1, . . . , L.

(19)
S2) (Preliminary pruning) Eliminate all vectorsvj such

that

(a)‖vj‖ < κmax(l=1,...,L) ‖vl‖ for a fixed0 < κ < 1
or

(b) max(k=1,...,M) |vj(x[k])| < 10% maxx∈Rd |vj(x)|.

S3) Normalize all the remaining vectors to the unit norm.

S4) (Removing the information conveyed by the linear
regressors). Replacey and all vectorsvj by their
projections onto the subspace orthogonal to the linear
regressors, that is,

vj ← vj(I−PX) and y← y(I−PX), (20)

wherePX = XT (XXT )−1X and I is the identity
matrix.

S5) (First selection) For each vectorvj , evaluate the cor-
relation indexrj as

rj =

∣∣vjyT
∣∣

‖vj‖‖y‖
(21)

and indexρj defined as

ρj = rj‖vj‖. (22)

Let h1 be the vector with the largest value forρj .
Let also i = 1.

S6) (Projections) Replacey and all vectorsvj by their
projections onto the subspace orthogonal tohi, that
is,

vj ← vj(I−Phi
) and y← y(I−Phi

), (23)

wherePhi
= hT

i (hihT
i )−1hi.

S7) (Selection) For each vectorvj , evaluate indexρj as
in (22). Let hi+1 be the vector with the largest value
for ρj .

S8) Let i = i+ 1 and return to Step S6.

Repeating Steps S6 to S8n times results in vectors
h1, h2, . . . , hn. The wavelet regressors to be included in
the model are those which originated such vectors.

Remark 3.
1. In the preliminary pruning Step S2, the criterion (a)

aims at removing regressors with a small signal-to-
noise ratio (notice that‖vj‖2 is the energy ofvj).
The criterion (b) removes regressors which would in-
troduce undesirable oscillations between neighbouring
samples (see Fig. 2 for a graphical interpretation in the
one-dimensional case). However, in tests carried out
by the authors, it was found that this second pruning
criterion does not need to be applied when the data are
not excessively sparse. Since it is difficult to provide
a guideline based on a specific sparsity measure, it is
advisable to carry out the pruning using only the crite-
rion (a) and, in case the resulting model does not ex-
hibit a good generalization ability, perform a new se-
lection incorporating the criterion (b).
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Fig. 2. Logic behind the second pruning criterion (illustrated
for a Mexican hat mother wavelet). The dashed lines are
at ±10% of the value of the wavelet peak. In this case,
for all three modelling samples the wavelet displays val-
ues smaller than the±10% threshold. This wavelet is
then discarded.

2. Index ρj used in Steps S5 and S7 reflects both the
amount of useful information invj (measured byrj)
and its lack of collinearity with the vectors already se-
lected. In fact, if vectorvj1 is highly collinear to vec-
tor vj2, then the projection ofvj1 onto the subspace
orthogonal tovj2 will have a small norm. Collinearity
avoidance is important to achieve a model with a good
generalization ability when least-squares regression is
employed (Naes and Mevik, 2001).

3. The entire construction procedure comprising Algo-
rithms 1 (model construction) and 2 (selection of
wavelet regressors) is a deterministic process. In fact,
it does not require the generation of an initial set of
random weights, nor the use of stochastic search al-
gorithms. This is an advantage over the methods em-
ployed for training multi-layer perceptron neural net-
works, such as the classical back-propagation algo-
rithm (Haykin, 1998). Moreover, the construction pro-
cedure does not have convergence problems because
the number of possible regressors is finite and the re-
gression coefficients are obtained by a matrix inversion
operation, rather than an iterative optimization algo-
rithm.

3.2. Choosing the Parameters of the Construction
Algorithm

The proposed construction procedure has six parameters:
R,α, β,mmin,mmax, κ. Also, a criterion to determine the
optimum numbern of wavelets should be adopted.

The effective support radiusR depends on the
mother wavelet employed. If the mother wavelet is gen-
erated from the Mexican hat function given by (8), for
instance,R can be taken as 4, as can be seen from Fig. 2.

The usual choice for parametersα andβ is α = 2,
β = 1 as discussed in Section 2.1.

An appropriate choice for parametermmax (maxi-
mum scale level) ismmax = 0, because the data are nor-
malized to fit the support of the mother wavelet. It is as-
sumed that interpolation at larger scales is carried out by
the linear regressors.

Thus, there remain onlymmin and κ to be adjusted
according to the application. Parametermmin depends
on the “smoothness” of the function to be approximated:
the approximation of sharp peaks and/or edges would re-
quire wavelets at small scales and thus a smallermmin

would have to be employed. Parameterκ, which is used
in the preliminary pruning procedure, is aimed at reducing
the computational workload in the steps that follow. As a
rule of thumb, the user should employ the smallestκ that
still reduces the computational workload to an acceptable
level.

The best numbern of wavelets to include in the
model can be determined from statistical techniques such
as the minimum description length (Rissanen, 1978) and
generalized cross-validation (Li, 1986). The goal of such
methods is to find a good compromise between the com-
plexity of the model and its ability to fit the training data.

According to (Zhang, 1997), the generalized cross-
validation indexGCV of a model usings regressors is
given by

GCV (s) =
1
M

M∑
k=1

[
y[k]− f̂s(x[k])

]2

+
2s
M
σ2

e , (24)

where f̂s(x[k]) is the model prediction for thek-th of M
samples used in the identification process andσ2

e is the
noise variance in the measurementy. The GCV can be
used as an estimate of the mean-square error (MSE ) that
would result from applying the model to samples not used
in its development, that is, a measure of the generalization
ability.

If the noise varianceσ2
e is not known, it can be es-

timated by an iterative procedure, as described in (Zhang,
1997). To do that, start from an initial guesss∗ = s0 for
the optimum number of regressors and obtain a first esti-
mate of σ2

e as theMSE obtained on the modelling set
with the resulting linear-wavelet structure. With this es-
timate of σ2

e , determine the minimum point ofGCV (s)
and use it as a new value fors∗. This procedure is re-
peated until convergence, which usually occurs in a small
number of iterations.
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3.3. System Identification Applications

In a discrete-time system identification framework, the
linear-wavelet network can be used to approximate the
functional mapping between the present output of a dy-
namic system and the information available up to the pre-
vious sampling instant. Thus, ifu[k] ∈ R and y[k] ∈ R
denote respectively the input and output of the system
at the k-th sampling instant, the linear-wavelet network
would be used to implement a nonlinear ARX (autoregres-
sive with exogenous input) model of the form

y[k] = f
(
x[k]

)
+ e[k], (25)

wheree[k] is a modelling residual, and

x[k] =
[
y[k − 1] y[k − 2] · · · y[k−na]

u[k−δ−1]u[k−δ−2] · · · u[k−δ−nb]
]T

(26)

for fixed values ofna, nb > 0 and δ ≥ 0. Notice that the
dimension of the inputx[k] to the model isd = na +nb.

In this case, it is assumed thatf is square-integrable
in Rd or at least in a compact subsetX ⊂ Rd where the
approximation is to be carried out.

It is also assumed that a set ofM modelling sam-
ples {(x[k], y[k]), k = 1, . . . ,M} is available for the
construction of the linear-wavelet network. The modelling
samples must be representative of the functional mapping
to be approximated.

The design of an appropriate excitation sequenceu
to satisfy such a requirement may not be straightforward
and is actually a matter of research in the field of system
identification (Ljung, 1999). In fact, since the function
f is unknown from the start, one does not knowa priori
in which regions ofRd the approximation off requires
more modelling samples. At this point the designer’s ex-
perience, or a first-principles engineering analysis, would
be of relevance to choose an excitation protocol that would
drive the system across the modes of operation that should
be captured by the model. In this process, time, cost and
safety limitations related to the physical operation of the
system should also be taken into account.

Finally, it is worth noticing that the dynamics of the
system introduce correlations between the components of
the input vectorx[k], thus preventing large variations be-
tween those components. This is a fundamental limitation
of system identification methods. However, that should
not affect the utility of the resulting model, as long as it is
used to predict the behaviour of the system along the tra-
jectories similar to those used to generate the modelling
samples. That is, the model will not be applied to regions
of the Rd space where the relations between the compo-
nents ofx[k] are much different from those found in the
modelling trajectories of the system.

4. Numerical Example

Consider a fermentation process described by the fol-
lowing Monod model (Aborhey and Williamson, 1978;
D’Ans et al., 1972):

dC
dt

= g
CS

S + p
− Cu, (27)

dS
dt

= −qg CS

S + p
+ (Sin − S)u, (28)

whereC is the microbial concentration,S stands for the
substrate concentration (process output),u denotes the
dilution rate (process input),g signifies the maximum
growth rate,p is the saturation parameter,q means the
yield factor, andSin is the inlet substrate concentration.

Suppose thatS is observed at discrete time instants:

y[k] = S(kTs) + ε[k], k ≥ 1, (29)

whereTs is the sampling period andε[k] is the measure-
ment noise.

The values for the model constants were taken from
(Zhang, 1997) as

g = 0.55, p = 0.15, q = 2, Sin = 0.8. (30)

The system was simulated in closed loop, as in
(Zhang, 1997), with inputu being provided by a PI con-
troller with proportional gainKp = 0.5 and integral gain
Ki = 0.05. The set point forS was changed between
three values: 0.2, 0.4 and 0.6. The measurement noise
was simulated using a zero-mean white Gaussian noise
process with a standard deviation of 0.005. The sampling
period adopted wasTs = 1.0 time unit. The resulting in-
put (u[k]) and output (y[k]) signals can be seen in Fig. 3.
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Fig. 3. Input and output data from the simulation.
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The first 750 samples were employed for modelling,
and the remaining data for validation. The means of the
input and output signals were removed during the identi-
fication procedures.

For the purpose of illustration, assume that it is de-
sired to obtain a model of the form

y[k] = f
(
y[k − 1], y[k − 2], u[k − 1]

)
+ e[k] (31)

as proposed in (Zhang, 1997), wheref is a nonlinear
function to be estimated from the input-output data and
e[k] is the modelling residual. Notice that the input to the
model isx[k] = [y[k − 1] y[k − 2] u[k − 1]]T , so d = 3.
Each element ofx[k] is associated with a linear regressor,
as in (12).

The procedure described in Section 3 was employed
to estimatef with a linear-wavelet structure. The mother
wavelet employed was generated from the Mexican hat
function in (8).

Parametermmin of Algorithm 1 (construction) was
adopted asmmin = −2. Using mmin = −1,−3 or
smaller led to worse approximation results. Steps 1 and 3
resulted in 1907 wavelets, a number which was reduced
to 1042 by Step 4. Algorithm 2 (selection) was subse-
quently applied withκ = 10−3. After carrying out prun-
ing (Step S2) according to criterion (a), 703 wavelets re-
mained. In this application, it was found that better results
were obtained if pruning criterion (b) was not used.

For comparison, a similar construction process was
carried out to build a wavelet network. In this case,
Step S4 in the selection algorithm was skipped and the
vector of wavelet weightsw was obtained by least-
squares regression from the vector of output valuesy and
the matrix of selected wavelet regressorsV.

Figure 4 compares the linear-wavelet and the wavelet
network models in terms of the mean-square-error of pre-
diction MSE defined for either the modelling or the val-
idation set as

MSE (s)

=
1
M

M∑
k=1

[
y[k]− f̂s(y[k − 1], y[k − 2], u[k − 1])

]2

,

(32)

whereM is the number of data samples involved andf̂s

is an estimate off that was generated usings regressors.
For the wavelet network, each wavelet corresponds to a
regressor (a column of matrixV in (14)). In the case of
the linear-wavelet network, the first three regressors are
related to the linear part.

Figure 4 reveals that, for a given number of regres-
sors (which indicate the complexity of the model), the
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Fig. 4. Mean-square-error (logarithmic scale) for the linear-
wavelet and wavelet models. The modelling and val-
idation results are represented by thin and thick lines,
respectively.

linear-wavelet network yields a smaller mean-square error
than the wavelet network both in the modelling and vali-
dation sets. Conversely, it can be stated that, for a given
degree of the approximation accuracy, the linear-wavelet
network is more parsimonious than the wavelet network.

5. Experimental Example

The plant used in this case study is illustrated in Fig. 5. It
consists of a pressure vessel containing air and water. The
air pressure is measured at the top of the vessel by means
of a pressure transducer. A hydraulic pump is used to cre-
ate a water flow that enters the vessel through an inlet pipe
and so decreases the air volume, thus increasing its pres-
sure. For a given pump rotation speed the system reaches
an equilibrium point where no extra water enters the ves-
sel. Furthermore, the direction of flow can be reversed
so that the level decreases and so does the air pressure.
The input signal, with a range of 0–10 V, is the voltage
applied to the power amplifier that drives the DC motor
which operates the hydraulic pump. The signals are sent
and acquired by a supervisory PC via a Profibus network.
The pressure signal ranges between 0 and 100 mBar. The
sampling time used was 0.165 s.

Assume that the plant is to be modelled by the struc-
ture defined in (25) and (26). Figure 6 presents the input
u and outputy signals which were used to build and val-
idate the model. As in the previous section, the means
of the input and output signals were removed during the
identification procedures.

To choose parametersna, nb, δ of the model input
(cf. Eqn. (26)), a linear identification was initially carried
out. Different linear models were identified withna, nb

varying between 1 and 10, and the delayδ varying be-
tween 0 and 9. Figure 7 presents the unexplained variance
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Fig. 5. Schematic diagram of the pilot plant.
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Fig. 6. Input-output data used for modelling and validation.
The quantities are shown as percentages of their max-
imum value (100 mBar for the output and 10V for the
input). The horizontal axis is the time in seconds.

in the modelling data as a function of the number of pa-
rametersna+nb in the model (in each case, the best result
obtained with models of a given complexity are shown).
The choice indicated by the arrow, which corresponds to
na = 5, nb = 1, δ = 0, was made to balance the accu-
racy and complexity of the model. In fact, for a number of
parameters greater than 6, the improvements in the model
accuracy are minor.

It should be pointed out that choosing the input struc-
ture (the elements ofx[k] in (26)) to the linear-wavelet
network on the basis of a linear formulation, as described
above, is a heuristic procedure. In fact, the best choice
of inputs to a nonlinear model does not necessarily corre-
spond to the best inputs to a linear model. However, op-
timizing the inputs to the full model would involve build-
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Fig. 7. Selecting the model order.

ing and testing different linear-wavelet networks (includ-
ing the construction and the regressor selection phases)
for each combination ofna, nb, δ, which might be
impractical.

After the inputs were selected, the procedure de-
scribed in Section 3 was employed to build the linear-
wavelet network. The mother wavelet employed was ob-
tained from the Mexican hat function and the parameters
adopted for Algorithms 1 (construction) and 2 (selection)
were the same as in the previous example. After the pre-
liminary pruning (Step S2 of the selection algorithm), 241
wavelets remained. In this case, the use of both the prun-
ing critera (a) and (b) was found to be necessary in order
to obtain the model with a good generalization ability.

Figure 8 presents the generalized cross-validation in-
dex (see Section 3.2) for the linear-wavelet network. The
arrows in the graph indicate two inflection points that
could be used as a criterion to select the best number of
wavelet regressors. For the sake of model parsimony, the
point (a), which corresponds to 53 wavelets, was selected.

The validation phase was carried out by using the
models to predict the process output in a recursive manner,
that is, ŷ[k] = f̂(ŷ[k−1], ŷ[k−2], . . . , ŷ[k−5], u[k−1]),
starting from the initial conditionŝy[k] = y[k], k =
1, . . . , 5.

The results for the linear and linear-wavelet models
can be seen in Fig. 9. A comparison between the upper
and lower graphs reveals that the use of wavelets consid-
erably improved the prediction ability of the model.

Figure 10(a) presents the coefficients[θ̂1×6 ŵ1×53]
(in modulus) and their respective standard errors. It is
worth noting that, even though the number of the esti-
mated coefficients is considerably large, the least-squares
procedure was not ill-conditioned, since most coefficients
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work. The arrows indicate two inflection points.

0 5 10 15 20 25 30 35 40 45 50

20

30

40

50

60

70
Linear Model

O
ut

pu
t (

%
)

0 5 10 15 20 25 30 35 40 45 50

20

30

40

50

60

70
Linear−Wavelet Model

Time (s)

O
ut

pu
t (

%
)

Fig. 9. Validation results. The solid line is the model prediction
and the dashed line is the measured output.

are at least twice as large as their standard errors (see
Fig. 10(b)). It could be argued that this is a result of the
mechanism for collinearity avoidance employed in the se-
lection of wavelet regressors (see Remark 3.2). However,
it is possible that a more parsimonious model could be
obtained if the wavelets with a small coefficient/standard
error ratio in Fig. 10b were eliminated and a new regres-
sion performed with the remaining regressors.

6. Conclusion

This paper proposed the combination of linear and wavelet
terms in a regression structure for nonlinear function ap-
proximation. A deterministic algorithm for constructing a
linear-wavelet network from a given set of input-output
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Fig. 10. (a) Coefficients of the linear-wavelet network in abso-
lute values (thick line) and respective standard errors
(thin line). The coefficients are plotted in the order the
regressors were selected. The first six coefficients cor-
respond to the linear regressors. (b) Absolute value of
the coefficients divided by their standard errors.

data was also presented. For illustration, the proposed
technique was applied in a dynamic system identification
framework.

Results for the identification of a simulated fermen-
tation process revealed that the introduction of the linear
term in the wavelet network leads to a more parsimonious
model for a given accuracy level. Moreover, results in-
volving experimental data from a real pressure plant re-
vealed that the use of wavelets can indeed improve the
prediction ability of a linear model. Those findings cor-
roborate the initial hypothesis that linear regressors might
be appropriate complements to wavelets and vice-versa.

A possibility not studied in the present work is the
use of the standard error of the model coefficient estimates
for the selection of wavelet regressors. This could be done
in a backward stepwise procedure, starting with a large
wavelet network and pruning those wavelets whose coef-
ficients were not significantly larger than zero, for a given
confidence level. This procedure would implicitly take
into account collinearity problems, since the standard er-
ror tends to increase with collinearity.

Work is being carried out on the use of linear-wavelet
networks for predictive control. At each step, the linear
term will be employed to generate an initial solution for
the sequence of control movements. This solution will
then be used as the starting point for an optimization algo-
rithm that takes the whole model into account. Such warm
initialization of the optimizer may potentially save com-
putation time, allowing a better solution to be obtained
within a fixed time frame. It is worth noting that, in this
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application, it would be of interest to assign confidence
limits for the model predictions (which could be derived
from the standard errors of the estimated coefficients), in
order to address robustness issues.
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Appendix – Hyperspherical Coordinates

The hyperspherical coordinates(r, γ1, γ2, . . . , γd−1) are
defined as

x1 = r cos γ1, (A1)

xk = r

k−1∏
j=1

sin γj

 cos γk, k = 2, . . . , d− 1, (A2)
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xd = r
d−1∏
j=1

sin γj , (A3)

where r > 0, 0 ≤ γk ≤ π, k = 1, 2, . . . , d − 2 and
−π ≤ γd−1 ≤ π. A volume element is expressed on these
variables asJd dr dγ1 dγ2 · · · dγd−1, with Jd defined as

Jd =
∣∣∣∣ ∂ (x1, x2, x3, . . . , xd)
∂ (r, γ1, γ2, . . . , γd−1)

∣∣∣∣

=
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(A4)
where

Ad = r
d−2∏
j=1

sin γj . (A5)

Define a new variable x̄d−1 as x̄d−1 =
r
∏d−2

j=1 sin γj so thatxd−1 = (cos γd−1) x̄d−1 andxd =
(sin γd−1) x̄d−1. It follows that

Jd=
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(A6)

Applying the minors rule to the last line of the above
determinant, it can be evaluated as

Jd = (−1)2d−1(−Ad sin γd−1)

×

∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂r

∂x2
∂r · · · ∂xd−2

∂r sin γd−1
∂x̄d−1

∂r

∂x1
∂γ1

∂x2
∂γ1

· · · ∂xd−2
∂γ1

sin γd−1
∂x̄d−1

∂γ1
...

... · · ·
...

...
∂x1

∂γd−2

∂x2
∂γd−2

· · · ∂xd−2
∂γd−2

sin γd−1
∂x̄d−1
∂γd−2

∣∣∣∣∣∣∣∣∣∣∣
+(−1)2d(Ad cos γd−1)

×

∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂r

∂x2
∂r · · · ∂xd−2

∂r cos γd−1
∂x̄d−1

∂r

∂x1
∂γ1

∂x2
∂γ1

· · · ∂xd−2
∂γ1

cos γd−1
∂x̄d−1

∂γ1
...

... · · ·
...

...
∂x1

∂γd−2

∂x2
∂γd−2

· · · ∂xd−2
∂γd−2

cos γd−1
∂x̄d−1
∂γd−2

∣∣∣∣∣∣∣∣∣∣∣
= Ad

(
sin2 γd−1 + cos2 γd−1

)

×

∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂r

∂x2
∂r · · · ∂xd−2

∂r
∂x̄d−1

∂r

∂x1
∂γ1

∂x2
∂γ1

· · · ∂xd−2
∂γ1

∂x̄d−1
∂γ1

...
... · · ·

...
...

∂x1
∂γd−2

∂x2
∂γd−2

· · · ∂xd−2
∂γd−2

∂x̄d−1
∂γd−2

∣∣∣∣∣∣∣∣∣∣∣
= AdJd−1, (A7)

sincex1, x2, . . . x̄d−1 are represented in hyperspherical
coordinates byr, γ1, . . . γd−2. Then, it can be seen that
Jd = AdAd−1 · · ·A3J2, where J2 = r (because an el-
ement of area in polar coordinates is given byr dr dγ1).
Finally, by applying the expression forAd given by (A5),
it follows that

Jd = rd−1
d−2∏
j=1

(sin γj)
d−j−1

.

Received: 3 February 2003
Revised: 14 January 2004


