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Evolutionary computation is a discipline that has been emerging for at least 40 or 50 years. All methods within this discipline
are characterized by maintaining a set of possible solutions (individuals) to make them successively evolve to fitter solutions
generation after generation. Examples of evolutionary computation paradigms are the broadly known Genetic Algorithms
(GAs) and Estimation of Distribution Algorithms (EDAs). This paper contributes to the further development of this dis-
cipline by introducing a new evolutionary computation method based on the learning and later simulation of a Bayesian
classifier in every generation. In the method we propose, at each iteration the selected group of individuals of the population
is divided into different classes depending on their respective fitness value. Afterwards, a Bayesian classifier—either naive
Bayes, seminaive Bayes, tree augmented naive Bayes or a similar one—is learned to model the corresponding supervised
classification problem. The simulation of the latter Bayesian classifier provides individuals that form the next generation.
Experimental results are presented to compare the performance of this new method with different types of EDAs and GAs.
The problems chosen for this purpose are combinatorial optimization problems which are commonly used in the literature.
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1. Introduction

Estimation of Distribution Algorithms (EDAs) (Larrañaga
and Lozano, 2001; Mühlenbein and Paaß, 1996; Pelikanet
al., 1999) deals with evolutionary computation techniques
that store more than a solution every iteration similarly
as Genetic Algorithms (GAs) (Goldberg, 1989; Holland,
1975). The main difference between these two paradigms
is the fact that GAs evolve using crossover and mutation
operators, without explicitly expressing the characteristics
of the selected individuals within a population. EDAs take
into account these characteristics by considering the inter-
dependencies between the different variables that form an
individual and learning a probabilistic graphical model to
represent them.

EDAs allow us to take into account the dependen-
cies between variables, and they have therefore shown to
be more suitable for complex problems where these types
of dependencies apply (Inzaet al., 2000). EDAs have a
theoretical foundation in probability theory and are based
on probabilistic modelling of promising solutions in com-

bination with the simulation of models induced to guide
their search.

In most of EDAs all selected individuals chosen for
building the probabilistic graphical model, usually the
fittest ones, are treated equally for the learning step, and
no difference is done between the fitness of one or another.
One of EDAs in which the learning takes into account the
differences in fitness among the selected individuals is the
Bit-Based Simulated Crossover (Syswerda, 1993). Other
authors have already applied fitness in many evolutionary
computation operators in the past, for instance, in multi-
objective GAs (Zitzleret al., 1999; Thierens and Bosman,
2001) and in discretization (Cantu-Paz, 2001).

This paper introduces EBCOAs (Evolutionary
Bayesian Classifier-based Optimization Algorithms) as a
new approach in evolutionary computation. The motiva-
tion for this approach that makes it innovative is twofold:
firstly, it evolves a generation of individuals by con-
structing Bayesian classifier models that take into account
deeper differences rather than simply a subset of individu-
als of the previous population. Secondly, it also takes into
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account the differences between individuals in the popula-
tion that make them more or less fit regarding their fitness
values, and it applies this knowledge to create a new popu-
lation by enhancing the characteristics of the fitter individ-
uals and tries to avoid the less fitted ones. In this paper we
analyse many of the different possibilities that can be ex-
ploited in this new framework. Briefly speaking, the main
contribution of this new approach is to propose the use of
classification techniques in the form of Bayesian networks
applied to optimization problems in order to improve the
generation of individuals in every iteration.

This paper is organised as follows: the next section
describes the estimation of distribution algorithms, paying
special attention to the step of learning the probabilistic
graphical model that allows the population to improve step
after step. Section 3 describes the new paradigm that we
propose in this paper as an innovative way of construct-
ing probabilistic graphical models in the discrete domain
by taking into account not only the dependencies between
the different variables, but also the different fitness val-
ues of each of the individuals. Section 4 describes the
experiments carried out, as well as the results obtained
compared to other evolutionary computation techniques.
Finally, Section 5 explains the conclusions and the future
work to be done in this domain.

2. Estimation of Distribution Algorithms
(EDAs)

2.1. Introduction

The main idea of Estimation of Distribution Algorithms
(EDAs) (Larrañaga and Lozano, 2001; Mühlenbein and
Paaß, 1996; Pelikanet al., 1999) is to keep a population
of individuals (or a set of solutions to a particular prob-
lem) and to make them evolve in order to obtain in each
iteration a population of fitter individuals. Each individual
is a vector of values considered to be instantiations of sta-
tistical variables. In EDAs the new population of individ-
uals is generated by sampling from a probabilistic graph-
ical model. This probabilistic graphical model is learned
from a database containing only selected individuals from
the previous generation, and the interrelations between the
different variables that form each individual are expressed
explicitly through the joint probability distribution associ-
ated to the individuals selected in each iteration.

Generally speaking, the EDA approach, illustrated in
Fig. 1, contains the following steps:

1. The first populationD0 of R individuals is gener-
ated. The generation of theseR individuals is usu-
ally produced by assuming a uniform distribution on
each variable, and then each individual is evaluated.

2. A number N (N < R) of individuals are selected
from Dl following some criteria (usually the ones
with the best fitness values are selected, although in
the literature there are many different selection pro-
cedures1 that allow any individual to be selected).
These individuals form the selected populationDN

l .

3. The n-dimensional probabilistic modelpl( x) =
pl( x|DN

l ) that better represents the interdependen-
cies between then variables is induced. This model
is created in the form of a probabilistic graphical
model (i.e. a Bayesian network if the domain is
discrete) containing the variablesX1, X2, . . . , Xn,
wheren is the size of each individual.

4. Finally, the new populationDl+1 formed from the
R new individuals is obtained by carrying out the
simulation of the probability distribution learned in
the previous step.

Steps 2, 3 and 4 are repeated until a stopping criterion
is satisfied. Examples of stopping criteria are: achieving a
fixed number of populations or a fixed number of different
individuals, uniformity in the generated population, or the
fact of having arrived at the optimum solution (at least, if
the latter is known).

The step of estimating the joint probability distri-
bution associated with the database of the selected indi-
viduals constitutes the hardest work to perform, and this
task has to be performed for each generation. That is
why methods proposed for learning probabilistic graph-
ical models from data have been applied to EDAs. Fur-
thermore, all the different EDA approaches proposed in
the literature can be categorized in order of interdepen-
dencies between variables that they can take into ac-
count as follows: the ones that consider all the variables
to be independent of each other (Baluja, 1994; Hariket
al., 1998; Mühlenbein, 1998; Syswerda, 1993), the ones
that consider pairwise dependencies (Baluja and Davies,
1997; Chow and Liu, 1968; Pelikan and Mühlenbein,
1999), and the ones that can take into account multi-
ple dependencies between the variables (Etxeberria and
Larrañaga, 1999; Harik, 1999; Mühlenbein and Mahning,
1999; Mühlenbeinet al., 1999; Pelikanet al., 1999). The
reader can find a more complete review on this topic in
(Larrañaga and Lozano, 2001).

2.2. Towards a More Efficient Learning Phase

The step of learning the probabilistic graphical model is
performed at each iteration, and this results in a new pop-
ulation. In EDAs, the set of individuals selected to learn
the probabilistic graphical model are usually the best ones

1 Other methods in the literature propose to create multiple copies
of the fittest solutions and fewer for the inferior ones to form the
new population.
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Fig. 1. Illustration of the EDA approach in the optimization process.

(i.e. the fittest ones). This particular selection of individ-
uals ensures that the model will represent the interdepen-
dencies of the variables on the selected individuals. In
addition, in practically all EDAs proposed in the literature
the fitness value of each of the selected individuals is not
taken into account, and therefore the best and worst indi-
viduals withinDN

l are treated equally in the learning step
(i.e. the fitness value of each individual is ignored after the
selection-of-individuals step).

Considering that the fitness of each of the individu-
als should be also taken into account in the learning step,
three of the possible ways of considering these are the fol-
lowing:

• Weighting the influence of the individuals depending
on their fitness value.This possibility consists in
adding the fitness value given by the objective func-
tion directly in the learning step. This fitness value
is used to give a different weight to the different se-
lected individuals in the construction of the proba-
bilistic graphical model. An example of this idea is
present in BSC (Syswerda, 1993). Another way of
taking into account the differences in the fitness of in-
dividuals in a population is to use also a proportional
selection method, as well as a Boltzman distribution
based selection (Mühlenbein and Mahning, 1999).

• Adding the fitness as a new variable.This sec-
ond category takes into account the fitness value ob-
tained by the different individuals as a new variable.
This variable is included in the probabilistic graph-
ical model together with the variablesX1, . . . , Xn.
The fact of including the fitness value as another
variable requires that the learning algorithms that
are to be applied deal with a variable that is typ-
ically continuous, while the rest of the variables
are usually discrete. When this is the case, the
learning procedures that can be applied for the
construction of the probabilistic graphical model
are more complex and require considerable CPU
time.

• Turning into a supervised classification problem.
The main idea here is to classify all individuals of
a population into different classes, and to use algo-
rithms to build Bayesian classifiers in order to create
new individuals taking into account the characteris-
tics of the fittest classes and trying to avoid those of
the worst classes. The aim is to guide the search
taking into account both the fittest and the less fit-
ted individuals. This is the approach that we pro-
pose in this paper, and it is described in the next
section.
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3. Evolutionary Bayesian Classifier-Based
Optimization Algorithm

This section describes the new method called Evolution-
ary Bayesian Classifier-based Optimization Algorithms
(EBCOAs) that we propose for optimization problems.
In much the same way as EDAs, this approach combines
both probabilistic reasoning and evolutionary computing.
In particular, EBCOAs are based on using Bayesian clas-
sifiers in evolutionary computation. A description of the
state of the art approaches to applying supervised clas-
sification techniques to optimization is introduced firstly.
Next, some notation is introduced prior to the formal de-
scription of the new method.

3.1. State of the Art

One of the first proposals in the literature for applying
classification techniques in optimization is the Learnable
Execution Model (LEM) (Michalski, 2000). In contrast to
other evolutionary computation techniques such as GAs
and EDAs, LEM algorithms apply classifiers to develop a
population of solutions. In this approach, individuals of
a population are divided into the fittest and the less fitted
ones, and characteristics of the good ones are strengthened
while bad ones are avoided. Michalski proposed in his
work an original machine learning method called AQ18
(Kaufman and Michalski, 1999). This supervised classifi-
cation method uses general inductive rule learning meth-
ods that are configurable for faster convergence. LEM
can be regarded as a hybrid approach that applies non-
statistical model learning approaches while relying on tra-
ditional evolutionary computation mechanisms (Ventura
et al., 2002).

There are also other statistical approaches that com-
bine statistical classifier-construction methods and evo-
lutionary computation. Examples of these are, for in-
stance, the use of decision trees (Llorà and Goldberg,
2003; Muñoz, 2003).

3.2. Description of the New Method

Our innovative approach, called Evolutionary Bayesian
Classifier-based Optimization Algorithms (EBCOAs),
proposes the use of classifiers in the form of Bayesian
networks for optimization problems by applying them in
a manner analogous to that used in the EDAs. The main
idea is that in each generation the population will evolve
by constructing a new Bayesian classifier, but in contrast
to EDAs, individuals that are used for constructing the
probabilistic graphical model in EBCOAs are not simply
the selected ones (i.e. most usually the fittest ones), and in
each generation the bad (less fitted) individuals will also
be considered for the learning procedure so that the algo-

rithm also takes into account the characteristics that the
less fitted individuals have when evolving to the next gen-
eration. This idea aims at providing faster convergence
in optimization problems by modelling the different char-
acteristics that make individuals in the current population
fitter or worse using Bayesian classifiers.

EBCOAs follow an evolutionary computation ap-
proach similar to EDAs, although the main differences be-
tween EDAs and EBCOAs concern the method for build-
ing the Bayesian network: in the former the learning algo-
rithms are taken from the general purpose Bayesian net-
work induction algorithms while the latter are algorithms
to build Bayesian classifiers using the information pro-
vided by the fitness function in a more appropriate man-
ner. Figure 2 illustrates the EBCOA approach, and Fig. 3
shows its pseudocode. If we compare these figures with
Fig. 1, it can be seen that the main difference between
EBCOAs and EDAs is precisely the step of learning the
model.

3.3. Notation

Let X = (X1, . . . , Xn) be an n-dimensional random
variable. Then x = (x1, . . . , xn) represents one of its
possible instantiations and therefore one of the possible
individuals. The probability ofX will be denoted by
p( X = x), or simply p( x). The conditional probability
of the variableXi given the valuexj of the variableXj

will be written as p(Xi = xi|Xj = xj), or simply as
p(xi|xj).

Let Dl be the l-th population (database) of theR
individuals that has to evolve into the(l + 1)-th one. In
EBCOAs, before proceeding to the learning, the popula-
tion Dl is divided into |K| different classes following a
supervised classification approach, and we define a vari-
able K that can take the values{1, 2, . . . , |K|}. We de-
note by DK

l the databaseDl after it has been divided
into he |K| classes, in which for each individual in the
population we have assigned a valuek to the variableK
with 1 ≤ k ≤ |K| in order to represent the class to which
each individual has been assigned. Since all the classes
are not usually used for the learning, prior to training the
Bayesian classifier we choose|C| ≤ |K| classes and the
rest are simply ignored for learning purposes. We denote
by DC

l the subset ofDK
l that will be used for the learn-

ing. We also denote byC the variable that assigns a class
c (with 1 ≤ c ≤ |C|) to each of the individuals inDC

l .

The result of the learning step is the construction of
a probabilistic graphical model, that is, a Bayesian net-
work in the discrete domain. In EBCOAs, this Bayesian
network is a Bayesian classifier that takes into account the
variablesX1, X2, . . . , Xn, as well as the variableC.

The main task in an EBCOA is to estimatepl( x | c),
that is, the probability of an individualx to be part of
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Fig. 2. Illustration of the EBCOA approach in the optimization process.

D0 ← GenerateR individuals (the initial population) randomly

Repeatfor l = 0, 1, 2 . . . until a stopping criterion is met

DK
l ← Divide the R individuals in |K| < R different classes fromDl

according to a criterion

DC
l ← Select the|C| ≤ |K| classes ofDK

l that will be used for building the
Bayesian classifier, usually taking into account at least the best and worst classes.
The individuals of the classes not included inDC

l ⊂ DK
l are ignored

pl(c|x) ∝ pl( x|c) ← Estimate the probability distribution of an individual inDC
l

of being part of any of the different possible|C| classes

Dl+1 ← SampleR individuals (the new population) frompl( x|c)

Fig. 3. Pseudocode for the EBCOA approach.
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each of the classes1, 2, . . . , |C| in DC
l . This probability

must be estimated in every generation since the population
and hence the nature of the classes are different for each
of them. In EBCOAs, the Bayesian network structureS
that is induced as a result of the learning step will contain
the variablesX1, . . . , Xn as in EDAs, but also the newly
defined variableC. This variableC will be present in all
the structures that are obtained using Bayesian classifier-
building algorithms by EBCOAs, andC will always be a
parent of all the other variables inS.

In EBCOAs we apply methods from the Bayesian
classifier-building algorithms that are described in the
next section.

3.4. Bayesian Classifiers

This section revises some of the classifiers in the form of
Bayesian networks that have been proposed as classifiers
in the literature. Their main characteristic is the number
of dependencies between variables that the Bayesian net-
work can take into account. We revise here these classi-
fiers from the simplest to the most complex ones.

Thesupervised classificationproblem consists in as-
signing a vectorx = (x1, . . . , xn) ∈ Rn to one of the
|C| classes of variableC. The true class is denoted byc
and it takes values from the set{1, 2, . . . , |C|}. We can
regard the classifier as a functionγ : (x1, . . . , xn) →
{1, 2, . . . , |C|} that assigns labels to observations.

According to (Duda and Hart, 1973), and for the par-
ticular case of having a loss function0/12, the optimum
Bayesian classifier (in the sense that it minimizes the to-
tal misclassification error cost) is obtained by assigning to
the examplex = (x1, . . . , xn) the class with the highest
posterior probability, i.e.

γ( x) = arg max
c

p(c|x1, . . . , xn). (1)

This section revises Bayesian classifiers that are
meant specifically for classification problems. Therefore,
some of these classifiers can be considered as too sim-
plistic or not very efficient from the point of view of the
classification task, and some of them can be of interest for
optimization with EBCOAs since our purpose is to have
a relatively effective learnable algorithm that can be exe-
cuted in a reasonable period of time at every iteration.

3.4.1. Naive Bayes

The paradigm that combines the Bayes theorem and
the conditionally independent hypothesis given the class
is known asidiot Bayes(Ohmannet al., 1988), naive

2 In a 0/1 loss function the cost of misclassifying an element is
always 1.

Bayes(Kononenko, 1990),simple Bayes(Gammerman
and Thatcher, 1991), orindependent Bayes(Todd and
Stamper, 1994). Although it has a long tradition in thepat-
tern recognitioncommunity (Duda and Hart, 1973), the
naive Bayes classifier was commented for the first time in
themachine learningfield by (Cestniket al., 1987). Grad-
ually, the machine learning community realized its poten-
tial and robustness in supervised classification problems.
In that sense, although in this classifier the estimation of
p(c|x1, . . . , xn) is not well calibrated, naive Bayes has
proved to be quite effective for many classification prob-
lems (Domingos and Pazzani, 1997), being able to obtain
results comparable to other more complex classifiers.

The naive Bayes approach (Minsky, 1961) is the sim-
plest among the classifiers that are presented in this paper.
This Bayesian network has always the same structure: all
variables X1 . . . Xn are considered to be conditionally
independent given the value of the class valueC. Figure 4
shows the structure that would be obtained in a problem
with four variables.

X1 X2 X4X3

C

Fig. 4. Graphical structure of the naive Bayes model.

The main advantage of this approach is the fact that
the structure is always fixed, that is, the process of learn-
ing the classifier is very fast since the order of dependen-
cies to be found is fixed and reduced to two variables. In
naive Bayes, the only task to accomplish so far is the es-
timation of the probabilities that are to be considered fol-
lowing this Bayesian network.

Following the naive Bayes model, we have that when
classifying an examplex, it will be assigned to the class
c for which it has a higher posterior probability. In order
to calculate this posterior probability, we have

p(c | x) ∝ p(c, x) = p(c)
n∏

i=1

p(xi|c). (2)

The estimation of the prior probability of the class,
p(c), as well as the conditional probabilitiesp(xi|c), is
performed based on the database of selected individuals
in each generation.

3.4.2. Selective Naive Bayes

The main difference between the selective naive Bayes ap-
proach (Kohavi and John, 1997; Langley and Sage, 1994)
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X1 X2 X4

C

Fig. 5. Example of a graphical structure of the selective naive
Bayes model for a problem of four variables.

and naive Bayes is that in the former not all variables have
to be present in the final model. Figure 5 shows the struc-
ture that could be obtained in a problem with four vari-
ables, where one of them is missing in the final structure.
In naive Bayes the condition of having to take into ac-
count all variables appears to be very strict for some type
of classification problems, since some variables could be
irrelevant (i.e. variables that always have the same values
in all classes) or redundant (i.e. those in which all values
appear similarly in the different classes and therefore do
not reflect any difference between the characteristics of
the classes) for classification purposes.

It is known (Liu and Motoda, 1998; Inzaet al., 2000)
that the behaviour of the naive Bayes paradigm degrades
with redundant variables, and therefore the motivation for
this approach is to remove those variables in order to ob-
tain more efficient classifiers.

Following the selective naive Bayes model, and using
the selective naive Bayes classifier shown in Fig. 5, an
individual x = (x1, x2, x3, x4) will be assigned to the
class

c∗ = arg max
c

p(c)p(x1|c)p(x2|c)p(x4|c). (3)

3.4.3. Seminaive Bayes

The seminaive Bayes approach (Kononenko, 1991) can be
considered as a more sophisticated type of the Bayesian
classifier regarding the type of dependencies that it can
take into account, as it allows groups of variables to be
considered as a single node in the Bayesian network.
The aim of this seminaive Bayesian classifier is to avoid
the strict premises of the naive Bayes paradigm by al-
lowing to group some variables in a single node of the
structure. Figure 7(3) illustrates an example of a semi-
naive Bayesian classifier in a problem with four variables,
showing that the Bayesian network structure treats these
grouped variables as a single one regarding the factoriza-
tion of the probability distribution. When grouping vari-
ables, whether two, three or more, all dependencies be-
tween them are taken into account implicitly for classifi-
cation purposes. On the other hand, Fig. 7(3) also shows
that it is possible that some variables are not included in
the final classifier.

Pazzani (1997) presents a greedy approach in which
redundant and dependent variables are detected. When de-
pendent variables are found, a new variable is created as
the Cartesian product of these. Two greedy algorithms are
presented, the first of them in a forward direction called
FSSJ (Forward Sequential Selection and Joining), and
the second in the backward direction namedBSEJ (Back-
ward Sequential Elimination and Joining). The pseu-
docode ofFSSJ is shown in Fig. 6. TheBSEJalgo-
rithm follows an analogous approach, and can be inter-
esting in optimization problems in which the objective
function depends on all or nearly all variables. Note
that this modelling process follows a wrapper approach
(Kohavi and John, 1997).

Figure 7 shows an example of the application of
the FSSJalgorithm. The procedure that is followed in
this figure is explained next. In (1), after comparing all
naive Bayes models with a single predictor variable, the
variableX4 was selected. In (2), the rest of the variables
were compared, and adding the variableX2 is the model
that provides most gain after comparing the following
subsets of variables:{X4, X1}, {X4, X2}, {X4, X3},
{(X4, X1)}, {(X4, X2)}, {(X4, X3)}. In (3), adding
the variable X1 grouped to X2 is the winner of the
remaining possibilities: {X4, X2, X1}, {X4, X2, X3},
{(X4, X1), X2}, {X4, (X1, X2)}, {(X4, X3), X2},
{X4, (X3, X2)}. As the algorithm ends without adding
the variable X3 to the final structure, this means that
the models{X4, X3, (X1, X2)}, {(X4, X3), (X1, X2)},
{X4, (X3, X1, X2)} do not exhibit any improvement
over the model obtained in (3). As a result, following the
seminaive Bayes model and using the final classifier ob-
tained in this figure, an individualx = (x1, x2, x3, x4)
will be assigned to the following class:

c∗ = arg max
c

p(c)p(x1, x2|c)p(x4|c). (4)

3.4.4. Tree Augmented Naive Bayes

Tree augmented naive Bayes (Friedmanet al., 1997) is
another Bayesian network classifier in which the depen-
dencies between variables other thanC are also taken
into account. These models represent the relationships be-
tween the variablesX1, . . . , Xn conditional on the class
variableC by using a tree structure.

The tree augmented naive Bayes structure is built in
a two-phase procedure for which the pseudocode is given
in Fig. 8. Firstly, the dependencies between the different
variablesX1, . . . , Xn are learned. This algorithm uses
a score based on information theory, and the weight of a
branch (Xi, Xj) on a given Bayesian networkS is de-
fined by the mutual information measure conditional on
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Initialize the set of variables to be used in the null set.
Classify all the examples as being of a class with higherp(c)
Repeatin every iteration: choose the best option between

(a) Consider each variable that is not in the model as a new one to be
included in it. Each variable should be added as conditionally
independent of the variables in the model given the class

(b) Consider grouping each variable not present in the model with a variable
that is already in it

Evaluate each possible option by means of the estimation of the percentage
of cases well classified

Until no improvement can be obtained

Fig. 6. Pseudocode of theFSSJalgorithm for seminaive Bayes models.

X4

C

(1)

X4

C

(2)

X1 X2 X4

C

(3)

X2

Fig. 7. Steps of the construction of a Bayesian classifier following theFSSJ
algorithm in a problem with four variables.X1, X2, X3, X4 are the
predictor variables andC is the variable to be classified.

CalculateI(Xi, Xj | C) =
n∑

i=1

m∑
j=1

w∑
r=1

p(xi, yj , cr) log
p(xi,yj |cr)

p(xi|cr)p(yj |cr)

with i < j, j = 2, . . . , n
Build an undirected complete graph, where the nodes correspond to the predictor

variables:X1, . . . , Xn. Assign the weightI(Xi, Xj | C) to the edge connecting
variablesXi and Xj

Assign the largest two branches to the tree to be constructed

Repeatin every iteration:
Examine the next largest branch and add it to the tree unless it forms a loop.
In the latter case discard it and examine the next largest branch

Until n− 1 branches have been added to the structure

Transform the undirected graph in a directed one, by choosing a random
variable as the root

Build the tree augmented naive Bayes structure adding a node labelled asC, and later
add one arc fromC to each of the predictor variablesXi (i = 1, . . . , n)

Fig. 8. Pseudocode of thetree augmented naive Bayesalgorithm.
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X1

X2

X4

X3

C

(6)

X1

X2

X4

X3

(1)

X1

X2

X4

X3

(2)

X1

X2

X4

X3

(3)

X1

X2

X4

X3

(4)

X1

X2

X4

X3

(5)

Fig. 9. Illustration of the steps for building a tree augmented naive Bayes classifier in a problem with four
variables.X1, X2, X3, X4 are the predictor variables andC is the variable to be classified.

the class variable as

I(Xi, Xj |C)

=
∑

c

p(c)I(Xi, Xj |C = c)

=
∑

c

∑
xi

∑
xj

p(xi, xj , c) log
p(xi, xj |c)

p(xi|c)p(xj |c)
. (5)

With these conditional mutual information values the al-
gorithm builds a tree structure. In the second phase, the
structure is augmented into the naive Bayes paradigm.

Figure 9 shows an example of the appli-
cation of the tree augmented naive Bayes algo-
rithm. This figure assumes thatI(X1, X2|C) >
I(X2, X3|C) > I(X1, X3|C) > I(X3, X4|C) >
I(X2, X4|C), I(X1, X4|C) . In (4) the branch(X1, X3)
is rejected since it would form a loop. Here (6) is
the result of the second phase of augmenting the tree
structure. Following the tree augmented naive Bayes
model, and using the classifier shown in this figure, an
individual x = (x1, x2, x3, x4) will be assigned to the
class

c∗ = arg max
c

p(c)p(x1|c, x2)p(x2|c)

× p(x3|c, x2)p(x4|c, x3). (6)

In contrast to the wrapper approach as a score to mea-
sure the goodness of the structures applied in the semi-
naive Bayes model, the tree augmented naive Bayes al-
gorithm follows a method that is analogous to filter ap-
proaches, where only pairwise dependencies are consid-
ered.

3.4.5. Other Methods

There are several other methods to build Bayesian classi-
fiers taking into account more or fewer dependencies be-
tween variables. These methods have been extensively
proposed in the last years and their number is growing
quite fast as they constitute a hot research topic. Ex-
amples of Bayesian classifiers that can be found in the
literature are the K-dependence Bayesian classifier (Sa-
hami, 1996), Bayesian augmented networks (Cheng and
Greiner, 1999), general Bayesian networks (Neapolitan,
2003), and Bayesian multinets (Kontkanenet al., 2000).

3.5. Description of the Main Steps of EBCOAs

Having described the different Bayesian classifiers that
we can apply to EBCOAs, this section describes the main
steps of the method as well as the implications of the dif-
ferent choices to be done on them.
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3.5.1. Supervised Classification Step: Labelling
Individuals and Selecting Classes

In EBCOAs, instead of selecting a subset of individuals
as EDAs do, the whole population is firstly classified into
a fixed number|K| of different classes. These classes
are formed by dividing the whole population into groups
of individuals from the fittest to the least fitted ones. The
result of this procedure is to assign to each individual in
Dl a label k (with k ∈ {1, 2, . . . ,K}). Each of theR
individuals is assigned a labelk, and they form the class
variableK in the databaseDK

l .

As in EBCOAs the aim is also to take into account
the main characteristics that distinguish both the fittest and
the less fitted classes, some of the classes inDK

l could
be discarded to facilitate the learning. An example of this
idea is to ignore the middle classes inDK

l for the learning
of the Bayesian classifier, so that the differences between
the most distant classes are enhanced.DC

l is the result of
removing fromDK

l the classes that are not used for learn-
ing, and C is the class variable that is used for learning
as the root of the Bayesian classifiers, with|C| ≤ |K|.

3.5.2. Learning Step: Building the Bayesian Classifier

Learning is performed by applying an algorithm to induce
a Bayesian classifier such that it forms a Bayesian network
in which the root is the variableC representing the labels
of the individual (C is treated as another variable), and the
rest of the variablesX1 to Xn can also be present. This
Bayesian network will be formed following different clas-
sifier construction algorithms such as the ones described
in the previous section. Therefore, the probabilistic graph-
ical model obtained as a result of this method will contain
a maximum ofn+1 nodes (the variablesX1 to Xn and
C), with the variableC always being the root and the par-
ent of all the rest. As a result of this learning procedure,
probability distribution can be represented by a factoriza-
tion of the formpl(c|x) ∝ pl( x|c).

It is important to realize that in our case we are not
interested in obtaining the best possible Bayesian classi-
fier to represent a strictly correct classifier. These algo-
rithms for obtaining optimum classifiers in the form of a
Bayesian network are very time consuming, and the ex-
ecution time requirement is crucial in EBCOAs. Taking
into account the fact that this learning step (i.e. the clas-
sifier building step) is going to be applied in every gen-
eration, it is more important to use a Bayesian classifier
builder that will return a satisfactory classifier in a rea-
sonable time rather than a perfect classifier that will be
ignored in the next generation.

3.5.3. Simulation Step: Instantiating the New
Population

The step of instantiating the probabilistic graphical model
to obtain the newR individuals is also performed in a
similar way as in EDAs, although there is an important
difference due to the fact of the existence of theC vari-
able in the Bayesian network: every individual will be
generated using a specific criterion, such as, for instance,
the probability distributionpl( x|c). Therefore, the simu-
lation of the individual is performed following the proba-
bility distribution learned in the previous step.

But the main difference comes from the need to re-
flect the different characteristics of individuals from the
fittest and less fitted classes. In that sense, to perform
the simulation and thus the generation of new individuals
that will form the next populationDl+1, the individuals
should be generated using all classes inC. Our proposal
is to generateR new individuals by assigning a different
number of individuals by instantiating the probability dis-
tribution of all classes proportional top(c), knowing that

p(c) ∝
∑

x| C( x)=c

f( x), (7)

where f( x) is the fitness value of the individualx, and
C( x) is the class assigned to the individualx in DC

l .
After generating these newR individuals, we fuse these
with the previousR individuals of the populationDl,
and we select theR/C individuals that better adjust to
the characteristics of each of the casses ofC, thus obtain-
ing the R individuals that will form the next population
Dl+1.

The reason for doing the simulation in this way is to
ensure that individuals from all classes will be present in
the next generation, while giving more chance to include
individuals from the fittest ones according to the fitness
value of the individuals. Following this procedure, even
individuals from the less fitted classes will be included
in the new generations, and this fact ensures that the dif-
ferences between the fittest individuals and the less fitted
ones are still present in the last generations of the search
process as the algorithms converge to the optimum solu-
tion. The fact of keeping these differences is important
since the convergence of the whole approach is based on
the ability of the Bayesian classifier to model the main
characteristics that place an individual within the fittest
class found in the whole search process.

Another important point worth commenting regard-
ing the generation of new individuals of the next popula-
tion Dl+1 is the decision of how to instantiate some of
the variables that are not present in the Bayesian network
classifier. This can happen, for instance, if in the learning
step we apply algorithms such as selective Bayes or semi-
naive Bayes. These two algorithms can induce a Bayesian
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classifier in which some of the variablesX1, X2, . . . , Xn

are not present at all. Note that for the purpose of instanti-
ating new individuals using such a model, this is a differ-
ent situation as to have these variables present but discon-
nected, as even when the variables appear to be discon-
nected they have a probability distribution that has been
learned and therefore they have probability distribution
pl( x) estimated for allowing simulating new individuals.
The meaning of not having a variableXi present in the
final Bayesian classifier structure implies that the values
assigned to such a variable in the individuals of all|C|
classes are not relevant for distinguishing between them.
This has an important consequence, since it does not mean
that the value assigned to such variables is not important
and that any value can be set. Note that the individual is a
point in the search space for a specific problem, and that
all values assigned to all the variables are usually relevant
for obtaining a fitted individual and therefore converge to
the optimum solution. However, as the search goes on,
some variables might have the same values on the best
and worst classes, and therefore in the learning step of
EBCOAs these will be removed from the Bayesian classi-
fiers. As a result, we propose to simulate the variables not
present in the Bayesian classifier as follows: we consider
that it is important to distinguish between irrelevant vari-
ables (i.e. variables that always have the same values in
all classes) and redundant variables (i.e. those in which all
values appear similarly in the different classes and there-
fore do not reflect any difference between the characteris-
tics of the classes). For the former, the estimated proba-
bility for a redundant variableXi to take its k-th value
is computed aŝp(xi) = p(xk

i |c). For the latter type of
variables, we assume that the probability distribution is
uniform.

3.5.4. Stopping Criterion

All the previous steps are repeated in EBCOAs until a
stopping condition is satisfied. Examples of stopping con-
ditions are: achieving a fixed number of populations or
a fixed number of different evaluated individuals, unifor-
mity in the generated population, and the fact of not ob-
taining an individual with a better fitness value after a cer-
tain number of generations.

4. Experimental Results

An experiment was carried out in order to test the perfor-
mance of EBCOAs compared with some EDAs and GAs.
This section describes the experiments and the results ob-
tained. We chose EDAs that take into account different
numbers of dependencies between variables, in particu-
lar, UMDA (Mühlenbein, 1998), MIMIC (de Bonetet al.,
1997), and EBNABIC (Etxeberria and Larrañaga, 1999).

Dl
X1     X2     X3     ...     Xn

1
2
...

R/3

R/3 +1
...

2R/3

2R/3 +1
...
R

4      1       5      ...      3
2      3       4      ...      6
...     ...      ...      ...     ...
3      1       4     ...       2

2      3       1      ...      6
...     ...      ...      ...     ...
1      5       4     ...       2

4      2       6      ...      6
...     ...      ...      ...     ...
1      5       7     ...       1

K

H
H
...
H

M
...
M

L
...
L

K

Fig. 10. Three classes inDK
l chosen for our experiments, from

which only the clasesH and L will be used in our
case. The classM is simply ignored in the learning
step, since those individuals will not be present inDC

l .

The GAs that we chose are the broadly known basic (cGA)
(Holland, 1975), elitist (eGA) (Whitley and Kauth, 1988)
and steady state (ssGA) (Michalewicz, 1992) ones. We
tried three standard optimization problems in the discrete
domain such as HIFF, IsoPeak, and IsoTorus, which are
known to be complex and full of local optima. Table 1 de-
scribes briefly these three functions. The reader can find
more information on these problems in (Santana, 2004).

In our particular experiments, in order to show the
validity of EBCOAs, we divided each population into
three different classes (|K| = 3), from which only those
of the best and worst individuals are used for the learn-
ing step (|C| = 2). This is illustrated in Fig. 10. The
stopping criterion in all experiments is when obtaining the
optimum solution in that generation or reaching the gen-
eration number 500.

Table 2 shows the mean fitness of the best individ-
ual found in the last generation, as well as the number
of generations to reach the final solution for each of the
experiments. In IsoPeak there is a local optimum with
fitness 3906 which corresponds to the individuals with
only zeros, very close to the global optimum. This fact
confuses most algorithms, and even if some of them are
sometimes able to find it (EBNA 3 times, and ssGA once),
the results show that only the EBCOATANB algorithm
was able to find the optimum in all the ten runs. In Iso-
Torus there are also other local optima, and EDAs and
GAs fall in these in some of the executions. From the
ten runs of each algorithm, most of EDAs and GAs were
able to find sometimes the global optimum (MIMIC once,
EBNA and cGA 4 times, and ssGA and eGA 5 times), but
EBCOAnBayes and EBCOATANB found the global opti-
mum in all of the 10 runs, while EBCOAseminnB−BSSJ

and EBCOAselectivenBayes also found it 8 times and
twice, respectively. In the HIFF fitness function the results
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Table 1. Description of the HIFF, IsoPeak, and IsoTorus fitness functions. The first column describes the objective funtion, the second
the size of the individual, and the third and the fourth contain are the optimum solutions and their respective fitness values.

HIFF (x) = f(x1, . . . , xn)

f(x1, . . . , xn) =

HIFF



1, if (|s| = 1)

|s|+ f(x1, . . . , x s
2
) if (|s| > 1)

+f(x s
2+1, . . . , xs) and

( |s|∑
i=1

xi = 0
)
,

or
( |s|∑

i=1

xi = |s|
)

f(x1, . . . , x s
2
)

+f(x s
2+1, . . . , xs) otherwise

n = 64

{
(1, 1, . . . , 1)

(0, 0, . . . , 0)
Opt = 448

m = n + 1

IsoC1 =


m if x = 00

m− 1 if x = 11

0 otherwise

IsoPeak IsoC2 =

{
m if x = 11

0 otherwise
n = 64 (1,1,. . . ,1) Opt = 3907

FIsoPeak ( x) = IsoC2(x1, x2)

+
m∑

i=2

IsoC1(xi, xi+1)

n = m2

IsoT1 =


m if u = 0

m− 1 if u = 5

0 otherwise

IsoTorus IsoT2 =

{
m2 if u = 5

0 otherwise
n = 64 (1,1,. . . ,1) Opt = 505

FIsoTorus =

IsoT1(x1−m+n + x1−m+n + x1 + x2 + x1+m)

+
n∑

i=2

IsoT2(xup + xleft + xi + xright + xdown)

wherexup , xleft , xi, xright , xdown are defined

as the appropriate neighbors
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Table 2. Mean results after 10 executions with each algorithm and objective function. TheEv andVal columns represent respectively
the best fitness value obtained in the last generation, and the evaluations number in which it ended.

HIFF IsoPeak IsoTorus

Ev. Val. Ev. Val. Ev. Val.

EBCOAnBayes 105036.8 290 51995.4 3906 25175.9 505

EBCOAselectivenBayes 94640.7 355.2 43910.0 3906 207914.1 472

EBCOAseminnB−FSSJ 249838.2 290.2 249893.5 3859.8 227610.3 471.6

EBCOAseminnB−BSSJ 189178.9 184.5 58694.3 3803.8 66701.9 474.3

EBCOATANB 4589.9 448 4391.8 3907 3989.6 505

UMDA 107120.4 295.6 67303.3 3905.5 47244.7 400.3

MIMIC 97572.0 283.2 69385.9 3906 46941 422.3

EBNA 23336.0 448 19708.6 3906.3 28703.0 485.2

cGA 202000 395.2 202000 3628.1 202000 477.2

eGA 202000 388.8 202000 3793.7 202000 488.5

ssGA 202000 448 202000 3906.1 202000 488.5

are more similar between EBCOAs, EDAs and GAs, since
EBCOATANB , EBNA and ssGA obtained the best result
in all the 10 runs. Also note that most of EBCOAs require
fewer evaluations (e.g. fewer different solutions to be eval-
uated during the search) to reach these final results.

These results show that the tree augmented naive
Bayes approach performs very well in all these fitness
functions, even improving the results obtained in many
EDAs and GAs. Also, if we compare the behaviour of
EBCOAnBayes with that of UMDA, its EDA equivalent in
taking into account the dependencies between variables,
we see that the results are at least comparable. Finally,
regarding the seminaive and selective Bayes approaches,
after monitoring the evolution of the search we realized
that the choice of how to instantiate the variables that are
not present in the Bayesian classifier is the main reason for
these results, and further research is already in progress.

In the light of the results we can conclude that the
new paradigm EBCOA produced promising results in this
experiment, sometimes giving better and comparable re-
sults to GAs and EDAs. However, their potential is still
to be analysed, as there are still many different aspects
that need to be tested and could result in a considerable
improvement in the performance of these algorithms.

5. Conclusions and Further Work

This paper introduces for the first time a new paradigm,
Evolutionary Bayesian Classifier-based Optimization Al-
gorithms (EBCOAs), which combines both evolutionary
computation techniques and Bayesian classifiers in order

to solve optimization problems. The theoretical founda-
tions and the generic pseudocode have been introduced
for this new evolutionary computation paradigm. This pa-
per also illustrates the behaviour of these algorithms in
standard optimization problems in discrete domains such
as HIFF, IsoPeak and IsoTorus.

The first results obtained in these experiments show
that some of the choices (such as the instantiation of vari-
ables not present in the Bayesian classifier) have to be
revised and more techniques have to be tried. However,
the fact that some EBCOAs perform in these problems in
a similar way and even outperform in some cases EDAs
and GAs is a promising result to encourage further testing.
This experiment was performed with general objective
functions, and further testing should be done with more
complex problems and using EBCOAs that can take into
account higher-order dependencies between variables. We
reckon that the application of more complex EBCOAs
to these problems should turn out to improve the perfor-
mance of even EDAs and GAs.

Future research trends also include the study and ex-
perimentation of new Bayesian network classifiers that
are capable of taking into account more interdependen-
cies than the ones introduced here. An example of pos-
sible structures to apply are the generalization of struc-
tures from the EBNA approach in problems where the de-
pendencies between variables are high. Another future
research topic for EBCOAs also includes applying clas-
sification techniques for building statistical probabilistic
graphical models in continuous domains so that we can
compare their performance with continuous EDAs and
other evolutionary approaches in continuous domains.
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