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TRACKING CONTROL ALGORITHMS
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The tracking control problem of a strongly nonlinear MIMO system is presented. The system shares some features with a
helicopter, such as important interactions between the vertical and horizontal motions. The dedicated I/O board allows for
control, measurements and communication with a PC. The RTWT toolbox in the MATLAB environment is used to perform
real-time experiments. The control task is to track a predefined reference trajectory. A mathematical model of the system,
containing experimental characteristics, is used to design the controllers: a multidimensional PD, a suboptimal controller in
the sense of a quadratic performance index and a variable gain controller.
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1. Introduction

Among autonomous flying systems, helicopters have par-
ticularly interesting dynamic features. The main difficul-
ties in designing controllers for them follow from non-
linearities and couplings (Avila-Vilchiset al., 2003; Gor-
czycaet al., 1995; Horá̌cek, 2000). Another problem is
that the inputs are not directly applied torques or forces.
The aerodynamical torques and forces steering a heli-
copter are created by the main and tail rotors. Many
authors, both academic and industrial research workers,
have dealt with helicopter control problems and modelled
the system with the use of the blade element approach,
blade element momentum theory and general flow theory
(Avila-Vilchis et al., 2003; Luoet al., 2003; Murkherjee
and Chen, 1993; Padfield, 1996). Often, linearized mod-
els have been used for controller design (Dudgeonet al.,
1997, Luoet al., 2003).

The dynamics of the system considered are simpler
than those of a real helicopter, but they retain the most im-
portant helicopter features such as couplings and strong
nonlinearities. A 2-DOF model is considered and, un-
like in most of recent works, aerodynamical forces and
torques are introduced as experimentally measured char-
acteristics. The simulation and real-time experiments in
closed loop are performed and comparisons are presented.
The system in question is interesting because it makes it
possible to perform various experiments in the field of
modelling, identification and control theory.

Figure 1 shows a laboratory model of the Twin Rotor
Aerodynamical System (TRAS). At both ends of a beam,
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Fig. 1. Configuration of the TRAS.

joined to its base with an articulation, there are two pro-
pellers driven by DC motors. The articulated joint allows
the beam to rotate so that its ends move on spherical sur-
faces. A counter-weight fixed to the beam determines a
stable equilibrium position. The system is balanced in
such a way that when the motors are switched off, the
main rotor end of the beam is lowered and it stops at the
position−0.5319 [rad]. The rotors are positioned perpen-
dicularly to each other so that the movement in the vertical
plane and the movement in the horizontal plane are each
affected by the thrust of only one propeller. The controls
of the system are the supply voltages of the motors. The
measured signals are the two position angles that deter-
mine the position of the beam in space, and the angular
velocities of the rotors. The positions are measured using
incremental encoders, and the angular velocities of the ro-
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tors are measured by tachogenerators. The angular veloc-
ities of the beam are reconstructed by a simple differentia-
tion and a second-order filtering of the measured position
angles of the beam.

It should be noted that the system has no angular ve-
locity feedback carried out by an internal gyro control sys-
tem. This introduces an additional difficulty because it
brings the system near instability.

2. Mathematical Model

The mathematical model is developed under some simpli-
fying assumptions. First, it is assumed that the dynamics
of the propeller subsystem can be described by ordinary
differential equations. Further, it is assumed that friction
in the system suspension is of the viscous type. It is also
assumed that the propeller-air subsystem can be described
in accordance with the postulates of stream flow theory.
These assumptions (except for the friction assumption) are
widely applied in the literature (Avila-Vilchiset al., 2003;
Padfield, 1996). The mathematical model of the TRAS is
a set of six nonlinear ordinary differential equations, be-
ing the state equations, and six algebraic output equations.
The variables of the model are as follows:u is the control
input, x is the state, andy is the output,

u = [u1 u2]>, x = [x1 x2 x3 x4 x5 x6]>,

y = [y1 y2 y3 y4 y5 y6]>,

whereu1 is the control input for the tail rotor, (|u1| ≤ 1),
u2 is the control input for the main rotor (|u2| ≤ 1, x1 is
the angular velocity of the tail rotor [rad/s],x2 is the hor-
izontal angular momentum of the beam[kg ·m2 · rad/s],
x3 is the azimuth position of the beam [rad] (|x3| ≤ π),
x4 is the angular velocity of the main rotor [rad/s],x5 is
the pitch velocity of the beam [rad/s],x6 is the pitch an-
gle of the beam [rad] (|x6| ≤ π/4), y2 is the azimuth ve-
locity of the beam [rad/s]. The controls are dimensionless
signals taking values in the interval[−1,+1], which cor-
responds to the range[−30V,+30V] of the input voltage
controlling the DC motors. The position angles and the
corresponding angular velocities of the rotors are shown
in Fig. 2.

The state equations are as follows:

ẋ1 = u1 − fh(x1),

ẋ2 = (m1u2−m2x4+gh(x1)) cos x6−m3q(x2, x6),

ẋ3 = q(x2, x6),

ẋ4 = u2 − fv(x4),

ẋ5 = m4u1 −m5x1 + gv(x4)−m6x5 + r(x2, x6),

ẋ6 = x5.

(1)
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Fig. 2. Position angles and rotor velocities.

The output equations have the form

yi = xi, i = 1, 3, 4, 5, 6, y2 = q(x2, x6).

According to stream flow theory, the functionsfh(x1),
fv(x4), gh(x1) and gv(x4) depend, in a complex way,
on the angular velocitiesx1 and x4, and on the geome-
try of the rotor blades. Instead of directly using relations
following from that theory, aerodynamical thrusts and mo-
tion resistances were experimentally measured and the ob-
tained data were approximated by polynomials.

The functions fh(x1), fv(x4), gh(x1), gv(x4),
r(x2, x6) and q(x2, x6) are defined as follows:

fh(x1) = a1x1 + a2x
2
1 + a3x

3
1 + a5x

5
1,

fv(x4) = b1x4 + b2x
2
4 + b3x

3
4 + b4x

4
4 + b5x

5
4,

gh(x1) = c1x1 + c2x
2
1 + c3x

3
1 + c5x

5
1 + c7x

7
1, (2)

gv(x4) = d1x4+d2x
2
4+d3x

3
4+d4x

4
4 + d5x

5
4 + d8x

8
4,

r(x2, x6) = −e1q(x2, x6)2 sinx6 cos x6 − e2 cos x6

− e3 sinx6,

q(x2, x6) =
x2

k1 cos2 x6 + k2
.

The functionsfh(x1), fv(x4), gh(x1) and gv(x4)
represent the motion resistance and aerodynamical thrust
of rotors and were determined using an electronic scale.
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The functions fh(x1) and fv(x4) are inverses of the
functions which define the dependence of the angular ve-
locities of propellers on motor controls. These functions
describe the general effect of aerodynamical drag, viscous
friction of motor bearings, and the influence of the EMF
induced in motors. The functionsgh(x1) and gv(x4) de-
termine the moments of forces, caused by the thrust of the
tail and main rotors, as functions of the angular velocities
of the propellers.

The functionq(x2, x6) defines the variability of the
moment of inertia about the vertical axis. The function
r(x2, x6) describes the influence of the moments of forces

Table 1. Coefficient values.

i ai bi ci di ei ki mi

1 2.1681 0.5644 12.5466·104 0.12959 1.3609 0.0474 0.0042

2 −1.8304·103 3.8832·103 −3.9488·104 0.01592 2.7099 0.0079 0.0034

3 5.8401·103 2.7624·102 11.3489·105 0.02077 4.6047 0.0123

4 −6.1689·104 −1.1990·1011 0.0215

5 2.4107·106 2.1114·105 −3.1700·107 −1.6271·104 0.0265

6 0.0391

7 4.9421·1010

8 4.2985·106
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Fig. 3. Plots of the characteristicsfh(x1), q(x2, x6), gh(x1) and r(x2, x6).

depending on the pitch angle of the beamx6. It is a sum
of two moments: the one from the gravity forces of system
elements, and the one from the centrifugal force caused by
the rotational movement about a vertical axis. The forms
of the functionsr(x2, x6) and q(x2, x6) result from the
system geometry.

Figure 3 shows plots of the functionsfh(x1),
gh(x1), r(x2, x6) and q(x2, x6). For a further applica-
tion, the measured characteristics are replaced by their
polynomial approximations (2). The coefficient values are
given in Table 1.
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Figure 4 shows the Simulink model of the TRAS.
The model is used to design the controllers. To keep the
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Fig. 4. Simulink model of the TRAS.

beam in a horizontal position (zero pitch), the control-
ling of the main rotor is needed. It results in the appear-
ance of a torque, caused by cross-coupling, in the per-
pendicular axis. If we want to hold a fixed azimuth (as-
sumed to be equal to 0), the tail rotor control is needed.
The operating steady-state (pitch and azimuth equal to 0)
x0 = [−5.1718 0 0 4.371700]> is maintained by con-
stant controlu0 = [ −0.28 0.677 ]>. For this control
value the real TRAS is near the equilibrium state. In the
real helicopter the pilot tunes the initial thrust values after
the take-off (trimming). The statex0 is not an asymptot-
ically stable point, because in the linearized model one of
the eigenvalues related to the azimuth movement is equal
to 0. The state matrixA of the model linearized at the
point x0 has the form

A=



−2.2203 0 0 0 0 0
0.0084 −0.8909 0 0 −0.0108 0

0 0 0 0 0 1.0000
0 18.0702 0 0 0 0
0 0 0 0 −0.4491 0

−0.0120 0 −4.6047 0 0.1296 −0.0391


.

It has the eigenvaluesλ1,2 = −0.0196 ± 2.1458i, λ3 =
−0.8908, λ4 = 0, λ5 = −2.2203, and λ6 = −0.449.
Because of that, a conventional controller is applied to
keep the TRAS at the equilibrium point.

3. Control Task

The main control task is the stabilization of the system
(Gorczyca and Turnau, 1998; Witkowski, 1986), which
corresponds to maintaining the hover state of the real he-
licopter (Avila-Vilchiset al., 2003). An additional control
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Fig. 5. Reference trajectory.

problem for the TRAS setup is to make the beam move to
a specified azimuth tracking the reference trajectory pre-
sented in Fig. 5 during the manoeuver. The change in the
azimuth between the initial and target states isπ.

The desired azimuth is denoted byy3d, the desired
pitch by y6d, the desired angular velocities of the main
and tail rotors byy4d and y1d, respectively . The desired
pitch y6d and pitch velocity of the beamy5d are assumed
to equal0.

The control goal is to steer the system (1) from the
initial state x0 = [−5.1718 0 0 4.3717 0 0]> to
the target statexf = [−5.1718 0 π 4.3717 0 0]>

tracking the reference trajectoryyd.

3.1. PD Controller

A special structure of the controller is proposed for reduc-
ing interactions between the motions in both planes (see
Fig. 6). The system of equations describing the TRAS is
of the sixth order, but it can be naturally separated into
two sets of the third order representing the horizontal and
the vertical motion, respectively. Unfortunately, there is
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Fig. 6. Structure of the PD controller.
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an important interaction between the vertical and horizon-
tal motions. The goal of the system decoupling is to de-
sign a controller such that a change in the reference value
for the pitch will cause only a vertical movement of the
beam with no change in the azimuth (the beam position).
A similar effect on the other axis is expected when a de-
coupling controller is applied. In the approach described
in the sequel, the decoupling is not directly referred to, but
the structure of the proposed controllers allows overcom-
ing the complex results of interactions. For the stabiliza-
tion of the TRAS at the equilibrium state, four simple PD
controllers are applied.

The parameters of the PD controllers are determined
by minimizing the criterionS = 1

T

∫ T

0
(e2

3(t) + e2
6(t)) dt,

wheree3 = y3d−y3 is the azimuth error ande6 = y6d−
y6 is the pitch error, andT = 20 [s] is the time horizon.
The minimizing procedure uses the simulation model of
the system presented in Fig. 4. The obtained values of the
parameters arek1 = 8.89, d1 = 4.49, k2 = 0.5, d2 = 1,
k3 = 0.019, d3 = 0.0004, k4 = 0.0022, d4 = 0.002 (ki

stands for the coefficient of the proportional part,di is the
coefficient of the differential part of thei-th controller).

The RTWT toolbox (MathWorks, 2004) is applied
to perform real-time experiments and the RT-DAC4/PCI
board is used as the interface between a PC and the TRAS
setup. Figure 7 shows the Simulink model used to per-
form all real-time experiments described in this article.
The switches allow choosing a proper controller in the
experiment. The ADAPT block stands for the VGC (cf.
Section 3.3) and K*inv(C) is related to the LQ optimal
controller. The reference trajectory comes from the ‘look-
up-table’ blocks.

The time responses of the closed-loop system with
the PD controller are presented in Fig. 8. The quality
of tracking the desired azimuth of the beam is satisfac-
tory. The target position is reached with an error less than
1%. The control which keeps the beam motionless (for
t ≤ 5 [s] and for t ≥ 12 [s]) is negative. This is caused by
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Fig. 7. Structure of the tracking control system.
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Fig. 8. Time responses of the system with the PD controller.

the angular momentum of the main rotor. The pitch of the
beam oscillates with a small amplitude of 0.12 [rad] be-
cause in the vertical plane the system is of the oscillatory
type with a very small damping. In some experiments (not
presented here), significant sensitivity to disturbances was
observed.

3.2. Suboptimal Control in the Sense of a Quadratic
Performance Index

The problem is to find a control that minimizes the
quadratic performance index

S(u) =
1
2

∞∫
0

(∆yTQ∆y + ∆uTR∆u) dt, (3)

where ∆y = y − yf and ∆u = u − u0, on the tra-
jectories of the system (1) with the initial statex0, tar-
get statexf and yf = xf . Notice that the constant
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control u0 keeps the system at an arbitrary steady state
with the beam in a horizontal position. As the system (1)
is strongly nonlinear, the solution of the stated problem
is not straightforward. If we linearize the system (1) at
the point xf , we arrive at the classical LQ problem for
which the solution is known. The LQ optimal control has
the form u = −K(x − xf ) + u0, where the matrixK
is obtained from the solution of a Riccati equation. The
controller calculated in this way is suboptimal for (1) and
(3). We assume that the matricesQ and R are diag-
onal: Q = diag(0.1, 0.1, 100, 100, 0.1, 0.1) and
R = diag(3, 3). The diagonal elements of the matrices
Q and R are a certain compromise between the control
accuracy and cost, and assure that the controls are in the
admissible range[−1,+1]. It should be stressed that the
presented controller is optimal in the sense (3) for the lin-
ear model only.

The results of real-time experiments performed for
the closed-loop system with the LQ-controller obtained
for the matricesQ and R given above are shown in
Fig. 9. The target azimuth is reached with a steady-state
error equal to 1.97%.

3.3. Variable Gain Controller (VGC)

In this section the controller with a variable gain based
on the LQ idea is presented. The gain of the controller
varies along the trajectory. The design process is as fol-
lows: we split the time interval into subintervals of the
length ∆t each. We require that in each subinterval the
system go to a point̄yi

d all components which are as at the
point yd(i∆t) situated on the reference trajectory, except
the beam velocities which are assumed to be zero. This
means that the point̄yi

d is an equilibrum point of the sys-
tem. We linearize the system at the pointȳi

d and design
the LQ controller minimizing the performance index (3)
with ∆y = y−ȳi

d and∆u = u−u0. For the control time
equal to 15 [s] and∆t = 0.1 [s] we thus obtain a set of
matricesKi, i = 1, 2, . . . , 150. Each of these matrices
contains coefficients of the controller for the respectivei-
th subinterval. The controlu = −Ki(x − ȳi

d) + u0 is
valid only in thei-th subinterval. The described algorithm
is applied along the reference trajectory until the target
point yf is reached. The calculation of the matricesKi

is carried out off-line because the reference trajectory is
known prior to the real time experiment. To implement
the algorithm in real time, a special S-function was writ-
ten. This S-function selects the appropriate matrixKi for
each subinterval.

The experimental results obtained using the VGC are
presented in Fig. 10. These results are not much better
than those obtained with the suboptimal controller. The
steady-state error is equal to 1.94%. A comparison of the
controllers considered is given in Fig. 11. The suboptimal
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Fig. 9. Suboptimal control. The dashed line represents
the reference trajectory.

controller keeps the pitch position of the beamy6 a little
better than the VGC. The quality of tracking the variable
y3, i.e., the azimuth of the beam is almost identical for
both controllers. In both cases, the steady-state errors are
less than 2%. It should be noted that the design of the
variable gain controller requires much more calculations
than that of the suboptimal one.

4. Conclusions

The presented mathematical model is sufficiently accurate
to design controllers for tracking control tasks. In the case
of the PD controller, the quality of tracking the reference
trajectory was good, but significant sensitivity to distur-
bances was observed.

The suboptimal and variable gain controller were de-
signed using the LQ methods. It appears that a very simple
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Fig. 10. Variable gain control. The dashed line
represents the reference trajectory.

suboptimal controller, based on linearization at the target
point only, gives results no worse than the controller with
variable gain. It could be interesting to study a controller
based on the idea of neighbouring trajectories (Pauluk,
2002).

The polynomial approximations of the experimen-
tally measured aerodynamical forces and torques ensured
an adequate quality of the mathematical model without
using the functional relationships following from stream
flow theory.
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