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A new method of optimizing decision feedback parameters for intersymbol interference equalizers is described. The coef-
ficient existing in the decision feedback loop depends on risk qualification of the received decision. We prove that bit error
probability can be decreased with this method for any channel with a single interference sample and small Gaussian noise.
Experimental results are presented for selected channels. The dependences of optimal feedback parameters on channel
interference samples and noise power are presented, too.
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1. Introduction

The intersymbol interference equalization problem with
the use of decision feedback has been described in many
papers. It is a decision problem concerned with receiving
incoming data. This is done by taking the recognized bi-
nary data to the tapped-delay line of the transversal filter
and by using these data for incoming interference erasure,
as shown in Fig. 1. If the discrete transfer function of the
channel is

Y (z) = y−h + y1−hz−1 + · · · + y−1z
−(h−1)

+ y0z
−h + y1z

−(h+1) + · · · + ygz
−(h+g),

then the sample vk of the equalizer input at the time tk

is

vk = ak+hy−h + · · · + ak+1y−1 + aky0 + ak−1y1

+ · · · + ak−gyg + zk,

where ak+h, . . . , ak−g are amplitudes of pulses repre-
senting the data being transmitted and zk is the noise
sample. Using vk, we try to recover ak. The part of
vk which depends on data, except for those represented
by ak, is called the intersymbol interference and has to
be minimized. This problem is described in the books
(Benedetto et al., 1987; Clark, 1976; Dąbrowski, 1982;
Dąbrowski and Dymarski, 2004).

To use the decision-feedback equalizer, the chan-
nel must be preequalized so that y−h, y1−h, . . . , y−1 is
close to zero, and hence we can write vk = aky0 +

ak−1y1 + ak−2y2 + · · ·+ ak−gyg + zk. Data represented
by ak−1, ak−2, . . . , ak−g were received before ak, so at
the time tk they are recognized as data represented by
dk−1, dk−2, . . . , dk−g . Since the data symbol is recog-
nized, its interference with the incoming next datum be-
comes known and can be subtracted from the incoming
signal. The sample ek at the decision unit input is

ek = aky0 + (ak−1 − dk−1)y1 + (ak−2 − dk−2)y2

+ · · · + ak+g + (ak−g − dk−g)yg + zk.

The decision feedback equalizer works properly if
the decisions in its delay line are correct, i.e., when
ak−1 = dk−1, ak−2 = dk−2, . . . , ak−g = dk−g , which
means ek = aky0 + zk. In the case of a received data er-
ror, the wrong data are taken to the feedback and the cal-
culated incoming interference differs from the real one.
For binary data, the existing interference is rather dupli-
cated instead of being cancelled, so it increases the error
probability for ak. In this case no cancellation or partial
cancellation are proposed, by subtracting a smaller value
than the one calculated from the signal.

Partial cancellation is proposed only when the deci-
sion is risky, i.e., when the probability of the error is high.
We qualify the decision to be risky if the signal value ek

at the decision unit input is close to the decision level S∗,
i.e., if |ek −S∗| < β. If the probabilities of sending 0 and
1 are the same and the signal mean value is equal to zero,
the optimal decision level is S∗ = 0.

We assume that the transmission path is composed
of a partially equalized channel and a decision feedback
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Fig. 1. Decision feedback and the equalizer.
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Fig. 2. Assumed channel and the equalizer.

equalizer, as shown in Fig. 2. The discrete transfer func-
tion of the channel is Y (z) = y0 + y1z

−1 with the para-
meters |y0| > |y1|.

Decision feedback equalization with decision risk
analysis is described in (Bergmans et al., 1997; Chi-
ani, 1997; Hacioglu and Amca, 1999). Similar methods,
which do not include in equalization interference from
the received signal when the received data were riskily
detected, were proposed by Chiani (1997) and Hacioglu
(1999). These methods do not subtract the calculated in-
terference from the existing one if risky data have been
used in calculations. This reduces the error extension phe-
nomena described in (Altekar and Beaulieu, 1993; Choy
and Beaulieu, 1997; Hacioglu and Amca, 1999; Labat and
Laot, 2001). Chiani (1997) examined the dependence of
the bit error rate (BER) on the risk threshold β, searching
for the best values of β for chosen channels to obtain the
minimum BER.

If the decision dk is risky, the algorithm presented

in this paper multiplies interference calculated from dk

by the factor of α and then it subtracts the result from the
signal. In other words, if the value ek at the decision unit
input differs from the decision level S∗ = 0 by less than
β, i.e., |ek| < β, the incoming interference calculated
from dk is multiplied by α (where 0 < α < 1) and
the result is subtracted from the signal. In the case of an
error (dk �= ak), interference at the decision unit input is
multiplied by 1 + α, which is less than 2. The decision
feedback contains an extra delay line which remembers
risk qualifications of the decisions existing in a normal
delay line of the feedback.

In this paper we will prove that it is possible to de-
crease the BER by properly choosing the parameters α
and β. The optimal value of the risk level β as an ana-
lytic function of the factor α is given for channels with
a single interference sample. The dependences of opti-
mal α and β on the parameters y0, y1 and on the noise
power σ2 are presented graphically.
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2. Calculation of the Risk Level

Assume that the noise probability density function is even
and the probabilities of binary data values in the transmit-
ting sequences are equal to 0.5. Let the bit 0 be repre-
sented by a negative pulse (ak = −1) and the bit 1 be
represented by a positive pulse (ak = 1).

The first step is to find the dependence of bit error
probability on the parameters α and β for the system
shown in Fig. 2 with the discrete transfer function given
by

Y (z) = y0 + y1z
−1. (1)

The sample of the channel response to the input signal at
the time t = kT is equal to vk = aky0 + ak−1y1 + zk.

If the tap gain of the digital delay line is y1, the
value ek at the decision module input is (Grzybowski and
Kisilewicz, 1998):

ek = aky0 + (ak−1 − dk−1)y1 + zk (2)

for α = 1, or

ek = aky0 + (ak−1 − αdk−1)y1 + zk (3)

for 0 < α < 1.

In the case of α = 1 and when the decisions (re-
ceived data) are correct, (dk−1 = ak−1), (2) gives

ek = aky0 + zk =

{
y0 + zk if ak = 1,

−y0 + zk if ak = −1.
(4)

The sign of ek determines the decision dk . If ek > 0,
then dk = 1, otherwise dk = −1. If |ek| < β, i.e., if
ek is close to zero, the decision dk is assumed to be risky
and in the next time period the calculated interference is
compensated carefully, using (3) with a coefficient 0 <
α < 1.

Let fz(z) be the probability density function of the
noise z. We make the following assumptions:

• fz(z) is even, i.e., fz(−z) = fz(z),

• the probabilities of ak = 1 and ak = −1 are equal.

Therefore, we will obtain the probabilities of the error in
the decision dk (dk �= ak) in case the decision dk−1

was assumed risky (|ek−1| < β) or not (|ek−1| > β).

In further investigations, we assume that y0 and y1

are positive. This assumption does not limit the gener-
ality of our deliberations. For negative y0 and y1, the
appropriate signs preceding the variables y0 and y1 in
the following equations will reverse all other signs, giving
the same final result.

If the decision dk−1 was not risky (|ek−1| > β),
then the probability of a wrong decision dk is

pe1 =

−y0∫
−∞

fz(x) dx (5)

if dk−1 = ak−1, and

pe2 =
1
2

−y0−2y1∫
−∞

fz(x) dx +
1
2

−y0+2y1∫
−∞

fz(x) dx (6)

if dk−1 �= ak−1.

If the correct decision dk−1 = ak−1 was risky
(|ek−1| < β), then (3) gives

ek =

{
y0 ± (1 − α)y1 + zk if ak = 1,

−y0 ± (1 − α)y1 + zk if ak = −1,
(7)

and the probability of the binary error is

pe3 =
1
2

−y0−(1−α)y1∫
−∞

fz(x) dx +
1
2

−y0+(1−α)y1∫
−∞

fz(x) dx. (8)

If the decision dk−1 was false (dk−1 �= ak−1) and
risky (|ek−1| < β), then (3) gives

ek =

{
y0 ∓ (1 + α)y1 + zk if ak = 1,

−y0 ∓ (1 + α)y1 + zk if ak = −1,
(9)

and the probability of the binary error is

pe4 =
1
2

−y0−(1+α)y1∫
−∞

fz(x) dx +
1
2

−y0+(1+α)y1∫
−∞

fz(x) dx.

(10)
Suppose that the correct decision dk−2 was not

risky. Now we calculate the following probabilities:

(a) the probability of the correct and non-risky decision
dk−1:

q1 =

∞∫
−y0+β

fz(x) dx =

y0−β∫
−∞

fz(x) dx, (11)

(b) the probability of the false and non-risky decision
dk−1:

q2 =

−y0−β∫
−∞

fz(x) dx, (12)
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(c) the probability of the correct and risky decision
dk−1:

q3 =

−y0+β∫
−y0

fz(x) dx, (13)

(d) the probability of the false and risky decision dk−1:

q4 =

−y0∫
−y0−β

fz(x) dx. (14)

From (5), (6), (8), (10) and (11)–(14), we obtain the
probability of getting a false decision dk in the case of a
correct and non-risky decision dk−2:

Pe = q1pe1 + q2pe2 + q3pe3 + q4pe4. (15)

For the assumed value of the parameter α, the opti-
mal β satisfies

dPe

dβ
= 0. (16)

Since pe1, pe2, pe3 and pe4 are not dependent on β,
and the parameter β appears in (11)–(14) only in upper
or lower limits of integrals, we have

dPe

dβ
= (pe3−pe1)fz(−y0+β)+(pe4−pe2)fz(−y0−β),

(17)
when

pe3−pe1 =
1
2

⎡
⎢⎣

−y0+(1+α)y1∫
−y0

fz(x) dx −
−y0∫

−y0−(1−α)y1

fz(x) dx

⎤
⎥⎦,

pe4−pe2 =
1
2

⎡
⎢⎣

−y0−(1+α)y1∫
−y0−2y1

fz(x) dx −
−y0+2y1∫

−y0+(1+α)y1

fz(x) dx

⎤
⎥⎦.

Substituting the above expressions into (16), we ob-
tain

fz(−y0 + β)
fz(−y0 − β)

=

−y0+2y1∫
−y0+(1+α)y1

fz(x) dx −
−y0−(1+α)y1∫
−y0−2y1

fz(x) dx

−y0+(1−α)y1∫
−y0

fz(x) dx −
−y0∫

−y0−(1−α)y1

fz(x) dx

= C (α) . (18)

Assuming the white Gaussian noise N(0, σ), i.e.,

fz(x) =
1√

2π σ
e−

x2

2σ2 ,

we obtain

fz(−y0 + β)
fz(−y0 − β)

= e
(β+y0)2−(β−y0)2

2σ2 = e
2β y0

σ2

and, finally, the optimal β is given by

β =
σ2

2y0
ln C (α) . (19)

Lemma 1. If 0 < y1 < y0 and 0 < α < 1, then β given
by (19) minimizes the error probability Pe.

Proof. The minimization of Pe is implied by the positive-
ness of the second derivative d2Pe/dβ2. Following (16)
and (17) for the optimal β, i.e., for

(pe2 − pe4)fz(−y0 − β) = (pe3 − pe1)fz(−y0 + β),

we get

d2Pe

dβ2
= (pe2 − pe4)

2y0

σ3
√

2π
e−

(y0+β)2

2σ2 . (20)

The second derivative is positive if so is the differ-
ence pe2 − pe4. It is easy to prove that this difference
is positive for the white Gaussian noise N(0, σ) and for
0 < y1 < y0 and 0 < α < 1. From (17) we get

2 (pe2 − pe4) =

−y0+2y1∫
−y0+(1+α)y1

fz(x) dx −
−y0−(1+α)y1∫
−y0−2y1

fz(z) dz.

The ranges of changes in the variables x and z are
the same and equal to (1 + α)y1. But for 0 < y1 < y0

and 0 < α < 1, we have |x| ≤ y0 and |z| ≥ y0, and
therefore |x| ≤ |z|. Since fz(x) is a Gaussian function,
we obtain fz(x) ≥ fz(z). This gives the same inequality
for the foregoing integrals, so pe2 > pe4. This proves that
the second derivative (20) is positive and the minimum of
Pe exists for β which satisfies (19).

The proposed method of optimizing the decision
feedback can be useful for a large number of channels.
Next we will prove that is possible to decrease error prob-
ability by this method for the white Gaussian noise if the
noise power is sufficiently low.

Lemma 2. For any channel with the samples y0 and y1

satisfying 0 < y1 < y0, if the white Gaussian noise power
is less than some positive value, there exist β > 0 and
0 < α < 1 that minimize the bit error probability Pe.

Proof. From Lemma 1 we get the parameter β that min-
imizes the bit error probability Pe for fixed 0 < α < 1.
We will prove Lemma 2 if we prove that the threshold β
is positive (β > 0) for low noise (σ → 0). In this case
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we prove that the threshold β which minimizes Pe for
the low noise is physically realizable.

To get positive β from (19), C(α) has to be greater
than 1. From (18) we get

−y0∫
−y0−(1−α)y1

fz(x) dx +

−y0+2y1∫
−y0+(1+α)y1

fz(x) dx

>

−y0−(1+α)y1∫
−y0−2y1

fz(x) dx +

−y0+(1−α)y1∫
−y0

fz(x) dx, (21)

where

fz(x) =
1√
2πσ

e−
x2

2σ2 .

From 0 < α < 1 and 0 < y1 < y0 it is clear
that the three integrals in (21) have negative limits. For
such arguments the Gaussian function fz(x) is positive
and increasing. Therefore

−y0−(1+α)y1∫
−y0−2y1

fz(x) dx < Δxfz

( − y0 − (1 + α)y1

)
,

−y0+(1−α)y1∫
−y0

fz(x) dx < Δxfz

( − y0 + (1 − α)y1

)
,

−y0∫
−y0−(1−α)y1

fz(x) dx > Δxfz

( − y0 − (1 − α)y1

)
,

where Δx = (1 − α)y1.

The estimation of the fourth integral is dependent on
the absolute values of its limits. Therefore

−y0+2y1∫
−y0+(1+α)y1

fz(x) dx > Δxfz

( − y0 + (1 + α)y1

)
,

when | − y0 + (1 + α)y1| > | − y0 + 2y1|, i.e., when

0 < y1 <
2

3 + α
y0

or
−y0+2y1∫

−y0+(1+α)y1

fz(x) dx > Δxfz(−y0 + 2y1),

when | − y0 + (1 + α)y1| ≤ | − y0 + 2y1|, i.e., when
2

3+αy0 ≤ y1 < y0.

The inequality (21) will be true if the following in-
equalities are true:

fz

( − y0 − (1 − α)y1

)
+ fz

( − y0 + (1 + α)y1

)
> fz

( − y0 − (1 + α)y1

)
+ fz

( − y0 + (1 − α)y1

)
(22a)

for 0 < y1 < 2
3+αy0, and

fz

( − y0 − (1 − α)y1

)
+ fz(−y0 + 2y1)

> fz

( − y0 − (1 + α)y1

)
+ fz

( − y0 + (1 − α)y1

)
(22b)

for 2
3+αy0 ≤ y1 < y0.

Lemma 2 will be proved if we prove (22) for σ → 0
and for the Gaussian function fz(x). Replacing fz(x) by
N(0, σ) in (22), from (22a) we have that

1 + exp
(

2y1(αy1 − y0)
σ2

)

> exp
(−2(1 + α)y1y0

σ2

)
+ exp

(
2αy1(y1 − y0)

σ2

)
(23a)

and, from (22b),

1 + exp
(

y1[4(y1 − y0) − 2(1 − α)y0 − (1 − α)2y1]
2σ2

)

> exp
(

y1[4(y1 − y0) − 2(1 + α)y0 − (1 + α)2y1]
2σ2

)

+ exp
(

y1[4(y1 − y0) + 2(1 − α)y0 − (1 − α)2y1]
2σ2

)
.

(23b)

The left-hand sides of (23a) and (23b) are greater
than one. For 0 < y1 < y0 both exponents appearing
on the right-hand side of (23a) are negative and they tend
to −∞ as σ → 0. The right-hand side of the inequality
decreases to zero. So (22a) is true for small σ.

The first exponent on the right-hand side of (23b) is
negative. The second exponent is negative if y1 < 2

3+αy0,
and for α = 1, it is negative if y1 < y0. In any case,
it is possible to choose α to get a negative value of this
exponent. In this case (23b) is true. Accordingly, it is
possible to find α making (21) true for low noise.

It is easy to notice that Lemma 2 can be also gener-
alized for the negative values of y0 or y1.

Lemma 3. For any channel with the samples y0 and
y1 satisfying 0 < |y1| < |y0|, if the power of the white
Gaussian noise is less than some positive value, there ex-
ist β > 0 and 0 < α < 1 that minimize the bit error
probability Pe.
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Proof. Lemma 3 is nothing but Lemma 2 with the as-
sumption that |y1| < |y0| instead of 0 < y1 < y0.
Given bit error probability, (15) includes the probabili-
ties pe1, pe2, pe3 and pe4. They are expressed by the
integrals (5), (6), (8) and (10) with the positive values
0 < y1 < y0. If y1 < 0, the replacement of y1 by −y1

does not change these equations, but the new y1 will be
positive. For negative y0, the original equations (5), (6),
(8), (10) and (11)–(14) will use negative y 0 in place of
−y0 and hence the same limits of integration can be used.
The replacement of y0 by −y0, where the new y0 is pos-
itive, converts the above equations to the same formulas
which were used in (5), (6), (8) (10) and (11)–(14). Be-
cause the new positive quantities y1 and y0 satisfy the
assumption of Lemma 2 and the equation for Pe is not
changed, Lemma 3 is true.

Lemma 3 gives information as to when decision feed-
back optimization by decision risk qualification can de-
crease bit error probability. We proved that this method
can be used successfully for any channel (1) with |y1| <
|y0| if the noise power is sufficiently low.

The scale of decreasing the bit error probability Pe

using the best values α and β depends on the noise
power σ2, and on y0 and y1. This will be illustrated
with computational results for three selected channels.

3. Simulation Experiment

The aim of the experiment is to find out how much the
optimization of decision feedback can decrease bit error
probability and to find the optimal values of α and β as
functions of channel parameters.

The channel chosen in the experiment was described
by two pulse response samples, and therefore its transfer
function is given by (1). These samples are normalized for
their energy equal to one, so that y2

0 +y2
1 = 1. The sample

y1 is the interference sample and the sample y0 is the
main sample. If |y1| < |y0|, then |y1| =

√
1 − y2

0 , where
1/

√
2 < y0 ≤ 1. First, the value of y0 was increased by

some constant and then y1 was calculated.

For such channels, the assumed noise power σ2 and
the assumed values α (0 ≤ α < 1), the optimal risk
qualification threshold β was calculated to minimize the
bit error probability Pe. Optimal α∗ and β∗ were find
by changing α and calculating optimal β and Pe for α.
The main result of this experiment is to find optimal α∗

and β∗ as functions of the quotient y1/y0 and the noise
power σ2, α∗(y1/y0, σ) and β∗(y1/y0, σ).

4. Results and Conclusion

Three channels were chosen for experiments. The para-
meter α was increased from 0.1 to 0.9 for each channel.

For each α the optimal level β was calculated using (19)
and (20), and then the bit error rate Pe was obtained
from (15). For each channel the bit error rate P e0 was
calculated using (15) with the assumption that β = 0 and
α = 1. Bit error rate reduction in the effect of decision
feedback optimization is given by the quotient Pe/Pe0 .
These experiments were repeated for several values of the
noise power σ2. The resulting bit error rate reductions are
shown in Figs. 3–5 for three selected channels.

The minimum of this dependence represents the best
reduction and gives the optimal point (α∗, β∗). The min-
imum Pe is reached at this point. These approximate
points (α∗, β∗) are shown as crosses, triangles, squares
or circles.
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Fig. 3. BER reduction for the channel with
y0 = 0, 757, y1 = 0, 653.
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Optimal α∗ depends on the noise power only to
some extent, as seen in Figs. 3–5. The results for par-
ticular channels are as follows:
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Fig. 5. BER reduction for the channel with

y0 = 0, 857, y1 = 0, 515.

• For Channel 1 (y0 = 0.757, y1 = 0.653) we obtain
0.20 ≤ α∗ ≤ 0.25,

• For Channel 2 (y0 = 0.907, y1 = 0.421) we obtain
0.25 ≤ α∗ ≤ 0.30,

• For Channel 3 (y0 = 0.857, y1 = 0.515) we obtain
0.25 ≤ α∗ ≤ 0.30.

The functions α∗(σ) and β∗(σ) are shown in
Figs. 6 and 7 for all three channels. The optimal α∗ and
β∗ depend on the channel and increase if σ 2 increases for
small σ. The functions α∗(y1/y0) and β∗(y1/y0) are
shown in Figs. 8–9 for some σ. Usually, optimal α∗ and
β∗ are smaller for larger interference. These diagrams can
be helpful in the optimization of decision feedback given
a channel with known noise.
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5. Summary

The presence of errors in decision feedback of an equal-
izer involves a high probability of new errors. This is
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Fig. 7. Dependence of the parameter β∗ on σ.
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Fig. 9. Optimal values of the parameter β.

called the error extension. The reduction of error exten-
sion is still an open problem. The method presented in
this paper allows us to reduce error extension for some
kind of channels. It was proved in an analytical way that
the presented method has an optimal solution. It was
also proved for channels with discrete transfer functions
Y (z) = y0 + y1z

−1, i.e., with one interference sam-
ple y1 (|y1| < |y0|) and with the white Gaussian noise,
that the optimization of decision feedback using the risk
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threshold β and the erasure factor α decreases the bit er-
ror rate if the noise power is suitably low. Under these
assumptions, the optimal values for α and β were found
numerically. The results are presented in Figs. 8 and 9.

BER reduction depends on channel parameters and
the signal-to-noise ratio. The proposed optimization of
decision feedback decreases the bit error rate by 1% to
19% depending on the channel (y1/y0) and the noise
power. For lower noise (a higher signal-to-noise ratio),
the bit error rate decreases more than for higher noise. In
the presented experiments, the BER decreases from 3.6%
to 19.0% for σ = 0.2 (SNR = 5), and from 1.6% to
8.5% for σ = 0.3 (SNR = 3.3).

The presented theoretical deliberations were per-
formed for the optimization of the second decision fol-
lowing error absence in decision feedback of the equalizer.
They have to be generalized for any decision assuming the
Markov chain model for this decision process.

Another problem that has to be solved is the imple-
mentation or extension of the presented results for chan-
nels with more than one interference sample, i.e., for
longer decision feedback. We can test BER reduction for
separate optimization of each tap of the feedback using
more than one decision, as in Fig. 1. Next we can test
simultaneous optimization of all parameters of feedback
with many taps.
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