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The paper concerns the concept of refinement as a commonly used design practice in the software development process.
The refinement relationship is formulated and formally expressed for UML collaborations. Collaborations are suitable for
presenting the proposed approach as they represent both static and dynamic aspects of a modeled system or its part, for
example, a use case. Our approach to refinement is based on the rule of preserving the observable behavior of a modeled
system. The introduced notion of sub-collaborations allows us to refine collaboration diagrams in a systematic way.
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1. Introduction

Refinement is a classic technique used in software design
that may also be applied to the elaboration of successive
models in the software development process based on the
object-oriented paradigm. Nowadays, the UML is a mod-
eling language widely used in object-oriented software de-
velopment (Fowler and Scott, 2000). The refinement re-
lationship is introduced in the UML as a standard stereo-
type “refine” of the abstraction relationship. The glossary
of terms in both UML 1.x and UML 2.0 describes refine-
ment as (OMG, 2003):

A relationship between model elements at different
semantic levels, such as analysis and design. The
mapping specifies the relationship between the two
elements or sets of elements. The mapping may or
may not be computable, and it may be unidirectional
or bidirectional. Refinement can be used to model
transformations from analysis to design and other
such changes.

In the book (Rumbaugh et al., 2004), we have an addi-
tional explanation:

A relationship that represents a fuller specification of
something that has already been specified at a cer-
tain level of detail or at a different semantic level. A
refinement is a historical or computable connection
between two elements with a mapping (not necessar-
ily complete) between them. Often, the two elements
are in different models. For example, a design class
may be a refinement of an analysis class; it has the
same logical attributes, but their classes may come

from a specific class library. An element can refine
an element in the same model, however. For example,
an optimized version of a class is a refinement of the
simple but inefficient version of the class. The refine-
ment relationship may contain a description of the
mapping, which may be written in a formal language
(such as OCL or a programming or logic language).
Or it may be informal text (which, obviously, pre-
cludes any automatic computation but may be useful
in early stages of development). Refinement may be
used to model stepwise development, optimization,
transformation, and framework elaboration. Refine-
ment is a kind of abstraction dependency. It relates a
client (the element that is more developed) to a sup-
plier (the element that is the base for the refinement).

The explanation points that refinement is a kind of
abstraction dependency but, unfortunately, the abstraction
relationship is also informally defined (OMG, 2003):

An abstraction is a dependency relationship that re-
lates two elements or sets of elements that represent
the same concept at different levels of abstraction or
from different viewpoints.

The definitions allow many interpretations but do not
give methodological hints or suggestions how to refine
one model into another or how to check that one model
is a refinement of another. The paper is a contribution
towards the formalization of the notion of the refinement
relationship.

Refinement is a notion extensively applied to the
software development process. Manassis (2004) de-
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fines software engineering as “refinement of knowledge
through successive abstraction levels of representation”,
and “traceability of each and every item of information be-
tween abstraction levels”. The refinement relation is one
of the forms of representing changes within the system un-
der development, and it involves progressive focusing on
the details of the problem being solved. The developing of
a system using refinement starts with a set of fundamental
concepts, and advances towards a more concrete imple-
mentation in a stepwise fashion. The subsequent models
are decomposed into ones that are more concrete.

Modern methodologies, e.g., MDA (Hubert, 2001),
USDP (Jacobson et al., 1999), RUP (Krutchen, 1999)
present the software development as a process of model
refinement. Therefore, there is a need to formally define
this notion. Our aim was to define the refinement based
on the UML semantics.

As the UML offers a great number of modeling ele-
ments, we had to restrict our consideration to a possible
small set of modeling elements that can be used to build
reasonable models. Therefore, we have decided to choose
collaborations as a subject of our consideration as they en-
able us to represent both static and dynamic aspects of a
modeled system.

The collaboration diagrams presented in this paper
purposefully exclude n-ary connectors (for n > 2) as
well as interfaces, since their absence would not affect
the validity of the proposed definition of refinement, while
causing an unnecessary expansion of the formal definition
(irrelevant from the point of view of the issue at hand).

Collaborations are used to describe the realization of
services represented by use cases or operations. A service
is perceived as set of interactions, i.e., a partially ordered
set of communications between service users and service
providers. So, a refinement of a collaboration should pro-
vide a more detailed description of the interactions in the
context of the collaboration structure.

The paper presents a formal approach to defining re-
finement, enabling its unambiguous interpretation. We
have decided to use the set theory language for the for-
mal description of models as it seems to be the most suit-
able in the context of the UML. In the UML, the metaclass
Model is a specialization of the metaclass Package, which
gathers different kinds of model elements (OMG, 2003).

The model construct is defined as a package. It con-
tains a (hierarchical) set of elements that together de-
scribe the physical system being modeled. A model
may also contain a set of elements that represents
the environment of the system, typically Actors, to-
gether with their interrelationships, such as associa-
tions and dependencies.

Moreover, UML case tools represent a model as a set of
system elements.

The refinement may be considered as:

• an enrichment of the descriptions of the existing en-
tities (i.e., new properties) at a given semantic level,
or

• developing structures and behavior through the in-
troduction of new, interconnected entities as refine-
ments of the existing ones (transformation between
different semantic levels).

In the paper we omit the enrichment of the descrip-
tions of the existing entities since it was a subject of other
works, e.g., (Hnatkowska et al., 2003; Liu et al., 2004a),
concentrating on the structure and behavior developing.

The notion of the semantic level was defined in
(Hnatkowska et. al., 2004c) and is expressed in terms of
classifiers and relationships between them.

The paper is organized as follows: Section 2 reminds
us very briefly what UML collaborations are. Section 3
gives the definition of collaboration diagrams, while Sec-
tion 4 provides the definition of communication diagrams.
Sections 5 and 6 formally define the refinement of col-
laboration and communication diagrams, respectively. A
simple example illustrating our approach to refinement is
given in Section 7. Finally, in Section 8, we present our
conclusions.

2. UML Collaborations

A collaboration is a modeling element that is used to ex-
plain how a system works. Generally, it describes a collec-
tion of assembled objects that interact to implement some
behavior within a context. Usually, in a software devel-
opment process, a collaboration is used to describe how a
use case or operation are realized.

The collaboration is a specific kind of classifier
(more precisely, a structured classifier), which is not di-
rectly instantiable as its elements are a view (or a projec-
tion) of instances of a context – either already defined clas-
sifiers or just anticipated classifiers. Apart from collabo-
ration instances, we talk about collaboration occurrences
that are a particular use of a collaboration to explain the
temporal contextual relationships between the parts of a
classifier or the properties of an operation. The collabora-
tion is a selective view of a situation (a snapshot) of a set
of cooperating classifiers.

The description of a collaboration in UML 2.0 is ex-
pressed in terms of roles and connectors participating in
performing a specific task. The notion of the connector
replaces the notion of an association role in UML 1.x.

A role is a named set of features defined over a col-
lection of entities participating in a particular context. In
practice, the role is defined as a view of a class through
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its selected operation. This means that such a role is a
subset of the properties of the class which is related to the
selected operation. The roles are filled by objects at run
time.

A connector specifies a link that permits communi-
cation between two or more instances. Links specified
by connectors represent communications paths among the
parts of a collaboration. The connector may be a projec-
tion of an already defined association, or it may represent
the possibility of objects being able to communicate be-
cause the objects obtain information about their identities
in an implicit way.

Both roles and connectors are classifiers. Let us re-
call that a classifier specifies a universe of its instances.
Further, we will use the notion Univ(C) meaning the uni-
verse of instances of the classifier C. The definition of
the universe is a counterpart of an extensionally defined
set. An instance c of the classifier C will be denoted by
c : C.

The collaboration itself is only a description of a tem-
poral structure of a behavior provider. Its structure may be
a base for a definition of behavior – interactions that occur
during a use case or an operation realization.

An interaction is a specification of how messages are
sent between the elements of a collaboration to perform
a specific task. The message is a one-way communica-
tion between two objects, a flow of control with convey-
ing values from a sender to a receiver. The message can
be a signal (an explicit, named, asynchronous inter-object
communication) or a call (a synchronous or an asynchro-
nous invocation of an operation with a mechanism to re-
turn later control to the sender of the synchronous call).

An instance of an interaction corresponds to an in-
stance of its context, with objects bound to roles exchang-
ing message instances across links bound to connectors.
So, the collaboration may have attached a set of behavior
that apply to a set of objects bound to a single instance of
the context.

Collaborations are represented by collaboration di-
agrams while interactions may be represented by com-
munication diagrams, sequence diagrams or interaction
overview diagrams. Sequence diagrams and communi-
cation diagrams express similar information, but show it
in different ways. In the sequel, we consider a collabora-
tion represented by a collaboration diagram and a set of
attached communication diagrams.

The communication diagram shows interactions or-
ganized around the roles of a collaboration. It is a col-
laboration instance together with messages that forms an
interaction. The sequencing of messages is given through
a sequence numbering scheme.

The UML formalizes the syntax for collaborations
and interactions. Their semantics is defined informally

in a natural language. A collaboration diagram CollD
with a related commucation diagram CommD represent a
structural and behavioral aspect of a model of a modeled
system. By Coll = 〈CollD, CommD〉 we will denote
the integration of both diagrams, called the collaboration
model. For the sake of simplicity, we assume that only
one interaction represented by a communication diagram
is attached to the collaboration diagram.

3. Collaboration Diagrams

We assume that roles are a projection of classes, and we
denote by C a finite set of role names. To simplify the
presentation, we assume that operations owned by roles
have fully specified signatures, and they have public vis-
ibility. Let O be a set of operations of roles. Each role
C ∈ C is given a set of operations LC(C) ⊆ O that
may be called by other roles. If C ∈ C, then op : C
means that op is an operation of the role C.

Operations may be invoked in synchronous or
asynchronous modes while signals only asynchronously.
Therefore, we may omit signals without any loss of gen-
erality.

We denote by A a finite set of connectors. Each
connector A ∈ A connects a set of roles LA(A) ⊆ C.
If A ∈ A, then C ∈ LA(A) means: C is the role at an
end of the connector A. Further, we assume that binary
connectors appear only as a communication in the UML,
except signal broadcasting, occurs between two objects.

The collaboration diagram CollD, representing a
structural aspect of a collaboration model, is defined as
the quintuple

CollD = 〈C, O, LC, A, LA〉.

For a collaboration diagram CollD we de-
fine its collaboration sub-diagram CollD ′ =
〈C ′, O′, LC ′, A′, LA′〉, which is denoted by
CollD′ ⊆ CollD, as the collaboration diagram for
which the following holds:

(i) C ′ ⊆ C,

(ii) O′ ⊆ O,

(iii) LC ′ = LC|C′ ,

(iv) A′ ⊆ A,

(v) LA′ = LA|A′ ,

where LC|C′ means a restriction of the function LC to
its sub-domain C ′ ⊆ C. The set defined as follows:

relA(CollD′) = {A ∈ A\A′ | LA(A) ∩ C ′ �= ∅}
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Fig. 1. Set of connectors relevant to the collaboration sub-
diagram CollD′ in the collaboration CollD.

will be called the set of connectors relevant to the collab-
oration sub-diagram CollD ′ in the collaboration diagram
CollD, see Fig. 1.

Let C ∈ C be an arbitrary selected role in the col-
laboration diagram CollD. Now, we define a minimal col-
laboration sub-diagram

CollDC = 〈CC , OC , LCC , AC , LAC〉

of the diagram CollD = 〈C, O, LC, A, LA〉 with re-
spect to the role C.

CollDC is the collaboration sub-diagram satisfying the
following conditions:

(i) CC = {C′ ∈ C | ∃A ∈ A • LA(A) = {C, C′}} ∪
{C},

(ii) OC =
⋃

C′∈CC
LC(C′),

(iii) LCC = LC|OC ,

(iv) AC = A′ ∈ A | C ∈ LA(A′),

(v) LAC = LA|AC .

Now, we define an instance of a collaboration diagram
CollD as the pair

Inst CollD = 〈Ins C, InsA〉,

where Ins C is a set of instances of the roles C, and InsA
is a set of instances of the connectors A, if the following
conditions are satisfied:

(i) Ins C ⊆ ⋃

C∈C

Univ(C),

(ii) InsA ⊆ ⋃

A∈A

Univ(A),

(iii) if a ∈ InsA then LA(a) ⊆ Ins C,

where LA(a) means a set of role instances at the ends
of the link a. Let o : C mean that o is an instance of
the role C, and a : A mean that a is a link specified
by the connector A. The function LA corresponds to the
function LA as follows: if a : A and c : C ∈ LA(a),
then C ∈ LA(A). In a similar way, the function LC
corresponds to the function LC as follows: if c : C,
then LC(c) = LC(C).

In the same way as for a collaboration diagram, we
introduce an instance collaboration sub-diagram for an in-
stance diagram.

Let InstCollD = 〈Ins C, InsA〉 be the in-
stance collaboration diagram. The pair InstCollD ′ =
〈Ins C ′, InsA′〉, where Ins C ′ ⊆ Ins C and InsA′ ⊆
InsA, is called an instance collaboration sub-diagram,
which is denoted by InstCollD ′ ⊆ InstCollD, if it is an
instance collaboration diagram. So, the set of links rele-
vant to the instance collaboration sub-diagram is defined
as follows:

relA(InsCollD′)

= {a ∈ InsA\InsA′ | LA(a) ∩ Ins C ′ �= �}.

A minimal instance collaboration sub-diagram
InstCollDc = 〈Ins CC , InsAc〉 with respect to the in-
stance c is defined as follows:

(i) Ins Cc ={c′∈ Ins C | ∃a∈ InsA • LA(a)={c, c′}}∪
{c},

(ii) InsAc = {a′ ∈ InsA | c ∈ LA(a′)}.

4. Communication Diagrams

A communication diagram is an instance of the collabora-
tion diagram with links labeled by a set of messages which
are partially ordered. We define a communication diagram
CommD as the triple

CommD = 〈InsCollD, Comm, succ〉,

where InstCollD = 〈Ins C, InsA〉, Comm is a set of com-
munications, and succ ⊆ Comm2 is a successor relation
among communications. Instances of roles communicate
to each other transmitting messages, see Fig. 2.

A message is the transmission of a signal from one
instance to one or more carried out instances, or it is a
call of an operation on one instance by another instance.
In what follows, we assume that only operation calls are
considered.

A communication com ∈ Comm is the triple

com = 〈s : S, r : R, op : LC(R)〉,
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c1 : C1 c2 : C2

c3 : C3 c4 : C4

2. m2
3. m3

1. m1

 
Fig. 2. Communication diagram.

where s : S, S ∈ C, is an instance sending the message
op being a call of an operation of a receiving instance r :
R. By definition,

com.send = s : S, com.rec = r : R,

and
com.call = op : LC(R).

The relation succ ⊆ Comm2 is a causality relation among
the set of communications Comm. It is defined as follows:
if com1succ com2, then the message com1.call is a direct
predecessor of the message com2.call (or the message
com2.call is a direct successor of the message com1.call).
The interpretation of the relation means that a given mes-
sage is sent only if all its direct predecessor messages have
been sent.

The relation succ satisfies the following feasibility
condition:

if com1 succ com2 then com1.rec = com2.send,

i.e., the sender of the message com2.send is the receiver
of the message com1.call.

We denote by succ∗ the transitive closure of the re-
lation succ. It is easy to check that succ∗ is a relation of
partial ordering. Therefore, we define the set of minimal
elements for the relation, denoted by succ∗

min, as follows:

succ∗min

= {com ∈ Comm | ¬∃com′ ∈ Comm•com′succ∗com}.

Let us define the function LM : InsA → 2M (where
M is a set of messages), which assigns a set of communi-
cates to a given link:

LM(l) = {com | com.send ∈ LA(l)∨com.rec ∈ LA(l)}.

For a communication diagram CommD we define
its communication sub-diagram CommD ′, denoted by
CommD′ ⊆ CommD, as a communication diagram for
which the following holds:

(i) Ins C ′ ⊆ Ins C,

(ii) InsA′ ⊆ InsA,

(iii) Comm′ ⊆ Comm,

(iv) succ′ = succ|Comm′×Comm′ .

A communication sub-diagram of the communication di-
agram CommD is called a minimal communication sub-
diagram with respect to an instance c of the role C, de-
noted by CommDc = 〈Ins Cc, InsAc, Commc, succc〉, if
the following holds:

(i) Ins Cc ={c′ ∈ InsC | ∃l∈ InsA • LA(l)={c, c′}}∪
{c},

(ii) InsAc = {a ∈ InsA | c ∈ LA(a)},

(iii) Commc =
⋃

a∈InsAc
LM(a),

(iv) succc = succ|Commc×Commc .

We may say that a communication sub-diagram of a given
communication diagram is generated by a selected subset
of instances. In this sense a minimal communication sub-
diagram with respect to an instance c is a communication
sub-diagram generated by this instance.

5. Refinement of Collaboration Diagrams

A refinement of a collaboration diagram CollD1 into a
new one CollD2 is concerned with a transition from an
abstract to a more detailed semantic level. A more detailed
semantic level reveals new roles and connectors. The
idea behind our approach to refinement results from the
assumption that a given level of abstraction is expressed
mainly in terms of selected classifiers (Hnatkowska et al.,
2004c). In the presented approach, similarly as is done
in (Harel and Politi, 1998), we have chosen roles as the
basic classifiers. Connectors between roles are taken as a
consequence of role selection. In this sense connectors, as
compared to roles, play a secondary role. So, the refine-
ment of a collaboration means a refinement of the set of
its roles.

We follow a systematic approach based on the selec-
tion of a collaboration sub-diagram CollD ′ ⊆ CollD1,
and replacing it by another more detailed collaboration
sub-diagram CollD′′. As a result of this replacement,
we obtain a new collaboration diagram CollD2. The sub-
diagrams CollD′ and CollD′′ should be consistent. Be-
low, we define consistency conditions for the replacement
of the minimal collaboration sub-diagram with respect to
a selected role C in the collaboration diagram CollD1.

Let

CollDC = 〈CC , OC , LCC , AC , LAC〉
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be the replaced collaboration sub-diagram, and

CollD′
C = 〈C ′

C , O′
C , LC ′

C , A′
C , LA′

C〉

be the replacing collaboration sub-diagram.

The following conditions must hold:

(a) CC\C ⊆ C ′
C ,

(b)
⋃

C′∈CC
LCC(C′) ⊆ ⋃

C′∈C′
C

LC ′
C(C′),

(c) ∀C ′ ∈ C ′
C\CC•∃A ∈ A′

C•LA′
C(A) = {C′, C′′}∧

C′ �= C′′,

(d) ∀A ∈ AC • ∃A′ ∈ A′
C • ∃C′ ∈ C′

C\CC • ∃C′′ ∈
CC\{C} • LA′

C(A) = {C′, C′′}.

The conditions define the structural consistency between
two collaboration diagrams. The first condition means
that the selected role C is replaced by a set of new roles,
and the remaining roles of CollDC , i.e., the set CC\C
must be preserved. For example, in Fig. 3, the role C2
is replaced by the set of roles C5, C6, and the remaining
roles are preserved. The newly introduced roles should
perform all operations performed by the selected role C
(condition (b)). The newly introduced roles may not stand
alone, they should be directly or indirectly connected to
the preserved roles (condition (c)) – in Fig. 3 role C6 is
connected to the roles C1 and C3. Each connector in
CollDC is replaced by at least one connector in CollD ′

C

which has a connection to the preserved roles (condition
(d)). For example, the association a1 is mapped to a1 ′

and the association a2 is mapped to a2′.

 

C1

C2

C3

C4

a1

a2

a3

C4

C1

C5

C6

C3

a3

a4

a1'

a2'

Fig. 3. Structural refinement of collaboration diagrams.

So, finally, the newly developed collaboration dia-
gram CollD2 = 〈C2, O2, LC2, A2, LA2〉 may be de-
fined as

(i) C2 = C1\C ∪ CC′ ,

(ii) A2 = A1\AC ∪ AC′ .

Observe that AC ∩ AC′ = relA(CollDC′):

(iii) O2 = O1 ∪ OC′ ,

(iv) LC2 = LC1|C\{C} ∪ LCC′ ,

(v) LA2 = LA1|relA(CollDC) ∪ LAC′ .

Now, we define the refinement of an instance collab-
oration diagram. We say that an instance collabora-
tion diagram InsCollD2 is the refinement of an in-
stance collaboration diagram InsCollD1 if InstCollD2

and InstCollD1 are instances of collaboration diagrams
CollD2 and CollD1, respectively, provided that CollD2

is a refinement of CollD1.

6. Refinement of Communication Diagrams

The refinement of a communication diagram CommD1 =
〈InsCollD1, Comm1, succ1〉 into a communication dia-
gram CommD2 = 〈InsCollD2, Comm2, succ2〉 consists
of two transformations:

• refinement of the instance collaboration diagram
InsCollD1 into the instance collaboration diagram
InsCollD2,

• refinement of the set of communication Comm1 par-
tially ordered by the relation succ1∗ into the set of
communication Comm2 partially ordered by the re-
lation succ∗2.

The first transformation has already been defined, the
second transformation is defined as follows.

Let InsCollD1 be an instance collaboration diagram
refined to an instance collaboration diagram InsCollD2.
Further, let InsCollDc be a minimal instance collab-
oration sub-diagram with respect to an instance c in
InsCollD1, which is refined by an instance collaboration
sub-diagram InsCollD′

c in InsCollD2.

For each com ∈ Commc there is exactly one com′ ∈
Comm′

c such that:

(a) if com.send = c, then com′.rec = com.rec and
com.call = com′.call,

(b) if com.rec = c, then com′.send = com.send and
com.call = com′.call.

It is easy to note that each communication com ∈ Commc

considered above labels a link relevant to InsCollDc.

By map(com) ∈ Comm′
c we denote communication

that corresponds in that way to com ∈ Commc, and

map(Commc) = {com′ ∈ Comm′
c | ∃com

∈ Commc • map(com) = com′}.

We impose the following requirements:

(c) if com1 �= com2, then map(com1) �= map(com2),
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(d) ∀com1, com2 ∈ Commc • com1 succ∗c com2 ⇒
map(com1) succ

′ ∗
c map(com2),

(e) ∀com′ ∈ Comm′
c\map(Commc) • ∃com ∈ Commc •

(com′ succ
′∗
c map(com) ∨ map(com) succ

′ ∗
c com′).

The conditions (a), (b) and (c) define a one-to-one
mapping between the set Commc and a subset of Comm′

c.
The condition (d) requires that the ordering among com-
munications Commc be preserved by communications
being their images in the set Comm′

c. The condition (e)
says that each communication in Comm′

c which is not
a mapping of a communication from Commc is caused
by a communication that corresponds to a communication
from Commc, or it causes an issue of a communication
that corresponds to a communication from Comm c. The
last condition may be more precise:

com′ succ
′∗
c map(com)

holds provided that com.send �= c,

and map(com) succ
′ ∗
c com′

holds provided that com.send = c.

Finally, as a result of the refinement of the new com-
munication diagram,

CommD2 = 〈InsCollD2, Comm2, succ2〉,
where

(i) InsCollD2 is a refinement of the instance collabora-
tion diagram InsCollD1, and

(ii) Comm2 = Comm1\Commc ∪ Comm′
c,

(iii) succ2 = succ1|(Comm1\Commc)2 ∪ succ
′
c.

7. Example

Now, we illustrate the process of refinement for the col-
laboration diagram presented in Fig. 4(a). There are two
classes (roles) in the diagram: Actor and System. The
communication diagram being an instance of the collabo-
ration diagram is presented in Fig. 4(b). Communication
consists of two messages involving prepare, and print op-
erations, sending by the Actor to the System. The opera-
tion prepare precedes the operation print.

The class System is used to point out the minimal
sub-collaboration. This class is split into two classes:
ReportController, and Report, see Fig. 5(a). The new
classes are associated with the class Actor, and they are
also associated with each other. Communication between
the classes is extended with a new message with the oper-
ation create, which is sent from the class ReportController
to the class Report, see Fig. 5(b). This new message pre-
cedes the message involving the print operation.

Actor 

System 

prepare() 
print() 

(a)

:System  

 : Actor 

1. prepare 

2. print 

(b)

Fig. 4. Examplary collaboration diagram (a) and an
examplary communication diagram (b).

ReportController 

prepare() 

Actor 
Report 

print() 
create() 

 
(a)

 : Actor 

 : ReportController 

 : Report 

1. prepare 

2. print 
1.1. create 

(b)

Fig. 5. Collaboration diagram after refinement – the
first step (a), and a communication diagram
after refinement – the first step (b).

All conditions defined in Section 5 for the structural
refinement of collaboration diagrams are fulfilled:

(a) CC\{C} ⊆ CC′ – the class System is replaced by
two classes: ReportController, and Report; the rest
(i.e., the class Actor) is preserved,

(b)
⋃

C′∈CC
LCC(C′) ⊆ ⋃

C′∈C′
C

LC ′
C(C′) – the op-

erations performed by the class System (i.e., prepare,
and print) are now performed by the newly intro-
duced classes,
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(c) ∀C ′ ∈ C ′
C\CC • ∃A ∈ A′

C • LA′
C(A) =

{C′, C′′} ∧ C′ �= C′′ – the newly introduced
classes are associated with the preserved ones, i.e.,
the Report, and ReportController classes are associ-
ated with the class Actor,

(d) ∀A ∈ AC • ∃A′ ∈ A′
C • ∃C′ ∈ C ′

C\CC • ∃C′′ ∈
CC\{C} • LA′

C(A) = {C′, C′′} – the only con-
nector from the collaboration diagram from Fig. 4(a)
is replaced by two connectors in Fig. 5(a), which
has a connection to the preserved classes, i.e., the
connector between the classes Actor and Report,
and the connector between the classes Actor and
ReportController.

In the next step, we decide to split the
ReportController class into the ReportController and
Item classes. The communication diagram is extended
with a sequence of messages sent to objects of the class
Item, see Fig. 6.

 

  

 : Actor   

 : ReportController   

 : Report   

 : Item   
1. prepare   * [I=1..n] 1.i. getData   

1.n+1. create   
2. print   

 

Fig. 6. Example of the communication diagram
after refinement – the second step.

Let ReportController be the instance to construct a
minimal instance collaboration sub-diagram. The com-
munications that should be considered are:

com1 = 〈:Actor, :ReportController, prepare〉,
com2 = 〈:ReportController, :Report, create〉,

and com1succ com2.

Now, we can check if all the conditions defined in
Section 6 for behavioral refinement are fulfilled:

(a)–(b) These conditions define a one-to-one mapping
between the set of communications from the original
one and refined communication diagrams. For exam-
ple, for the communication com1, which is received
by the ReportController instance, there is exactly one
com′

1 = 〈:Actor, :ReportController, prepare〉 such
that com′

1.send = com1.send and com1.call =
com′

1.call. Similarly, for the communication
com2, which is sent by the ReportController,
instance, there exists exactly one com′

2 =
〈:ReportController, :Report, create 〉 such that
com′

2.rec = com2.rec and com2.call = com′
2.call.

(c) Of course, map(com1) �= map(com2).

(d) com′
1succ∗com′

2, because the operation prepare is
performed as the first operation, and the operation
create – after the prepare one (see Fig. 6).

(e) The communication diagram in Fig. 6 introduces
the set of new communications com′, i.e., [i =
1, . . . , n] 1.i getData. The ordering of communica-
tions is such that for each such communication there
exist com1, com2 for which com1 succ∗com

′
and

com′ succ∗com2.

8. Related Works and Conclusions

The refinement relationship appears in numerous publica-
tions (Clark, 2000; Hnatkowska et al., 2004b; 2004c; Liu
et al., 2004b; Pons et al., 2000). Most authors make use
of this notion to describe the software engineering process
treating refinement as an element of the proposed (or de-
scribed) methodologies (Souza and Wills, 1999). Yet,
hardly anyone devotes much effort to further analyze this
notion, preferring instead to rely on its “common sense”
understanding (Katara and Mikkonen, 2002).

There are several formal approaches to the refine-
ment definition. They depend on the semantic represen-
tation of UML models. For example, in (Lano and Bi-
carregui, 1999), the semantics of class diagrams is given
in terms of theories in a first-order logic, and therefore
a structural refinement of class diagrams is presented by
means of Z-notation, while the behavioural refinement of
class diagrams – by means of real-time action logic. Or-
dered labelled multisets based on (Pratt, 1986) are used
in (Cengarle and Knapp, 2004) for the representation
of UML semantics and refinement of interactions. This
mathematically elegant work takes only the behavioural
aspect of a model into account. Another example of be-
haviour refinement omitting structural issues can be found
in (Clark, 2000), where the author defines refinement us-
ing lambda-calculus.

Boiten and Bujurianu (2003) define refinement as
a relationship between two existing models. In this
approach the refinement is seen as a kind of inter-
consistency relationship between models. This is in con-
trast to our approach, where successive models are ob-
tained as a result of transformation/mapping based on the
refinement relationship.

In the work (Pons and Kutche, 2004), there is a de-
scription of a number of refinement patterns that are im-
plemented in the PAMPERO tool which is integrated in
the Eclipse environment. Refinement transformations pro-
posed in the paper take into consideration only one se-
mantic level, which means that one can modify only the
existing model elements. This proposal is an example of a
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pragmatic and informal approach to refinement. In our pa-
per we define refinement as a set of transformation rules.
The application of the rules to a model yields a new re-
fined model.

In (Egyed, 2002), refinement is defined to be a re-
verse of abstraction – a process that transforms lower-level
elements into higher-level elements. The relationship is
considered for class diagrams without any class properties
(operations, attributes). The author defines a set of rules
for models transformation/views at different abstraction
levels. The rules were implemented in the UML/Analyzer
tool integrated with Rational Rose.

Our approach considers refinement at two semantic
levels. Similarly, different semantic levels are assumed
in (Boiten and Bujorianu, 2003; Egyed, 2002; Liu et al.,
2004b).

This paper presents a formalization of collabora-
tion diagrams, and then proposes transformations allowed
within the process of collaboration refinement. The in-
troduced notion of sub-collaborations allows us to sys-
tematically refine collaboration diagrams, i.e., first, to se-
lect a well-defined fragment of a collaboration (a sub-
collaboration) – a set of classes and a respective set of as-
sociations together with the behavior assigned to the frag-
ment, and, next, to transform the fragment preserving its
observable behavior.

Our formalization of collaboration refinement sup-
ports building up models in a stepwise fashion. How-
ever, we did not propose practical guidelines for using re-
finement transformations for collaboration, since they are
closely bound to the methodology employed during soft-
ware development.

In this paper we used the set theory language to de-
scribe UML models. The approach seems to be well
suited to the software developer’s needs. Graph theory
can also be applied to a formal definition of different re-
lationships between UML models, for example, we used
this approach in (Hnatkowska et al., 2004a). The com-
plexity of both approaches is similar.

The formalization – the set of axioms and rules oper-
ating over finite sets – forms a base for the construction of
algorithms that may check whether two collaborations re-
main in a refinement relationship. Such algorithms might
be pluged into the existing UML-based software develop-
ment tools, e.g., Rational Rose, HUGO (Knapp and Merz,
2002; Knapp et al., 2002), Rhapshody, etc. A developer
could define a trace relationship between two subcollabo-
rations in the models at different semantic levels, and then
the tool could check if these two models are in a refine-
ment relationship.

Our formalization also enables us to distinguish be-
tween refinement and other kinds of dependency relation-
ships, for example, refactoring or extension, etc. In some

works, e.g., (Pons and Kutche, 2004), refinement and
refactoring are not clearly discriminated. Usually, refac-
toring is concerned with code changing. It is the process
of changing a software system in such a way that it does
not alter the external behavior of the code yet improves its
internal structure. When you refactor, you improve the de-
sign of code after it has been written (Fowler et al., 1999).
Refactoring involves reorganizing the structure of an ex-
isting element or solution to make it easier to understand,
use and maintain without changing its observable behav-
ior. It should be noted that refactoring was thoroughly
addressed in (Sunye et al., 2001).
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