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The problem of designing a stabilizing feedback controller for an underactuated system is a challenging one since a nonlinear
system is not stabilizable by a smooth static state feedback law. A necessary condition for the asymptotical stabilization of an
underactuated vehicle to a single equilibrium is that its gravitational field has nonzero elements corresponding to unactuated
dynamics. However, global asymptotical stability (GAS) cannot be guaranteed. In this paper, a robust proportional-integral-
derivative (PID) controller on actuated dynamics is proposed and unactuated dynamics are shown to be global exponentially
bounded by the Sørdalen lemma. This gives a necessary and sufficient condition to guarantee the global asymptotic stability
(GAS) of the URV system. The proposed method is first adopted on a remotely-operated vehicle RRC ROV II designed
by the Robotic Research Centre in the Nanyang Technological University (NTU). Through the simulation using the ROV
Design and Analysis toolbox (RDA) written at the NTU in the MATLAB/SIMULINK environment, the RRC ROV II is
robust against parameter perturbations.
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1. Introduction

In this paper, a nonlinear system consisting of actuated
and unactuated dynamics is studied. The problem of de-
signing a stabilizing feedback controller for underactuated
systems is a challenging one since the system is not sta-
bilizable by a smooth static state feedback law (Brockett,
1983). Fossen (1994) and Yuh (1990) showed that a fully
actuated vehicle (a vehicle where the control and config-
uration vector have the same dimension) can be asymp-
totically stabilized in position and velocity by a smooth
feedback law. Byrnes et al. (1991) explained why under-
actuated vehicles having zero gravitational field are not
asymptotically stabilizable to a single equilibrium. On the
other hand, Wichlund et al. (1995) stated that the vehicle
with gravitational and restoring terms in unactuated dy-
namics is stabilizable to a single equilibrium point. How-
ever, it is a necessary but not sufficient condition to state
that the vehicle is asymptotically stabilizable. The closed-
loop asymptotical stability of the vehicle in the earth-fixed
frame needs to be examined further.

A different method than those proposed in (Wich-
lund et al., 1995) is used to show that actuated dynamics
in the earth-fixed frame is exponentially decaying under
the nonlinear controller. The method described in (Wich-
lund et al., 1995) uses a nonlinear dynamic control law to

achieve a neat closed loop actuated subsystem that yields
an exponentially decaying solution, but gives low flexi-
bility in designing the control law since nonlinear vehicle
dynamics have to be known exactly for nonlinear dynamic
cancellation.

In this paper, a robust Proportional-Integral-
Derivative (PID) controller is chosen due to its simplicity
in implementation and its common use in industry. PID is
designed only for actuated dynamics, such that it provides
a necessary and sufficient condition for the asymptotic sta-
bility of unactuated dynamics. In this method, unactuated
dynamics are self-stabilizable and converge exponentially
to zero. With the controller, the actuated dynamics be-
come asymptotically stable while the actuated states in the
unactuated dynamic equation diminish. Applying the as-
ymptotic stability lemma by Sørdalen (Søodalen and Ege-
land 1993; 1995; Sørdalen et al., 1993) to the unactuated
dynamic equation provides a validation for the initial ar-
gument of convergence to zero. Thus the vehicle in the
earth-fixed frame, which is self-stabilizable in unactuated
dynamics, is asymptotically stable.

The paper is organized as follows: A nonlinear
model of an underactuated ROV, developed by the Ro-
botic Research Centre in the Nanyang Technological Uni-
versity (Koh et al., 2002b; Micheal et al., 2003), is pre-
sented in Section 2. Section 3 describes a necessary con-



C.S. Chin et al.346

Front view of the RRC ROV II Side view of the RRC ROV II

Fig. 1. Thruster configuration on the ROV platform.

dition for a vehicle with gravitational and restoring terms
in unactuated dynamics to be stabilizable. In Sections 4
and 5, a robust PID controller is proposed for the as-
ymptotic stability of the vehicle in the earth-fixed frame
which is self-stabilizable in unactuated dynamics. The re-
sults of computer simulations using the ROV Design and
Analysis (RDA) toolbox written at the NTU in the MAT-
LAB/SIMULINK environment are presented in Section 6.

2. Nonlinear Model of the Underactuated
ROV

The dynamic behavior of an underwater vehicle is de-
signed through Newton’s laws of linear and angular mo-
mentum. The equations of motion of such vehicles are
highly nonlinear (Fossen, 1994) and coupled due to hy-
drodynamic forces which act on the vehicle. Usually, the
ROV model can be described in either a body-fixed or an
earth-fixed frame.

2.1. Body-Fixed Model of the Underactuated ROV.
It is convenient to write the general dynamic and kine-
matic equations for the ROV in the body-fixed frame:

Mvv̇ + Cv(v)v +Dv(v)v + g(η) = Bvuv, (1)

η̇ = J(η)v, (2)

where Bv ∈ R
6×4 is a thruster configuration matrix (de-

fined by the thruster layout as shown in Fig. 1), uv ∈ R
4

is an input vector, v = [u, v, w, p, q, r]T ∈ R
6 is a veloc-

ity vector, η = [x, y, z, φ, θ, ψ]T ∈ R
3 × S3 is a posi-

tion and orientation vector, Mv ∈ R
6×6 is a mass inertia

matrix with added mass coefficients, Cv(v) ∈ R
6×6 is

a centripetal and Coriolis matrix with added mass coeffi-
cients, Dv(v) ∈ R

6×6 is a diagonal hydrodynamic damp-
ing matrix, and g(η) ∈ R

6 is a vector of buoyancy and
gravitational forces and moments. The ROV path relative
to the earth-fixed reference frame is given by the kine-
matic equation (2), where J(η) = J(η2) ∈ R

6×6 and
η2 = [φ, θ, ψ]T is an Euler transformation matrix.

2.2. An Earth-Fixed Model of the Underactuated
ROV. Sometimes, we need to express the ROV model
from the body coordinate to earth-fixed coordinates (Fos-
sen, 1994) by performing the coordinate transformation
(η, v)

μ�→ (η, η̇) defined by[
η

η̇

]
=

[
I 0
0 J(η)

][
η

v

]
, (3)

where the transformation matrix, J , has the following
form:

J(η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ)
s(ψ)c(θ) c(ψ)c(θ) + s(φ)s(θ)s(ψ)
−s(θ) c(θ)s(φ)

0 0
0 0
0 0
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Fig. 2. Experimental RRC ROV II in a swimming pool.

s(ψ)s(φ) + c(ψ)c(φ)s(θ) 0 0 0
−c(ψ)s(φ) + s(θ)s(ψ)c(φ) 0 0 0

c(θ)c(φ) 0 0 0
0 1 s(φ)t(θ) c(φ)t(θ)
0 0 c(φ) −s(φ)
0 0 s(φ)/c(θ) c(φ)/c(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4)

where c(·) = cos(·), t(·) = tan(·) and s(·) = sin(·). The
coordinate transformation μ is a global diffeomorphism
which is analogous to a similarity transformation in linear
systems. This transformation is undefined for θ = ±90o.
To overcome this singularity, a quaternion approach must
be considered. However, in our study this problem does
not exist because the vehicle is not sufficient to operate at
θ = ±90o. Moreover, the vehicle is completely stable in
roll and pitch, and the thruster actuation is not sufficient to
move the vehicle to operate at this angle. The ROV model
in earth-fixed coordinates becomes

Mη(η̇, η)η̈ + Cη(η̇, η)η̇

+Dη(η̇, η)η̇ + gη(η) = Bηuη, (5)

where Mη(η̇, η) = J−TMvJ
−1, Cη(η̇, η) = J−T (C −

MvJ
−1J̇)J−1, Dη(η̇, η) = J−TDv J−1, gη(η) =

J−T gv and Bηuη = J−TBvuv.

3. Stabilizability

In this section a method to test system stabilizability is
presented. In general, the vector g(η) can be further de-
composed into elements corresponding to actuated dy-
namics (the first to third and sixth elements), ga(η), and
the element corresponding to unactuated dynamics (the
fourth and fifth elements), gu(η). The proof of Theorem 3

in (Wichlund et al., 1995) regards the system given by
Eqns. (1) and (2). Suppose that (η, v) = (0, 0) is an equi-
librium point of the system. If gu(η) is zero, then there
exists no continuous and discontinuous state feedback law
(Byrnes and Isidori, 1991), k(η, v) : R

6 ⇒ R
4, which

makes (0, 0) an asymptotically stable equilibrium.
However, the RRC ROV II of Fig. 2 has a

gravitational field at unactuated dynamics, gu(η) =
[29.61 cosθ sinφ 29.61 sin θ]T �= 0 but no gravitational
field at ga(η) = 0. Therefore, the RRC ROV II may be
stabilizable at the equilibrium point. However, it is a nec-
essary, but not sufficient, condition to state that the ROV
is asymptotically stabilizable at the equilibrium point. In-
evitably, it gives rise to the need of finding a control law
to stabilize the ROV at the equilibrium point.

4. Asymptotic Stabilization of Actuated
Dynamics by Smooth State Feedback

In Sections 4 and 5, the concepts in the asymptotic stabi-
lization of actuated dynamics are as follows: (i) by obser-
vation, the unactuated dynamics in (7) are self-stabilizable
and exponentially decaying; (ii) use a robust PID con-
troller to globally asymptotically stabilize the actuated dy-
namics in (6); (iii) with actuated dynamics, globally as-
ymptotically stable (GAS) f1 implies that the actuated dy-
namics h2 in the unactuated equation (7) becomes zero;
(iv) finally, step (i) is verified by the Sørdalen lemma. For
clarity, this section is divided into two parts. The problem
definition is given in Part I, perturbation on the ROV’s pa-
rameters and the controller design and the stability analy-
sis on actuated dynamics are provided in Part II.

4.1. Problem Definition. The separation of the entire
system into actuated and unactuated subsystems, as de-
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scribed in (Micheal et al., 2003), yields

η̈a = f1(η̇a, ηa, t) + h1(η̇u, ηu, t) +Bηaua, (6)

η̈u = f2(η̇u, ηu, t) + h2(η̇a, ηa, t) +Bηuuu, (7)

where

f1(η̇a, ηa, t) = − 1
det(Mη)

Mη22

× [
Cη11 (v, η) +Dη11(v, η)

]
η̇a,

h1(η̇u, ηu, t) = − 1
det(Mη)

Mη12gηu

+Mη12Cη21 (v, η)η̇u,

f2(η̇u, ηu, t) = − 1
det(Mη)

Mη11

× [
Cη22 (v, η) +Dη22(v, η)

]
η̇u,

h2(η̇a, ηa, t) = − 1
det(Mη)

Mη11gηu

−Mη12Cη12 (v, η)η̇a,

det(Mη) = Mη22Mη11 −Mη12
2,

η = [z x y ψ | φ θ]T = [ηa | ηu], ηa ∈ R
3 × S, ηu ∈ R

2,
Bη = [Bηa Bηu] are the input matrices for the actuated
and unactuated dynamics in (5). Note that the subscripts
‘a’ and ‘u’ refer to the actuated and unactuated dynamics,
respectively.

Let ηd denote the desired set points (position and ori-
entation) in the earth-fixed frame. The error of this actu-
ated position about the hovering or station-keeping condi-
tion can be written down as

e = ηa − ηd ⇒ ė = η̇a, ë = η̈a. (8)

Substituting the preceding equation into (6) and (7) yields

ë = f1(ė, e, t) + h1(η̇u, ηu, t) +Bηaua, (9)

η̈u = f2(η̇u, ηu, t) + h2(ė, e, t) +Bηuuu. (10)

Consider h1(η̇u, ηu, t) as a perturbation to (9) and assume
that it could converge (or exponentially decay) to zero as
time increases. Then (9) becomes

ë = f1(ė, e, t) +Bηaua. (11)

The quantity h1(η̇u, ηu, t) decays in (9) as the restor-
ing forces (based on the ROV design intention) in the
ηu = {φ, θ} directions enable these two motions to sta-
bilize themselves effectively instead of destabilizing the

system. Furthermore, if ηa can be proven to be asymp-
totically stable, i.e., e → 0 as t → 0, the term h2(ė, e, t)
in (10) decays and becomes

η̈u = f2(η̇u, ηu, t) +Bηuuu. (12)

Applying the asymptotic stability proof for ηu validates
the initial assumption of h1(η̇u, ηu, t) → 0 as t → ∞.
The following will illustrate the above-mentioned method.

Assuming that the perturbation h1(η̇u, ηu, t) is
bounded by a decaying exponential function and u a =
uPID = −B−1

ηa (Kpe + Ki

∫ τ
0
e dt + Kd

de
dt ) for the ac-

tuated subsystem exists, (9) becomes ë = f1(ė, e, t) +
BηauPID. The asymptotical stability of ηa, i.e., e→ 0 as
t→ 0 is proven in the following.

4.2. Perturbation on the ROV’s Parameters. To test
the robustness of PID control schemes, the ROV’s mass
inertia, centripetal and Coriolis matrix and the diagonal
hydrodynamic damping matrix are allowed to vary within
the limits specified in (14) and (16). These variations can
be attributed to the inaccuracy in modeling and possible
changes in the mass distribution in the ROV. The lim-
its were obtained using a computer-aided design (CAD)
software, Pro-E. By changing the mass properties of each
thruster, pod and stainless-steel frame as shown in Fig. 2,
a different mass inertia matrix was obtained. By evalu-
ating the differences between the nominal and new mass
inertia matrices, the following limits can be determined:

The bounds mη
1

and mη1 are obtained by first eval-
uating the inverse of the body-fixed mass inertia matrix,
M−1
v in (5) obtained from the CAD software, Pro-E:

Mη(η̇, η) = J−TMvJ
−1,

Mη(η̇, η)−1 = JM−1
v JT . (13)

SubstitutingM−1
v that ranges from −0.001 to 0.01 at J =

I (as the Euler angles are small) in (4) results in mη1 =
−0.001 and mη1 = 0.01. Hence, the bounds on M−1

η1
become

mη1I ≤M−1
η1 ≤ mη1I, (14)

where

M−1
η1 = Mη22

[
Mη22Mη11 −Mη12

2
]−1

. (15)

The upper bounds on the centripetal and Coriolis ma-
trix and the diagonal hydrodynamic damping matrix in
Cη1 are set as

Cη1 ≤ KA‖L‖ +KB, (16)

where KA > 0 (= 0.001) and KB > 0 (= 0.001) are
constant and obtained indirectly from the CAD software,
Pro-E,

Cη1 =
[
Cη11(v, η) +Dη11(v, η)

]
, (17)

‖ · ‖ being the Euclidean norm and L = [e ė]T .
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4.3. Controller Design and Stability Analysis of the
Actuated Dynamic. Implementing the control law
into (11) yields

ë = M−1
η1 Cη1 ė

−M−1
η1

[
Kpe+Ki

∫ τ

0

e dt+Kd
de
dt

]
. (18)

State-space equations become

x1 =
∫ τ

0

eT dt, ẋ1 = eT ,

x2 = eT , ẋ2 = ėT ,

x3 = ėT ,

ẋ3 = ëT

= M−1
η1 Cη1x3 −M−1

η1 Kdx3 −M−1
η1 Kpx2

−M−1
η1 Kix1, (19)

where the superscript T in eT indicates the transpose of e.
Equation (19) in the matrix form becomes⎡
⎢⎣ ẋ1

ẋ2

ẋ3

⎤
⎥⎦

=

A︷ ︸︸ ︷⎡
⎢⎣ 0 In 0

0 0 In

−M−1
η1 Ki −M−1

η1 Kp −M−1
η1 (Kd + Cη1)

⎤
⎥⎦

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦.

(20)

To analyze the system’s robust stability, consider the
following Lyapunov function:

V (x) = xTPx

=
1
2

[
α2

∫ t

0

e(τ) dτ + α1e+ ė
]T
Mη1

×
[
α2

∫ t

0

e(τ) dτ+α1e+ė
]
+�TP1�, (21)

where

� =

⎡
⎢⎣

∫ t

0

e(τ) dτ

e

⎤
⎥⎦ ,

(22)

P1 =
1
2

⎡
⎣ α2Kp + α1Ki α2Kd +Ki

α2Kd +Ki α1Kd +Kp

⎤
⎦ .

Hence

P =
1
2

×

⎡
⎢⎢⎣

α2Kp+α1Ki+α2
2Mη1 α2Kd+Ki+α1α2Mη1 α2Mη1

α2Kd+Ki+α1α2Mη1 α1Kd+Kp+α2
1Mη1 α1Mη1

α2Mη1 α1Mη1 Mη1

⎤
⎥⎥⎦.

(23)

Since Mη1 is a positive definite matrix, P is positive def-
inite if, and only if, P1 is positive definite. Now choose
Kp = kpI, Kd = kdI and Ki = kiI such that P in (23),
i.e., ⎡

⎣ α2kp + α1ki α2kd + ki

α2kd + ki α1kd + kp

⎤
⎦ (24)

becomes positive definite. The following lemma gives the
conditions for V (x) to become positive definite, bounded
from above and below.

Lemma 1. Assume that the following inequalities hold:

α1 > 0, α2 > 0, α1 + α2 < 1,

s1 = α2(kp − kd) − (1 − α1)ki

− α2(1+α1−α2)mη1 > 0, (25)

s2 = kp + (α1−α2)kd − ki

− α1(1+α2−α1)mη1 > 0. (26)

Then P is positive definite and satisfies the following in-
equality (Rayleigh-Ritz) :

λ(P )‖x‖2 ≤ V (x) ≤ λ(P )‖x‖2, (27)

in which

λ(P ) = min
{1 − α1 − α2

2
mη1 ,

s1
2
,
s2
2

}
, (28)

λ(P ) = max
{1 + α1 + α2

2
mη1 ,

s3
2
,
s4
2

}
, (29)

and

s3 = α2(kp + kd) + (1 + α1)ki

+ (1 + α1 + α2)α2mη1, (30)

s4 = α1mη1(1 + α1 + α2)

+ (α1 + α2)kd + kp + ki. (31)
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Since P is positive definite,

V̇ (x) = xT (ATP + PA+ Ṗ )x

− xTQx

+
1
2
xT

⎡
⎢⎣α2I

α1I

I

⎤
⎥⎦ Ṁη1 [α2I α1I I]x

+
1
2
xT

⎡
⎢⎣ 0 α2

2I α1α2I

α2
2I 2α1α2I (α2

1 + α2)I
α1α2I (α2

1 + α2)I α1I

⎤
⎥⎦

×

⎡
⎢⎣ Mη1 0 0

0 Mη1 0
0 0 Mη1

⎤
⎥⎦x. (32)

Owing to Ṁη1 = 0, (32) yields

V̇ (x) ≤ −γ‖x‖2 + ζ2mη1‖x‖2 (33)

and

γ = min
{
α2ki, α1kp − α2kd − ki, kd

}
. (34)

Let ‖L‖ ≤ ‖x‖. Denote by λ2 = λ(R2) the largest
eigenvalue of R2,

R2 =

⎡
⎢⎣ 0 α2

2I α1α2I

α2
2I 2α1α2I (α2

1 + α2)I
α1α2I (α2

1 + α2)I α1I

⎤
⎥⎦ . (35)

As a result, the error system of the RRC ROV II, (20),
is rendered GAS, if λ2 is chosen small enough and the
control gains Kp,Kd and Ki are large enough. The next
step is to show that unactuated dynamics are exponentially
bounded.

5. Exponential Stability of Unactuated
Dynamics Using Sørdalen’s Lemma

As was shown in Section 4, the term h2(ė, e, t) consists
of ė and e converged exponentially to zero, i.e., ė, e → 0
as t → 0, yielding η̈u = f2(η̇u, ηu, t) + Bηuuu. The
solution of the tracking error, e, can be approximated as
e = Cee−γet ⇒ ė = C ėe−γėt and, by substituting it into
h2(ė, e, t), yields

h2(ė, e, t) = − Mη12Cη12
Mη22Mη11 −M2

η12

Cee−γet +Mη11gηu

+Mη11Bη2uu → 0 (36)

for uu = −B−1
η2 gηu . The initial assumption h1(η̇u, ηu, t)

→ 0 as t → ∞ can be validated by checking the asymp-
totic stability of ηu. First, decompose ηu into two part as
follows:

η̈u =

[
φ̈

θ̈

]
=

[
fφ̇(φ̇, φ, t) + dφ̇(t)
fθ̇(θ̇, θ, t) + dθ̇(t)

]
, (37)

where dφ̇(t), dθ̇(t) are considered as perturbations on φ̇

and θ̇, respectively. The proof of the exponential bound
of the unactuated subsystems can be obtained as shown
below. The definite integral of fφ̇(φ̇, φ, t) from the time 0
to t becomes∣∣∣∣
∫ t

0

fφ̇(φ̇, φ, τ) dτ
∣∣∣∣≤

∫ t

0

∣∣∣∣fφ̇I1 ∂ψ∂τ /ka1
∣∣∣∣+

∣∣∣∣fφ̇I2 ∂φ∂τ /ka1
∣∣∣∣

+
∣∣∣∣fφ̇I3 ∂θ∂τ /ka1

∣∣∣∣+|fφ̇I4| dτ, (38)

where ka1fφ̇I1 , fφ̇I2 , fφ̇I3 , fφ̇I4 can be found in Appen-

dix. Substituting Ixx, Ixy, Ixz, Iyz, ψ̇, φ̇ and θ̇ into the
preceding equation gives∣∣∣∣

∫ t

0

fφ̇(φ̇, φ, τ) dτ
∣∣∣∣ ≤

∫ t

0

|β1θ̇|+|β2ψ̇|+|β3φ̇| dτ

≤
∫ t

0

β1|C θ̇e−αθ̇τ |+β2|Cψ̇e−αψ̇τ |

+β3|Cφ̇e−αφ̇τ |+β4 dτ,∣∣∣∣
∫ t

0

fφ̇(φ̇, φ, τ)+εφ̇ dτ
∣∣∣∣ ≤ β1

C θ̇

αθ̇
+β2

Cψ̇

αψ̇
+β3

Cφ̇

αφ̇
, (39)

where β1, β2, β3, β4 > 0. In the RRC ROV II, β1 =
15603, β2 = 15470, β3 = 2.7, β4 = 1650. Then dφ̇(t)
in (37) becomes

|dφ̇(t)| = |fż1 ż + fẋ1ẋ+ fẏ1 ẏ + fψ̇1
ψ̇ + fθ̇1 θ̇|

≤ |fż1 ż| + |fẋ1 ẋ| + |fẏ1 ẏ|
+ |fψ̇1

ψ̇| + |fθ̇1 θ̇|. (40)

Define

γφ̇ = min
{
αż + αẋ, αż + αẏ , αẋ + αẏ, αψ̇ + αθ̇, αψ̇

+ αφ̇, αθ̇ + αφ̇, αż , αẋ, αẏ, αψ̇, αφ̇, αθ̇
}

(41)

and ż = C że−γż , ẋ = C ẋe−γẋ , ẏ = C ẏe−γẏ , ψ̇ =
Cψ̇e−γψ̇ , ∀αż, αẋ, αẏ , αψ̇, where C ż , Cẋ, C ẏ, Cψ̇ > 0
(Kreyszig, 1998) for an exponentially stable system.
Then

|dφ̇(t)| ≤ De−γφ̇t. (42)
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The solution of φ̈(t) becomes

|φ̇(t)| =

∣∣∣∣∣e−[fφ̇(φ̇,φ,t)+εφ̇]tφ̇(0)

+
∫ t

0

e−[fφ̇(φ̇,φ,t)+εφ̇]τdφ̇(τ) dτ

∣∣∣∣∣
≤ e−Pφ̇t|φ̇(0)| +

∣∣∣∣
∫ t

0

e−Pφ̇τdφ̇(τ) dτ
∣∣∣∣

≤ e−Pφ̇t|φ̇(0)| + |D[e−(Pφ̇+γφ̇)t − 1]|
|Pφ̇ + γφ̇|

, (43)

where Pφ̇ =
∫ t
0
[fφ̇(φ̇, φ, τ) + εφ̇] dτ . Thus φ̇(t) is

bounded for any t ≥ 0. Also, φ̇(t) → 0 since
1/|Pφ̇ + γφ̇| is small.

Next, to show that φ(t) is bounded, consider

|φ(t)| =
∣∣∣∣
∫ t

0

φ̇(t) dτ + φ(0)
∣∣∣∣

≤
∫ t

0

|φ̇(t)| dτ + |φ(0)|. (44)

Using (43), we get

|φ(t)| ≤
∫ t

0

e−Pφ̇τ dτ |φ̇(0)|

+
D

|Pφ̇+γφ̇|
∫ t

0

(e−(Pφ̇+γφ̇)τ − 1) dτ+|φ(0)|

≤−e
−Pφ̇τ+1
Pφ̇

|φ̇(0)|− D

|Pφ̇+γφ̇|2
e−(Pφ̇+γφ̇)t

− D

|Pφ̇ + γφ̇|
(t− 1) + |φ(0)|. (45)

Thus, φ(t) is bounded for all t ≥ 0 as 1/|Pφ̇ + γφ̇| is
small for the RRC ROV II.

Repeat the same procedure from (38) to (45) for
fθ̇(θ̇, θ, τ). Substituting Ixx, Ixy, Ixz , Iyz , see (Koh et al.,
2002a), ψ̇, φ̇ and θ̇ into the preceding equation gives the
definite integral of fφ̇(x, t),∣∣∣∣
∫ t

0

fθ̇(θ̇, θ, τ) dτ
∣∣∣∣ =

∣∣∣∣
∫ t

0

fθ̇1 dτ
∣∣∣∣

≤
∫ t

0

|α1θ̇|+|α2ψ̇|+|α3φ̇|+|α4| dτ

≤
∫ t

0

α1C
θ̇e−αθ̇τ

+ α2C
ψ̇e−αψ̇τ + α3C

φ̇e−αφ̇τ

+ α4 dτ, (46)

∣∣∣∣
∫ t

0

[
fθ̇(θ̇, θ, τ) + εθ̇

]
dτ

∣∣∣∣
≤ α1

C θ̇

αθ̇
+ α2

Cψ̇

αψ̇
+ α4

Cφ̇

αφ̇
, (47)

where α1, α2, α3, α4 > 0. In RRC ROV II, α1 = 25.8,
α2 = 12270.8, α3 = 12529, α4 = 260378. Then dθ̇(t)
in (37) becomes

|dθ̇(t)|= |fż2 ż + fẋ2ẋ+ fẏ2 ẏ + fψ̇2
ψ̇ + fφ̇2

φ̇|

≤ |fż2 ż|+|fẋ2ẋ|+|fẏ2 ẏ|+|fψ̇2
ψ̇|+|fφ̇2

φ̇|. (48)

Define

γθ̇ = min
{
αż + αẋ, αż + αẏ, αẋ + αẏ, αψ̇ + αθ̇,

αψ̇ + αφ̇, αθ̇ + αφ̇, αż, αẋ, αẏ ,

αψ̇ , αφ̇, αθ̇
}
, (49)

and ż = C że−γż , ẋ = C ẋe−γẋ , ẏ = C ẏe−γẏ , ψ̇ =
Cψ̇e−γψ̇ , ∀αż , αẋ, αẏ, αψ̇ , where C ż, Cẋ, C ẏ, Cψ̇ > 0
(Kreyszig, 1998) for an exponentially stable system.
Then

|dθ̇(t)| ≤ De−γθ̇t. (50)

The solution of θ̈(t) becomes

|θ̇(t)| =

∣∣∣∣∣e−[fθ̇(θ̇,θ,t)+εθ̇]tθ̇(0)

+
∫ t

0

e−[fθ̇(θ̇,θ,t)+εθ̇]τdθ̇(τ) dτ

∣∣∣∣∣
≤ e−Pθ̇t|θ̇(0)| +

∣∣∣∣
∫ t

0

e−Pθ̇τdθ̇(τ) dτ
∣∣∣∣

≤ e−Pθ̇t|θ̇(0)| + |D[e(Pφ̇+γφ̇)t − 1]|
|Pφ̇ + γφ̇|

, (51)

where Pθ̇ =
∫ t
0 [fθ̇(θ̇, θ, τ)+ εθ̇] dτ . Thus θ̇(t) is bounded

for any t ≥ 0. Also, θ̇(t) → 0 as 1/|Pθ̇ + γθ̇| is small.
Next, to show that θ(t) is bounded, consider

|θ(t)| =
∣∣∣∣
∫ t

0

θ̇(t) dτ + θ(0)
∣∣∣∣

≤
∫ t

0

|θ̇(t)| dτ + |θ(0)|. (52)
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Fig. 3. SIMULINK library browser showing the RDA package.

Using (51), we have

|θ(t)| ≤ 1
|Pθ̇ + γθ̇|

∫ t

0

e−(Pθ̇+γθ̇)τ dτ

+
∫ t

0

e−Pθ̇τ dτ |θ̇(0)|

+
∫ t

0

1
|Pθ̇ + γθ̇|

dτ + |θ(0)| + |θ(0)|

≤ −e
−Pθ̇τ + 1
Pθ̇

|θ̇(0)| − D

|Pθ̇ + γθ̇|2
e−(Pθ̇+γθ̇)t

− D

|Pθ̇ + γθ̇|
(t− 1) + |θ(0)|. (53)

Thus, θ(t) is bounded for any t ≥ 0 as 1/|P θ̇ + γθ̇| is
small for the RRC ROV II.

6. Computer Simulation Results

This section illustrates the performance of the proposed
control scheme (in the presence of parameter perturba-
tions) using the ROV Design and Analysis (RDA) package
(see Fig. 3) developed at the NTU. The platform adopted
for the development of RDA is MATLAB/SIMULINK.

RDA provides the necessary resources for a rapid and sys-
tematic implementation of mathematical models of ROV
systems with the focus on ROV modeling, control sys-
tem design and analysis. The package provides examples
ready for simulation. As is shown in Fig. 4, the block dia-
gram of the proposed robust PID control was designed.

The performance of the proposed control scheme was
investigated in computer simulations using a Pentium IV,
2.4 GHz computer. The simulation time was set to 100 s.
The RRC ROV II parameters used in simulations can be
found in (Koh et al., 2002b). As the vehicle is currently
equipped only with limited sensors, the desired position
command values, v = [0.5 0 1 0 0 0]T , are chosen with
this purpose in mind. The objective is to regulate the po-
sition of the RRC ROV II to x = 0.5 m and z = 1 m or
the error signal equal to zero.

The PID was selected due to its simplicity in imple-
mentation and its wide use in control applications. The
control algorithm requires reduced computing resources,
and is therefore suited for an on-board implementation.
The PID control parameters were obtained from the Re-
sponse Optimization (using the gradient descent method)
toolbox in SIMULINK. The PID parameters are as fol-
lows: Kp = diag{11, 11, 9, 1}, Ki = diag{2, 4, 1, 2}
and Kd = diag{1, 1, 2, 1}. For example, the optimization
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Fig. 4. SIMULINK block diagram of the proposed robust PID control.

setting for the response in the x-direction was constrained
as shown in Fig 7.

As was already mentioned, the system is separated
into actuated and unactuated states. In SIMULINK, it is
modeled as a selector that channels the actuated and unac-
tuated states into two paths. The PID is used only for the
actuated states while the unactuated ones are left uncon-
trolled, since then are self-stabilizable. The “robust” PID
controller is called this way due to the perturbation of the
mass inertia term as in (14). The perturbation of the mass
inertia term ranges from the minimum to the maximum of
the scale (−0.001 ≤ M−1

η1 ≤ 0.01). This can be mod-
eled as a two-dimensional (2D) look-up table as shown
in Fig. 4. During simulations, only the maximum value
(or a worst-case perturbation) is used. Similarly, the per-
turbation for the centripetal, Coriolis and hydrodynamic
damping matrix was set at (Cη1 ≤ 0.001‖L‖+ 0.001).

Figure 5 shows simulation results for the robust PID
control design with and without perturbations. It shows
the position of the ROV with respect to the inertia frame.
As can be observed, the ROV control system is able to reg-
ulate about the selected reference position. The roll and
pitch motions are self-stabilizable about the zero position
(as seen in Sørdalen’s proof). From Fig. 5 it can be seen
that actuated states exhibit asymptotically stable phenom-
ena, as proved by the Lyapunov stability theory. Notice
that, in spite of parameter uncertainty, the ROV converges
asymptotically to the desired position.

The flow chart shown in Fig. 6 illustrates the ro-
bust PID design flow and methodology using RDA for the
RRC ROV II. PID parameters are tuned off-line by the
Response Optimization toolbox using gradient descent till
the desired responses are obtained. Besides, the tuning of
PID parameters can be performed iteratively.

7. Conclusion

Besides using the ROV’s body-fixed coordinates in sta-
bility analysis, the earth-fixed coordinate model was ana-
lyzed. The stabilizability condition of the underactuated
ROV was shown. The nonlinear system was separated
into actuated and unactuated dynamic equations, and the
asymptotical stability of closed-loop actuated equations,
using the robust PID controller in the earth-fixed frame,
was examined. This is based on the argument that the ac-
tuated dynamic equation could converge exponentially to
zero by the PID controller. The asymptotic stability proof
by Sørdalen in the unactuated dynamic equation provides
a validation for the initial argument of the roll and pitch
dynamics convergence to zero. The vehicle in the earth-
fixed frame with self-stabilizable unactuated dynamics is
globally asymptotically stable with the robust PID con-
troller in actuated dynamics. This gives a necessary and
sufficient condition for the GAS of the ROV in the earth-
fixed frame.
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Fig. 5. Position response of the proposed robust PID control for x = 0.5 m and z = 1 m.

By simulating closed-loop control system design us-
ing the RDA package, the asymptotical stability of the ro-
bust PID controller for the RRC ROV II can be observed
as position responses converge asymptotically to the de-
sired position. The PID is said to be robust as the ROV’s
mass inertia, centripetal and Coriolis matrix and the diag-
onal hydrodynamic damping matrix were allowed to vary
within the limits obtained explicitly from the CAD soft-
ware, Pro-E.

In summary, the RDA provides a systematic method-
ology in control system simulation and stability analy-
sis before implementation. It also provides necessary re-
sources for a rapid implementation of mathematical mod-
els of ROV systems. The proposed control algorithm
is quite simple and requires little computing resources,
and is therefore suited for an on-board implementation.
Simulation results show the effectiveness of the proposed
methodology. If the real-time tuning of PID parameters
is used, the control system could be more robust against
larger parameters perturbation. As is shown in this pa-
per, PID parameters can be conveniently tuned by the
Response Optimization toolbox in MATLAB/SIMULINK
instead of the trial-and-error method of tuning.
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Fig. 7. Example of response optimization setting on the output x.

Appendix

The parameters used in (38) are as follows:

ka1 = −Ixx Iyz2 + Ixx Iyy Izz − 2 Iyz Ixy Ixz

− Iyy Ixz
2 − Ixy

2 Izz ,

fφ̇I1 = IxyI
2
yz − I2

xzIzz + IxyI
2
zz + I2

xyIyy − I2
yyIxz

− IxxI
2
yy + I3

xy − I3
xz − 2IxyIxzIyy

− IxyIyzIyy + IxxIyzIxz + IxxIzzIxz

− IxxIyyIxy+IyyIxzIyz−I2
yzIxz+2IxyIzzIxz

− IxyIzzIyz + IxyI
2
xz + IxxI

2
zz − 2I2

xyIyz

− I2
xyIxz + 2IyzI2

xz − IxxIyzIxy + IyzIxzIzz ,

fφ̇I2 = −IxxIzzIxz − IxyIzzIxz − I3
xy − IxxIyzIxz

+ I2
xyIxz + IxxIyyIxy + IxxIyzIxy + I2

xyIyz

− IxyI
2
xz − IyzI

2
xz + IxyIxzIyy + I3

xz,

fφ̇I3 = −3IxxI2
yz − I2

xyIzz − IyyI
2
xz − 4IyzIxyIxz

+ IxxIyyIzz − IyyIxzIyz − IxyIzzIyz

− IxyIxzIyy − IxyIyzIyy − 2IxxIzzIyz

− 2IxxIyzIyy − I2
yzIxz − IxxI

2
yy − I2

yyIxz

+ I2
xyIyz − IxxI

2
zz − IxyI

2
zz + IyzI

2
xz

+ I2
xzIzz − IxyI

2
yz + I2

xyIyy − IyzIxzIzz

− IxyIzzIxz ,

fφ̇I4 = (−IyzIxzKp− IxyIzzKp− IyyIxzKp

−KpIyyIzz − IyzIxyKp+KpI2
yz)/ka1.
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