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A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of
fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a determin-
istic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning
procedure, a deterministic annealing method with a “freezing” phase and ε-insensitive learning by solving a system of linear
inequalities are applied. This method yields an improved neuro-fuzzy modeling quality in the sense of an increase in the
generalization ability and robustness to outliers. To show the advantages of the proposed algorithm, two examples of its
application concerning benchmark problems of identification and prediction are considered.
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1. Introduction

A fundamental problem while designing fuzzy systems
is the determination of their rule bases, which consist of
sets of fuzzy conditional statements. Because there is
no standard method of expert knowledge acquisition in
the process of determining fuzzy if-then rules, automatic
methods of rule generation are intensively investigated. A
set of fuzzy conditional statements may be obtained au-
tomatically from numerical data describing input/output
system characteristics. A number of fuzzy rules extrac-
tion procedures use the learning capabilities of artificial
neural networks to solve this task (Mitra and Hayashi,
2000). The integration of neural networks and fuzzy mod-
els leads to the so-called neuro-fuzzy systems. Neuro-
fuzzy systems can be represented as radial basis func-
tion networks because of their mutual functional equiva-
lence (Jang and Sun, 1993). This quality resulted in the
construction of the Adaptive Network based Fuzzy In-
ference System (ANFIS) (Jang, 1993), which is equiva-
lent to the Takagi-Sugeno-Kang (TSK) type of fuzzy sys-
tems. A way of improving the interpretability of TSK
fuzzy models by combining the global and local learn-
ing processes was presented by Yen et al. (1998). A
similar approach was described by Rose et al. (Rao et
al., 1997; 1999; Rose, 1991; 1998). They proposed a
deterministic annealing (DA) optimization method that
makes it possible to improve the estimation quality of ra-
dial function parameters. Another fuzzy inference sys-

tem which is equivalent to a radial basis function net-
work, i.e., the Artificial Neural Network Based on Fuzzy
Inference System (ANNBFIS) was presented by Czogała
and Łęski (1996; 1999). Its novelty consisted in using
parameterized consequents in fuzzy if-then rules. The
equivalence of approximate reasoning results using log-
ical and conjunctive interpretations of if-then rules which
occurs in some circumstances was shown in (Czogała and
Łęski, 1999; 2001). This observation led to a more gen-
eralized structure of the ANNBFIS–ANBLIR (Artificial
neural Network Based on Logical Interpretation of fuzzy
if-then Rules), a computationally effective system with
parameterized consequents based on both conjunctive and
logical interpretations of fuzzy rules (Czogała and Łęski,
1999). The ANBLIR system can be successfully applied
to solve many practical problems such as classification,
control, digital channel equalization, pattern recognition,
prediction, signal compression and system identification
(Czogała and Łęski, 1999). Its original learning proce-
dure uses a combination of steepest descent optimization
and the least-squares method. However, it may produce a
local minimum in the case of a multimodal criterion func-
tion. Therefore, several modifications of the learning al-
gorithm were proposed (Czabański, 2003). One of them
uses a deterministic annealing method adopted in the AN-
BLIR system instead of the steepest descent procedure.

Neuro-fuzzy modeling has an intrinsic inconsistency
(Łęski, 2003b): it may perform inference tolerant of im-
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precision but its learning methods are intolerant of impre-
cision. An approach to fuzzy modeling tolerant of im-
precision, called ε-insensitive learning, was described in
(Łęski, 2002; 2003a; 2003b). It leads to a model with a
minimal Vapnik-Chervonenkis dimension (Vapnik, 1999),
which results in an improved generalization ability of the
neuro-fuzzy system (Łęski, 2002; 2003a; 2003b). More-
over, ε-insensitive learning methods lead to satisfactory
learning results despite the presence of outliers in the
training set (Łęski, 2002; 2003a; 2003b).

In this work, a new learning procedure of the AN-
BLIR is proposed. Its novelty consists in the applica-
tion of a deterministic annealing method integrated with
ε-insensitive learning. In order to reduce the computa-
tional burden of the learning procedure, a deterministic
annealing method with a “freezing” phase (DAF) and ε-
insensitive Learning by Solving a System of Linear In-
equalities (εLSSLI) are employed. To show the validity
of the proposed algorithm, two benchmark examples of
its application are shown. We consider the system identi-
fication problem based on Box and Jenkins’s data (1976),
and the prediction example using Weigend’s sunspots data
(Weigend et al., 1990).

The structure of the paper is as follows: In Section 2,
the ANBLIR neuro-fuzzy system is presented. Section 3
introduces a deterministic annealing method adopted to
the neuro-fuzzy modeling problem. In Section 4, a de-
scription of ε-insensitivity learning of the neuro-fuzzy
system with parameterized consequents is given. The ε-
insensitivity learning problem can be solved by means of
the εLSSLI method. In Section 5, a hybrid learning al-
gorithm that integrates the DAF method with the εLSSLI
procedure is shown. The numerical examples are given in
Section 6. Section 7 concludes the paper.

2. Neuro-Fuzzy System with Parameterized
Consequents

The ANBLIR is a fuzzy system with parameterized conse-
quents that generates inference results based on fuzzy if-
then rules. Every fuzzy conditional statement from its rule
base may be written down in the following form (Czogała
and Łęski, 1999):

R(i) : if
t

and
j=1

(
x0j is A

(i)
j

)
then Y is B(i) (y, x0) ,

∀ i = 1, 2, . . . , I, (1)

where I denotes the number of fuzzy if-then rules, t is the
number of inputs, x0j is the j-th element of the input vec-
tor x0 = [x01, x02, . . . , x0t]

T , Y is the output linguistic

variable of the system, A
(i)
j and B(i) (y, x0) are linguis-

tic values of fuzzy sets in antecedents and consequents,
respectively.

The fuzzy sets of linguistic values in rule antecedents
have Gaussian membership functions, and the linguistic
connective “and” of multi-input rule predicates is repre-
sented by the algebraic product t-norm. Consequently,
the firing strength of the i-th rule of the ANBLIR system
can be written in the following form (Czogała and Łęski,
1999):

F (i) (x0)=
t∏

j=1

A
(i)
j (x0j)=exp

⎡⎣−1
2

t∑
j=1

(
x0j−c

(i)
j

s
(i)
j

)2⎤⎦,
∀ i = 1, 2, . . . , I, (2)

where c
(i)
j and s

(i)
j for i = 1, 2, . . . , I , and j = 1, 2, . . . , t

are membership function parameters, centers and disper-
sions, respectively.

The consequents of ANBLIR fuzzy rules have sym-
metric triangular membership functions. They can be de-
fined using two parameters: the width of the triangle base
w(i) and the location of the gravity center y (i) (x0), which
can be determined on the basis of linear combinations of
fuzzy system inputs:

y(i) (x0) = p
(i)
0 +p

(i)
1 x01 + · · ·+p

(i)
t x0t = p(i)T x′

0, (3)

where x′
0 = [1, x01, x02, . . . , x0t]

T is the extended input
vector. The above dependency formulates the so-called
parameterized (moving) consequent (Czogała and Łęski,
1996; 1999).

The kind of operations executed during the inference
process and therefore the shapes of membership functions
of the conclusions obtained after the inference process de-
pend on the chosen way of interpreting if-then rules. The
ANBLIR permits both conjunctive and logical interpreta-
tions of fuzzy rules. Consequently, the general form of the
resulting conclusion of the i-th rule can be written down
as (Czogała and Łęski, 1999):

B(i)′ (y, x0) = Ψ
[
F (i) (x0) , B(i) (y, x0)

]
, (4)

where Ψ stands for a fuzzy implication (for the logical
interpretation of if-then rules) or a t-norm (for the con-
junctive interpretation of if-then rules). The final output
fuzzy set of the neuro-fuzzy system is derived from the
aggregation process. Throughout the paper, we use the
normalized arithmetic mean as the aggregation,

B′ (y) =
1
I

I∑
i=1

B(i)′ (y, x0) . (5)

The resulting fuzzy set has a non-informative part,
i.e., there are elements of s fuzzy set y ∈ Y whose mem-
bership values are equal in the whole space Y. Therefore,
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the following modified indexed center of the gravity de-
fuzzifier (MICOG) is used (Czogała and Łęski, 1999):

y0 =

∫
y (B′ (y)− α) dy∫
(B′ (y)− α) dy

, (6)

where y0 denotes the crisp output value and α ∈ [0, 1] de-
scribes the uncertainty attendant upon information. Con-
sequently, the final crisp output value of the fuzzy system
with parameterized consequents can be evaluated from the
following formula:

y0 =

∫
y

I

I∑
i=1

(
B(i)′ (y, x0)− αi

)
dy∫

1
I

I∑
i=1

(
B(i)′ (y, x0)− αi

)
dy

=

I∑
i=1

∫
y
(
B(i)′ (y, x0)− αi

)
dy

I∑
i=1

∫ (
B(i)′ (y, x0)− αi

)
dy

. (7)

The gravity center of the rule consequents is defined
as

y(i) (x0) =

∫
y
(
B(i)′ (y, x0)− αi

)
dy∫ (

B(i)′ (y, x0)− αi

)
dy

. (8)

Substituting (8) into (7) yields (Czogała and Łęski, 1999):

y0 =

I∑
i=1

[∫ (
B(i)′ (y, x0)− αi

)
dy

]
y(i) (x0)

I∑
i=1

∫ (
B(i)′ (y, x0)− αi

)
dy

. (9)

The integral
∫ (

B(i)′ (y, x0)− αi

)
dy defines the area of

the region under the curve corresponding to the mem-
bership function of the i-th rule consequent after remov-
ing the non-informative part. For a symmetric triangular
function it is a function of the firing strength of the rule
F (i) (x0) and the width of the triangle base w(i):∫ (

B(i)′ (y, x0)− αi

)
dy = g

(
F (i) (x0) , w(i)

)
. (10)

The function g
(
F (i) (x0) , w(i)

)
depends on the in-

terpretation of fuzzy conditional statements we use. The
respective formulas for selected fuzzy implications are
tabulated in Table 1. For notational simplicity, we use
B � B(i) (y, x0) , F � F (i) (x0) and w � w(i). It was
proven (Czogała and Łęski, 1999; 2001) that the neuro-
fuzzy system with parameterized consequents based on

Łukasiewicz and Reichenbach’s implications produces in-
ference results equivalent to those obtained from Mam-
dani and Larsen’s fuzzy relations, respectively.

Finally, the crisp output value of the fuzzy system
can be written in the following form:

y0 =
I∑

i=1

G(i) (x0) y(i) (x0) , (11)

where

G(i) (x0) =
g
(
F (i) (x0) , w(i)

)
I∑

k=1

g
(
F (k) (x0) , w(k)

) . (12)

The fuzzy system with parameterized consequents
can be treated as a radial basis function neural network
(Czogała and Łęski, 1999). Consequently, unknown
neuro-fuzzy system parameters can be estimated using
learning algorithms of neural networks. Several solutions
to this problem were proposed in the literature (Czaba ński,
2003; 2005; Czogała and Łęski, 1996; 1999; Łęski, 2002;
2003a; 2003b). In this work, a new hybrid learning pro-
cedure which connects a deterministic annealing method
and the ε-insensitive learning algorithm by solving a sys-
tem of linear inequalities is presented. In the following,
we assume that we have N examples of the input vectors
x0 (n) ∈ R

t and the same number of the known output
values t0 (n) ∈ R which form the training set.

3. Deterministic Annealing

Our goal is the extraction of a set of fuzzy if-then rules
that represent the knowledge of the phenomenon under
consideration. The extraction process consists in the es-
timation of membership function parameters of both an-
tecedents and consequents ζ = {c(i)

j , s
(i)
j , p

(i)
j , w(i)},

∀i = 1, 2, . . . , I , ∀j = 1, 2, . . . , t. The number of rules
I is also unknown. We assume that it is preset arbitrar-
ily. The number of antecedents t is defined by the size of
the input training vector directly. To increase the ability
to avoid many local minima that interfere with the steep-
est descent method used in the original ANBLIR learn-
ing algorithm, we employ the technique of determinis-
tic annealing (Rao et al., 1997; 1999; Rose, 1991; 1998)
adapted for training the neuro-fuzzy system with parame-
terized consequents. However, it is not guaranteed that
a global optimum of the cost will be found (Rao et al.,
1999). Deterministic annealing (DA) is a simulated an-
nealing (Metropolis et al., 1953; Kirkpatrick et al., 1983)
based method which replaces the computationally inten-
sive stochastic simulation by a straightforward determinis-
tic optimization of the modeled system error energy (Rao
et al., 1997). The algorithm consists in the minimization
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Table 1. Function g
�
F (i) (x0) , w(i)

�
for selected fuzzy implications.

Fuzzy implication

Ψ [F, B]
α g (F, w)

Fodor�
1,

max (1 − F, B) ,

if F ≤ B,

otherwise,

1 − F

��
�

w

2

�
1 − 2F + 2F 2

�
,

wF (1 − F ) ,

F ≥ 1

2
,

F <
1

2
,

Gödel�
1,

B,

if F ≤ B,

otherwise,

0
w

2

�
2 − 2F + F 2

�
,

Gougen

min

	
B

F
, 1



, F �= 0,

0
w

2
(2 − F ),

Kleene-Dienes

max(1 − F, B),
1 − F

w

2
F 2,

Łukasiewicz

min(1 − F + B, 1),
1 − F

w

2
F (2 − F ),

Reichenbach

1 − F + FB,
1 − F

w

2
F ,

Rescher�
1,

0,

if F ≤ B,

otherwise,

0 w (1 − F ),

Zadeh

max{1 − F, min(F, B)},
1 − F

��
�

w

2
(2F − 1) ,

0,

F ≥ 1

2
,

F <
1

2
.

of the squared-error cost

E =
N∑

n=1

En =
N∑

n=1

1
2

(t0 (n)− y0 (n))2 , (13)

while simultaneously controlling the entropy level of a so-
lution.

Equation (11) defines the neuro-fuzzy system as a
mixture of experts (models). Its global output is expressed
as a linear combination of I outputs y (i) (x0) of the local
models, each represented by a single fuzzy if-then rule.
The weight G(i) (x0) may be interpreted as the possibility
of the association of the i-th local model with the input
data x0. For every local model we have to determine a
set of its parameters p(i)as well as assignments G(i) (x0)
that minimize the criterion (13). The randomness of the
association can be quantified using the Shannon entropy:

S = −
N∑

n=1

I∑
i=1

G(i) (x0 (n)) log G(i) (x0 (n)) . (14)

In the deterministic annealing method the objective
is the minimization of the cost E with an imposed level of
entropy S0:

min E subject to S = S0. (15)

Constrained optimization is equivalent to the uncon-
strained minimization of the Lagrangian (Rao et al.,
1997):

L = E − T (S − S0) , (16)

where T is the Lagrange multiplier.
A connection between the above equation and the an-

nealing of solids is essential here. The quantity L can be
identified as the Helmholtz free energy of a physical sys-
tem with the “energy” E, entropy S and “temperature” T
(Rao et al., 1997).

The DA procedure involves a series of iterations
while the randomness level is gradually reduced. To
achieve the global optimum of the cost, the simulated an-
nealing method is used. The algorithm starts at a high
level of the pseudotemperature T and tracks the solution
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for continuously reduced values of T . For high values of
the pseudotemperature, the minimization of the Lagrange
function L amounts to entropy maximization of associat-
ing data and models. In other words, we seek a set of local
models that are equally associated with each input data
point—the set of local models which cooperate to pro-
duce a desired output. It can be noticed that, as T → ∞,
we get the uniform distribution of G(i) (x0) and therefore,
identical local models. As the pseudotemperature is low-
ered, more emphasis is placed on reducing the square er-
ror. It also results in a decrease in entropy. We get more
and more competitive local models, each associated with
given data more closely. We cross gradually from cooper-
ation to competition. Finally, at T = 0, the optimization
is conducted regardless of the entropy level and the cost is
minimized directly.

The pseudotemperature reduction procedure is deter-
mined by the annealing schedule function q (T ). In the
sequel, we use the following decremental rule:

T ← q T, (17)

where q ∈ (0, 1) is a preset parameter.
The deterministic annealing algorithm can be sum-

marized as follows (Rao et al., 1997):

1. Set parameters: an initial solution ζ, an initial
pseudotemperature Tmax, a final pseudotemperature
Tmin and an annealing schedule function q (T ). Set
T = Tmax.

2. Minimize the Lagrangian L:

∂L

∂ζ
=

∂E

∂ζ
− T

∂S

∂ζ
. (18)

3. Decrement the pseudotemperature according to the
annealing schedule.

4. If T < Tmin, then STOP. Otherwise, go to Step 2.

At each level of the pseudotemperature, we mini-
mize the Lagrangian iteratively using the gradient descent
method in the parameter space. The parameters of the
neuro-fuzzy system are given by

ζ (k + 1) = ζ (k)− η
∂L

∂ζ

∣∣∣∣
ζ=ζ(k)

, (19)

where k denotes the iteration index and η is the learn-
ing rate, which can be further expressed using the formula
proposed by Jang (1993):

η =
ηini√

ni∑
i=1

(
∂L

∂ζi

)2

ζi=ζi(k)

. (20)

Here ηini denotes the initial (constant) stepsize, ni is the
number of optimized parameters: for the parameters of

the membership function of fuzzy sets in the antecedents
ni = 2It, for the parameters of the linear function in
the consequents ni = I (t + 1), and for the triangle base
widths ni = I .

For the notational simplicity of the gradient formu-
las, we introduce the following symbols:

Ξ(i) (x0 (n)) = [y0 (n)− t0 (n)] y(i) (x0 (n))

+ T log G(i) (x0 (n)) , (21)

Ξ (x0 (n)) =
I∑

i=1

G(i) (x0 (n)) Ξ(i) (x0 (n)) . (22)

Then the partial derivatives ∂L/∂ζ with respect to the un-
known parameters may be expressed as

∂L

∂c
(i)
j

=
1(

s
(i)
j

)2

N∑
n=1

[
xj0 (n)− c

(i)
j

]

× F (i)(x0(n))
g(F (i)(x0(n)), w(i))

∂g(F (i)(x0(n)), w(i))
∂F (i)(x0(n))

×G(i) (x0 (n))
[
Ξ(i) (x0 (n))− Ξ (x0 (n))

]
, (23)

∂L

∂s
(i)
j

=
1(

s
(i)
j

)3

N∑
n=1

[
xj0 (n)− c

(i)
j

]2

× F (i) (x0 (n))
g
(
F (i) (x0 (n)) , w(i)

) ∂g
(
F (i) (x0 (n)) , w(i)

)
∂F (i) (x0 (n))

×G(i) (x0 (n))
[
Ξ(i) (x0 (n))− Ξ (x0 (n))

]
, (24)

∂L

∂p
(i)
j

=
∂E

∂p
(i)
j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[y0 (n)− t0 (n)]
N∑

n=1

G(i) (x0 (n)) xj0 (n)

for j �= 0,

[y0 (n)− t0 (n)]
N∑

n=1

G(i) (x0 (n))

for j = 0,

(25)

∂L

∂w(i)
=

N∑
n=1

1
g
(
F (i) (x0 (n)) , w(i)

)
× ∂g

(
F (i) (x0 (n)) , w(i)

)
∂w(i)

×G(i)
(
x0(n)

) [
Ξ(i)

(
x0(n)

)−Ξ
(
x0(n)

)]
. (26)
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In the original ANBLIR learning method, the para-
meters of the consequents p(i) were estimated using the
least-squares (LS) method (Czogała and Łęski, 1999). It
accelerates the learning convergence (Czogała and Łęski,
1999). A novel, impecision-tolerant method for estimat-
ing the parameters of consequents (ε-insensitive learning)
was presented in (Łęski, 2002; 2003a; 2003b). It improves
the generalization ability of the neuro-fuzzy system com-
pared with the LS algorithm. Three different approaches
to solve the ε-insensitive learning problem were proposed
in (Łęski, 2002; 2003a; 2003b) as well. In this work we
use ε-insensitive Learning by Solving a System of Lin-
ear Inequalities (εLSSLI) because of its lower computa-
tional burden which is approximately three times higher
in comparison with imprecision-intolerant learning with
LS (Łęski, 2003b). εLSSLI can be solved globally and
locally (Łęski, 2003b). In what follows, we assume the
local solution. This enables us to tune every local model
(rule) independently. Its integration with the deterministic
annealing procedure is described in the sequel.

4. ε-Insensitive Learning with εLSSLI
Solution

Neuro-fuzzy systems usually have an intrinsic inconsis-
tency (Łęski, 2003b): they may perform approximate rea-
soning but simultaneously their learning methods are in-
tolerant of imprecision. In a typical neuro-fuzzy learning
algorithm, only the perfect match of the fuzzy model and
the modeled phenomenon results in the zero error value.
Additionally, the zero loss is usually obtained through a
high complexity of the model. However, according to sta-
tistical learning theory (Vapnik, 1998), we should find the
simplest model from among all which accurately repre-
sent the data. It is inspired by the well-known principle of
Occam’s razor, which essentially states that the simplest
explanation is best. An imprecision-tolerant approach
with the control of model complexity called ε-insensitive
learning was presented in (Łęski, 2002; 2003a; 2003b). It
is based on the ε-insensitive loss function (Vapnik, 1998):

En = �t0 (n)− y0 (n)	ε

=

⎧⎨⎩0

|t0 (n)−y0 (n)|−ε

if |t0 (n)−y0 (n)| ≤ ε,

if |t0 (n)−y0 (n)| > ε.

(27)

The symbol ε represents the limiting value of impre-
cision tolerance. If the difference between the modeled
and desired outputs is less than ε, then the zero loss is
obtained. As was shown in (Łęski, 2002; 2003a; 2003b),
ε-insensitive learning may be used for estimating the pa-
rameters of the consequents of the ANBLIR system.

ε-Insensitive learning with the control of model com-
plexity may be formulated as the minimization of the fol-
lowing ε-insensitive criterion function (Łęski, 2003b):

I(i)
(
p(i)

)
=
⌉
t0 −X

′
0 p(i)

⌈
ε,G

+
τ

2
p(i)T Ĩ p(i), (28)

where t0 = [t0(1), t0(2), . . . , t0(N)]T , X
′
0 = [x

′
0(1),

x
′
0(2), . . . , x

′
0(N)]T , Ĩ = diag([0, 1T

t×1]), 1t×1 is a (t ×
1)-dimensional vector with all entries equal to 1, G =
[G(i)(x0(1)), G(i)(x0(2)), . . . , G(i)(x0(N))]T and �·	ε,G

denotes the weighted Vapnik loss function defined as⌉
t0 −X

′
0 p(i)

⌈
ε,G

=
N∑

n=1

G(i) (x0 (n))
⌉
t0 (n)− p(i)T x′

0 (n)
⌈

ε
. (29)

The second term in (28) is associated with the min-
imization of the Vapnik-Chervonenkis dimension (Vap-
nik, 1998) and, therefore, the minimization of model com-
plexity. The regularization parameter τ ≥ 0 controls the
trade-off between model matching to the training data and
the model generalization ability (Łęski, 2003b). Larger
τ results in an increase in the model generalization abil-
ity. The above formula is called the weighted (or fuzzy)
ε-insensitive estimator with complexity control (Łęski,
2003b).

The ε-insensitive learning error measure �t0 −
X

′
0 p(i)	ε can be equivalently rewritten using two systems

of inequalities (Łęski, 2003b): X
′
0 p(i) + ε1N×1 > t0 and

X
′
0 p(i) − ε1N×1 < t0. In practice, not all inequalities

from this system are satisfied for every datum from the
learning set (i.e., not all data fall into the insensitivity re-
gion). The solution method that enables us to maximize
the fulfilment degree of the system of inequalities was pre-
sented in (Łęski, 2003b).

If we introduce the extended versions of X
′
0 and t0

defined as X
′
0e = [X

′T
0

... − X
′T
0 ]T and t0e = [t0 (1) −

ε, t0 (2) − ε, . . . , t0 (N) − ε,−t0 (1) − ε,−t0 (2) −
ε, . . . ,−t0 (N) − ε]T , then the above systems of two in-
equalities can be written down as one, namely, X

′
0e p(i)−

t0e > 0. We can solve it using the system of equalities
(Łęski, 2003b): X

′
0e p(i) − t0e = b, where b > 0 is an ar-

bitrary positive vector. Now we can define the error vector
(Łęski, 2003b): e = X

′
0e p(i) − t0e − b. If the n-th da-

tum falls in the insensitivity region, then the n-th and 2n-
th error components are positive. Accordingly, they can
be set to zero by increasing the respective components of
b. If the n-th datum falls outside the insensitivity region,
then the n-th and 2n-th error components are negative. In
this case, it is impossible to set the error values to zero
by changing (decreasing) the respective components bn
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(b2n) because they have to fulfil the conditions bn > 0
(b2n > 0). Hence, the non-zero error values correspond
only to data outside the insensitivity region. Now, we can
approximate the minimization problem (28) with the fol-
lowing one (Łęski, 2003b):

min
p(i)∈Rt+1, b>0

I(i)
(
p(i), b

)
=
(
X

′
0ep

(i) − t0e − b
)T

Ge

(
X

′
0ep

(i) − t0e − b
)

+
τ

2
p(i)T Ĩ p(i), (30)

where Ge = diag([GT , GT ]T ).
The above criterion is an approximation of (28)

because the square error is used rather than the ab-
solute one. It is due to mathematical simplicity. A
learning algoritm for the absolute error can be ob-
tained by selecting the following diagonal weight
matrix: De = diag(G(i)(x0(1))/|e1|, G(i)(x0(2))/|e2|,
. . . , G(i)(x0 (N))/|eN |, G(i)(x0 (1))/|eN+1|, . . . ,
G(i) (x0 (N)) /|e2N |), where ei is the i-th component of
the error vector, instead of Ge.

The optimal solution is given by differentiating (30)
with respect to p(i) and b, and equating the result to zero.
After introducing the absolute error criterion, we get the
following system of equations (Łęski, 2003b):⎧⎨⎩p(i) =

(
X

′T
0eDeX

′
0e+ τ

2 Ĩ
)−1

X
′T
0eDe (t0e+b) ,

e = X
′
0e p(i) − t0e − b = 0.

(31)

The vector b is called the margin vector (Łęski, 2003b) be-
cause its components determine the distances between the
data and the insensitivity region. From the first equation
of (31), we can see that the solution vector p(i) depends
on the margin vector. If a datum lies in the insensitivity
region, then the zero error can be obtained by increasing
the corresponding distance. Otherwise, the error can be
decreased only by decreasing the corresponding compo-
nent of the margin vector. The only way to prevent the
margin vector b from converging to zero is to start with
b > 0 and not allow any of its components to decrease
(Łęski, 2003b). This problem can be solved using the pro-
cedure of ε-insensitive Learning by Solving a System of
Linear Inequalities (εLSSLI) (Łęski, 2003b), which is an
extended version of Ho and Kashyap’s (1965; 1966) itera-
tive algorithm. In εLSSLI, margin vector components are
modified by the corresponding error vector components
only if the change results in an increase in the margin vec-
tor components (Łęski, 2003b):

b[k+1] = b[k] + ρ
(
e[k] +

∣∣∣e[k]
∣∣∣) , (32)

where ρ > 0 is a parameter and [k] denotes the iteration
index. The p(i) vector is obtained from the first equation

of (31) (Łęski, 2003b):

p(i)[k] =
(
X

′T
0eD[k]

e X
′
0e +

τ

2
Ĩ
)−1

X
′T
0eD

[k]
e

(
t0e + b[k]

)
,

(33)
and the error vector e from the second equation of (31):

e[k] = X
′
0e p(i)[k] − t0e − b[k]. (34)

Consequently, the εLSSLI algorithm can be summa-
rized as follows (Łęski, 2003b):

1. Set the algorithm parameters ε ≥ 0, τ ≥ 0, 0 < ρ <
1 and the iteration index k = 1. Calculate D [1]

e and
initialize the margin vector b[1] > 0.

2. Calculate p(i)[k] according to (33).

3. Calculate e[k] on the basis of (34).

4. Update D[k+1]
e using e[k].

5. Update the margin vector components according
to (32).

6. If ‖b[k+1] − b[k]‖ > κ, where κ is a preset parameter
or k < kε max, then k = k + 1 and go to Step 2.
Otherwise, STOP.

This procedure is based on the postulate that near
an optimal solution the consecutive vectors of the mini-
mizing sequence differ very little. It was proven (Łęski,
2003b) that for 0 < ρ < 1 the above algorithm is conver-
gent for any matrix De.

5. Hybrid Learning Algorithm

The integration of the εLSSLI procedure with the deter-
ministic annealing method leads to a learning algorithm
where the parameters of fuzzy sets from the antecedents
and consequents of fuzzy if-then rules are adjusted
separately. The antecedent parameters c

(i)
j , s

(i)
j , i =

1, 2, . . . , I, j = 1, 2, . . . , t, as well as the triangle base
widths w(i), i = 1, 2, . . . , I of fuzzy sets in the conse-
quents are estimated by means of a deterministic anneal-
ing method, whereas the parameters of linear equations
from the consequents p(i) , i = 1, 2, . . . , I , are adjusted
using ε-insensitive learning and then tuned using the de-
terministic annealing procedure. We called the method
“hybrid” as we used a mixture of two methods to estimate
the p(i) values. For decreasing the computational bur-
den of the learning procedure, the deterministic annealing
method with the “freezing” phase (DAF) can be applied
(Rao et al., 1999; Czabański, 2003). The “freezing” phase
consists in the calculation of p(i) using the εLSSLI proce-
dure after every decreasing step of the pseudotemperature
value while keeping c

(i)
j , s

(i)
j and w(i) constant. Hybrid

learning can be summarized as follows:
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1. Set the parameters: an initial solution ζ, an initial
pseudotemperature Tmax, a final pseudotemperature
Tmin and an annealing schedule function. Set T =
Tmax.

2. Minimize the Lagrangian L using the steepest de-
scent method (18).

3. Check the equilibrium

|δS| =
∣∣∣∣S[k−1] − S[k]

S[k−1]

∣∣∣∣ > δ

or the iteration stopping condition k ≤ kmax, where
k denotes the iteration index, δ is a preset parameter
and kmax denotes the maximum number of iterations
at a given level of the pseudotemperature. If one of
them is fulfilled, go to Step 2.

4. Lower the pseudotemperature according to the an-
nealing schedule.

5. Perform the “freezing” phase, i.e., estimate the para-
meters of linear equations from the consequents for
all rules by means of the εLSSLI procedure.

6. If T ≥ Tmin, go to Step 2.

7. Stop the algorithm.

Another problem is the estimation of the initial val-
ues of membership functions for antecedents. It can be
solved by means of preliminary clustering of input train-
ing data (Czogała and Łęski, 1999). We use the fuzzy
c(I)-means (FCM) (Bezdek, 1982) method for this task.
The center and dispersion parameters of Gaussian mem-
bership functions can be initialized using the final FCM
partition matrix (Czogała and Łęski, 1999):

c
(i)
j =

N∑
n=1

(uin)m
x0j (n)

N∑
n=1

(uin)m

,

∀ 1 ≤ i ≤ I, ∀ 1 ≤ j ≤ t, (35)

and

(
s
(i)
j

)2

=

N∑
n=1

(uin)m
(
x0j (n)− c

(i)
j

)2

N∑
n=1

(uin)m

,

∀ 1 ≤ i ≤ I, ∀ 1 ≤ j ≤ t, (36)

where uin is the FCM partition matrix element and m is a
weighted exponent (m ∈ [1,∞), usually m = 2).

6. Numerical Experiments

To validate the introduced hybrid method of extract-
ing fuzzy if-then rules, two numerical experiments using

benchmark databases were conducted. The first concerns
a problem of system identification and the second deals
with the prediction of sunspots. The purpose of these ex-
periments was to verify the influence on the generalization
ability of the neuro-fuzzy system with parameterized con-
sequents of learning based on a combination of determin-
istic annealing with the “freezing” phase and the εLSSLI
method.

The example of system identification is based on
data originating from Box and Jenkins’ work (1976). It
concerns the identification of a gas oven. An input sig-
nal consists of measuring samples of methane flow x(n)
[ft/min]. Methane is delivered into the gas oven together
with air to form a mixture of gases containing carbon
dioxide. The samples of CO2 percentage content form
an output signal y(n). The sampling period was 9 s.
The data set consisting of 290 pairs of the input vector
[y(n− 1), . . . ,−y(n− 4), x(n), . . . , x(n− 5)]T , and the
output value y (n) was divided into two parts: the training
one and the testing one. The training set consists of the
first 100 pairs of the data and the testing set contains the
remaining 190 pairs.

The learning was carried out in two phases. In both
of them, the most popular fuzzy implications were applied
(Fodor, Gödel, Gougen, Kleene-Dienes, Łukasiewicz, Re-
ichenbach, Rescher and Zadeh). The learning results ob-
tained from Łukasiewicz and Reichenbach’s implications
are equivalent to the inference results obtained on the ba-
sis of Mamdani and Larsen’s fuzzy relations, respectively
(Czogała and Łęski, 1999). The number of if-then rules I
was changed from 2 to 6, and the initial values of mem-
bership functions of antecedents were estimated by means
of FCM clustering. The partition process was repeated
25 times for different random initializations of the parti-
tion matrix, and results characterized by the minimal value
of the Xie-Beni validity index (Xie and Beni, 1991) were
chosen. The generalization ability was determined on the
basis of root mean square error (RMSE) values on the test-
ing set. All experiments were conducted in a MATLAB
environment.

During the first phase of the learning only the
εLSSLI algorithm was used (with the initial values of
antecedent parameters calculated by means of the FCM
method and the triangle base widths set to 1). We sought a
set of parameters for which the best generalization ability
of the neuro-fuzzy system was achieved. We set ρ = 0.98,
b[1] = 10−6, κ = 10−4 and kε max = 1000. The pa-
rameters τ and ε were changed from 0.01 to 0.1 with a
step of 0.01. The lowest RMSE values for each num-
ber of if-then rules and each fuzzy implication used are
shown in Tables 2–6. For comparison, RMSE results
for imprecision-intolerant learning (the LS method) are
shown, too. The best results are marked in bold.
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Table 2. RMSE of identification—the first
learning phase (I = 2).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.3507 0.01 0.01 0.3595

Gödel 0.3453 0.01 0.01 0.3493

Gougen 0.3453 0.01 0.01 0.3493

Kleene-Dienes 0.3516 0.01 0.01 0.3604

Łukasiewicz (Mamdani) 0.3507 0.01 0.01 0.3595

Reichenbach (Larsen) 0.3507 0.01 0.01 0.3595

Rescher 0.3455 0.01 0.01 0.3494

Zadeh 0.3458 0.01 0.01 0.3494

Table 3. RMSE of identification—the first
learning phase (I = 3).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.3656 0.09 0.01 0.3776

Gödel 0.3457 0.01 0.01 0.3493

Gougen 0.3456 0.01 0.01 0.3493

Kleene-Dienes 0.3682 0.09 0.01 0.3793

Łukasiewicz (Mamdani) 0.3656 0.09 0.01 0.3776

Reichenbach (Larsen) 0.3656 0.09 0.01 0.3776

Rescher 0.3458 0.01 0.01 0.3493

Zadeh 0.3467 0.01 0.01 0.3497

Table 4. RMSE of identification—the first
learning phase (I = 4).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.3935 0.02 0.02 0.4280

Gödel 0.3489 0.01 0.01 0.3493

Gougen 0.3458 0.01 0.01 0.3493

Kleene-Dienes 0.3928 0.01 0.03 0.4217

Łukasiewicz (Mamdani) 0.3935 0.02 0.02 0.4280

Reichenbach (Larsen) 0.3936 0.02 0.02 0.4280

Rescher 0.3460 0.01 0.01 0.3493

Zadeh 0.3468 0.01 0.01 0.3499

The obtained results confirm that ε-insensitive learn-
ing leads to a better generalization ability compared with
imprecision-intolerant learning. The identification error
for testing data increases with an increase in the num-
ber of fuzzy if-then rules for all implications used. This
is due to the overfitting effect of the training set. How-
ever, a decrease in the generalization ability of εLSSLI is
slower compared with imprecision-tolerant learning. Dif-
ferent methods of interpreting if-then rules lead to differ-

Table 5. RMSE of identification—the first
learning phase (I = 5).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.4007 0.05 0.06 0.4156

Gödel 0.3462 0.01 0.01 0.3493

Gougen 0.3461 0.01 0.01 0.3493

Kleene-Dienes 0.3923 0.07 0.01 0.4146

Łukasiewicz (Mamdani) 0.4001 0.14 0.05 0.4158

Reichenbach (Larsen) 0.4000 0.14 0.05 0.4160

Rescher 0.3462 0.01 0.01 0.3493

Zadeh 0.3482 0.01 0.01 0.3504

Table 6. RMSE of identification—the first
learning phase (I = 6).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.5186 0.57 0.03 0.5524

Gödel 0.3466 0.01 0.01 0.3493

Gougen 0.3465 0.01 0.01 0.3493

Kleene-Dienes 0.5190 0.03 0.21 0.5733

Łukasiewicz (Mamdani) 0.5122 0.59 0.02 0.5535

Reichenbach (Larsen) 0.5094 0.59 0.02 0.5544

Rescher 0.3467 0.01 0.01 0.3493

Zadeh 0.3469 0.01 0.01 0.3487

ent learning results. Generally, the lowest values of the
identification error during the first learning phase were
achieved using a logical interpretation of fuzzy if-then
rules based on Gougen’s fuzzy implication. The best iden-
tification quality (RMSE = 0.3453) was obtained using
εLSSLI for I = 2 fuzzy conditional statements.

During the second phase of the learning, the pro-
posed DAF + εLSSLI algorithm was employed. The pa-
rameters of the εLSSLI method were set using the re-
sults from the first learning phase. For the determinis-
tic annealing procedure, the following parameter values
were applied: ηini = 0.01, Tmax ∈

{
103, 102, . . . , 10−3

}
,

Tmin = 10−5 Tmax, λ = 0.95, δ = 10−5 and kmax = 10.
As a reference procedure, we used the DAF method com-
bined with the LS algorithm and the original ANBLIR
learning method. Five hundred iterations of the steepest
descent procedure combined with the least squares algo-
rithm were executed. Moreover, two heuristic rules for
changes in the learning rate were applied in the ANBLIR
reference procedure (Jang et al., 1997; Czogała and Łęski,
1999): (a) if in four successive iterations the value of the
error function diminished for the whole learning set, then
the learning parameter was increased (multiplied by 1.1),
(b) if in four successive iterations the value of the error
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function increased and decreased consecutively for the
whole learning set, then the learning parameter was de-
creased (multiplied by 0.9). The learning results are tabu-
lated in Tables 7–11.

Table 7. RMSE of identification (I = 2).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 101 0.3430 102 0.3553 0.3609

Gödel 10−3 0.3431 10−3 0.4449 0.4581

Gougen 100 0.3436 103 0.4573 0.4636

Kleene-Dienes 100 0.3436 10−1 0.3583 0.3624

Łukasiewicz
(Mamdani) 101 0.3434 101 0.3543 0.3609

Reichenbach
(Larsen) 10−1 0.3441 101 0.3491 0.3608

Rescher 100 0.3431 101 0.4552 0.4791

Zadeh 101 0.3452 101 0.3532 0.3526

Table 8. RMSE of identification (I = 3).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 101 0.3528 103 0.3668 0.3786

Gödel 100 0.3445 102 0.4156 0.4217

Gougen 100 0.3446 102 0.4229 0.4340

Kleene-Dienes 10−3 0.3675 10−1 0.3719 0.3785

Łukasiewicz
(Mamdani) 101 0.3477 103 0.3705 0.3785

Reichenbach
(Larsen) 101 0.3547 102 0.3669 0.3786

Rescher 100 0.3445 101 0.4160 0.4353

Zadeh 10−1 0.3451 10−1 0.3485 0.3493

Table 9. RMSE of identification (I = 4).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 102 0.3528 10−3 0.4307 0.4298

Gödel 101 0.3448 10−2 0.4645 0.4671

Gougen 103 0.3458 102 0.4713 0.4737

Kleene-Dienes 102 0.3717 103 0.3755 0.4251

Łukasiewicz
(Mamdani) 103 0.3729 102 0.4296 0.4298

Reichenbach
(Larsen) 103 0.3560 102 0.4284 0.4299

Rescher 103 0.3449 101 0.4793 0.4855

Zadeh 103 0.3460 102 0.3501 0.3532

Clearly, the ε-insensitive learning based method
demonstrates a consistent improvement in the generaliza-
tion ability. It can be noticed that the proposed hybrid
algorithm leads to better identification results in compari-

Table 10. RMSE of identification (I = 5).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 103 0.3546 102 0.4310 0.4428

Gödel 101 0.3451 10−2 0.6279 0.6693

Gougen 103 0.3461 102 0.6359 0.7286

Kleene-Dienes 101 0.3764 100 0.3988 0.4366

Łukasiewicz
(Mamdani) 103 0.3599 103 0.4268 0.4429

Reichenbach
(Larsen) 103 0.3893 101 0.4282 0.4433

Rescher 103 0.3453 10−3 0.7341 0.8061

Zadeh 103 0.3478 103 0.3516 0.3530

Table 11. RMSE of identification (I = 6).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 102 0.3620 10−3 0.5427 0.5427

Gödel 101 0.3455 103 0.5887 0.6343

Gougen 101 0.3464 102 0.6146 0.6341

Kleene-Dienes 103 0.4040 103 0.5049 0.5437

Łukasiewicz
(Mamdani) 103 0.3584 10−3 0.5410 0.5412

Reichenbach
(Larsen) 10−1 0.3590 103 0.5291 0.5390

Rescher 102 0.3464 102 0.6922 0.7041

Zadeh 103 0.3468 10−1 0.3441 0.3441

son with both imprecision-intolerant reference procedures
and εLSSLI performed individually. Only in one example
(I = 6, Zadeh’s implication) we did not obtain a decrease
in the identification error. A decrease in the generalization
ability of DAF + εLSSLI for all fuzzy implications used
is much slower in comparison with imprecision-intolerant
learning using DAF + LS and the original ANBLIR too.
Again, different methods of interpreting if-then rules lead
to different learning results. Nevertheless, it is hard to
qualify one of them as best. Generally, the lowest values
of the identification error were achieved using a logical in-
terpretation of fuzzy if-then rules based on Gödel’s impli-
cation. However, the best identification quality (RMSE =
0.3430) was obtained using the DAF+εLSSLI procedure
for Fodor’s implication, I = 2 and Tmax = 10. Fig-
ures 1, 2 and 3 show the input signal, the output signal
(original—a continuous line, modeled—a dotted line) and
the identification error, respectively.

The proposed procedure was also tested for robust-
ness to outliers. For this purpose, we added one outlier to
the training set: the minimal output sample y (43) equal
to 45.6 was set to the doubled value of the maximal out-
put sample 2 y (82) equal to 116.8. Then we performed
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Fig. 1. Input signal for system identification data.
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Fig. 2. Output signals for system identification data: original
(a continuous line) and modeled (a dotted line) (I = 2,
Fodor implication, Tmax = 10).

the second learning stage for two fuzzy if-then rules us-
ing the parameters (ε, τ, Tmin) for which we obtained the
best generalization ability without outliers. The results are
shown in Table 12. We can see that the DAF +εLSSLI ap-
proach improves the generalization ability in the presence
of outliers in the training set over the reference algorithms.
For Reichenbach’s fuzzy implication (and the same con-
junctive interpretation based on Larsen’s fuzzy relation)
we obtained the best learning quality (RMSE = 0.3649).

The second numerical experiment concerned the
benchmark prediction problem of sunspots (Weigend et
al., 1990). The data set consists of 280 samples x(n)
of sunspot activity measured within a one-year period
from 1700 to 1979 A.D. The goal is the prediction
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Fig. 3. Error signal for system identification data
(I = 2, Fodor implication, Tmax = 10).

Table 12. RMSE of identification in the presence
of outliers (I = 2).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) RMSE RMSE RMSE

Fodor 0.6605 1.0599 1.5973

Gödel 0.5351 2.1271 4.6723

Gougen 0.5281 4.5499 4.6242

Kleene-Dienes 0.5263 3.1560 4.5197

Łukasiewicz
(Mamdani) 0.8167 2.4337 1.5758

Reichenbach
(Larsen) 0.3649 2.1698 1.5878

Rescher 0.5283 4.6511 4.7096

Zadeh 0.5333 4.2039 4.4558

of the number of sunspots (the output value) y (n) =
x(n) using past values combined in the embedded input
vector [ x (n− 1) , x (n− 2) , . . . , x (n− 12) ]T .
The training set consists of the first 100 input-output pairs
of the data and the testing set contains the remaining 168
pairs.

Analogously to the previous example, the whole
learning process was split into two phases. The specifi-
cation of the learning algorithms was the same. The re-
sults obtained from the first learning phase are tabulated
in Tables 13–17.

Again, in this case the εLSSLI method leads to a
better generalization ability than LS imprecision-tolerant
learning for all fuzzy implications used. We observe a
consistent decrease in the overfitting effect accompany-
ing an increase in the number of fuzzy if-then rules for
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Table 13. RMSE of prediction—the first
learning phase (I = 2).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.0845 0.09 0.09 0.0933

Gödel 0.0843 0.16 0.19 0.0917

Gougen 0.0843 0.16 0.19 0.0917

Kleene-Dienes 0.0867 0.09 0.11 0.0962

Łukasiewicz (Mamdani) 0.0838 0.11 0.19 0.0933

Reichenbach (Larsen) 0.0846 0.09 0.10 0.0933

Rescher 0.0843 0.16 0.19 0.0917

Zadeh 0.0843 0.16 0.19 0.0917

Table 14. RMSE of prediction—the first
learning phase (I = 3).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.0785 0.09 0.03 0.0845

Gödel 0.0843 0.16 0.12 0.0917

Gougen 0.0843 0.16 0.12 0.0917

Kleene-Dienes 0.0800 0.08 0.03 0.0858

Łukasiewicz (Mamdani) 0.0784 0.09 0.05 0.0845

Reichenbach (Larsen) 0.0783 0.09 0.05 0.0846

Rescher 0.0843 0.16 0.12 0.0917

Zadeh 0.0843 0.16 0.12 0.0919

Table 15. RMSE of prediction—the first
learning phase (I = 4).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.0794 0.03 0.06 0.0900

Gödel 0.0843 0.16 0.09 0.0917

Gougen 0.0843 0.16 0.09 0.0917

Kleene-Dienes 0.0811 1.00 0.01 0.0963

Łukasiewicz (Mamdani) 0.0791 0.03 0.06 0.0900

Reichenbach (Larsen) 0.0786 0.03 0.06 0.0900

Rescher 0.0843 0.16 0.09 0.0918

Zadeh 0.0843 0.16 0.09 0.0916

εLSSLI in comparison with the LS procedure, too. Anal-
ogously to the first numerical experiment, we obtained
different learning results from different methods of inter-
preting if-then rules. All implications lead to a satisfac-
tory identification quality and it is difficult to qualify one
of them as best. The lowest value of the prediction er-
ror (RMSE = 0.0783) was achieved for I = 3, using a
logical interpretation of fuzzy if-then rules based on Re-
ichenbach’s fuzzy implication and the same conjunctive
interpretation based on Larsen’s fuzzy relation.

Table 16. RMSE of prediction—the first
learning phase (I = 5).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.0810 0.77 0.01 0.0948

Gödel 0.0843 0.16 0.07 0.0917

Gougen 0.0843 0.16 0.07 0.0961

Kleene-Dienes 0.0865 0.39 0.01 0.1025

Łukasiewicz (Mamdani) 0.0810 0.76 0.01 0.0948

Reichenbach (Larsen) 0.0810 0.76 0.01 0.0949

Rescher 0.0843 0.16 0.07 0.0917

Zadeh 0.0843 0.16 0.07 0.0917

Table 17. RMSE of prediction—the first
learning phase (I = 6).

Fuzzy implication εLSSLI LS

(relation) RMSE ε τ RMSE

Fodor 0.0856 0.02 0.16 0.0984

Gödel 0.0843 0.16 0.06 0.0917

Gougen 0.0842 0.16 0.06 0.0917

Kleene-Dienes 0.0877 0.01 0.15 0.1159

Łukasiewicz (Mamdani) 0.0856 0.02 0.16 0.0984

Reichenbach (Larsen) 0.0857 0.01 0.10 0.0984

Rescher 0.0843 0.16 0.06 0.0917

Zadeh 0.0840 0.13 0.02 0.0922

Table 18. RMSE of prediction (I = 2).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 10−2 0.0743 10−2 0.0840 0.0881

Gödel 10−3 0.0838 103 0.0910 0.1034

Gougen 10−3 0.0838 103 0.0913 0.1032

Kleene-Dienes 10−2 0.0750 101 0.0860 0.0942

Łukasiewicz
(Mamdani) 10−3 0.0756 100 0.0833 0.0880

Reichenbach
(Larsen) 10−2 0.0728 10−2 0.0843 0.0882

Rescher 10−3 0.0813 103 0.0910 0.1039

Zadeh 103 0.0843 101 0.0844 0.0892

The clearer superiority of the ε-insensitive learn-
ing method over imprecision-tolerant learning can be ob-
served in the second stage of the experiment (Tables 18–
22). Taking into account the obtained learning results, it
can be concluded that the combination of the DAF and
εLSSLI procedures leads to an improved generalization
ability of sunspot prediction. For all fuzzy implications
used, analogously to the first numerical experiment, a de-
crease in the generalization ability with an increase in
the number of fuzzy rules for DAF + εLSSLI is much
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Table 19. RMSE of prediction (I = 3).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 10−2 0.0749 10−2 0.0843 0.0920

Gödel 10−3 0.0835 103 0.0885 0.1104

Gougen 10−1 0.0842 103 0.0885 0.1126

Kleene-Dienes 100 0.0786 10−1 0.0864 0.0912

Łukasiewicz
(Mamdani) 101 0.0764 10−2 0.0846 0.0920

Reichenbach
(Larsen) 100 0.0760 10−2 0.0847 0.0921

Rescher 10−2 0.0840 101 0.0889 0.1153

Zadeh 102 0.0748 10−1 0.0855 0.0922

Table 20. RMSE of prediction (I = 4).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 10−3 0.0751 103 0.0985 0.1110

Gödel 10−3 0.0841 102 0.0898 0.1334

Gougen 10−3 0.0841 102 0.0911 0.1237

Kleene-Dienes 101 0.0781 10−1 0.0979 0.1188

Łukasiewicz
(Mamdani) 10−2 0.0775 101 0.0922 0.1111

Reichenbach
(Larsen) 100 0.0765 102 0.0990 0.1112

Rescher 10−1 0.0829 103 0.0898 0.1422

Zadeh 101 0.0809 103 0.0870 0.0886

Table 21. RMSE of prediction (I = 5).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 101 0.0779 10−3 0.1116 0.1124

Gödel 100 0.0842 102 0.0893 0.1298

Gougen 101 0.0843 102 0.0914 0.1230

Kleene-Dienes 10−2 0.0766 10−1 0.1077 0.1142

Łukasiewicz
(Mamdani) 101 0.0766 10−3 0.1116 0.1123

Reichenbach
(Larsen) 100 0.0776 100 0.1083 0.1122

Rescher 10−2 0.0840 102 0.0885 0.1349

Zadeh 103 0.0793 103 0.0861 0.0891

slower in comparison with the reference procedures. Dif-
ferent methods of interpreting if-then rules lead to differ-
ent learning results. It is hard to find one fuzzy implica-
tion that gives the best prediction quality irrespective of
the number of fuzzy if-then rules. Generally, the highest
values of the identification error and the worst general-
ization ability were obtained using a logical interpretation

Table 22. RMSE of prediction (I = 6).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) Tmax RMSE Tmax RMSE RMSE

Fodor 101 0.0772 102 0.1346 0.1435

Gödel 10−3 0.0840 103 0.0874 0.1426

Gougen 10−3 0.0843 102 0.0883 0.1199

Kleene-Dienes 100 0.0765 10−1 0.1175 0.1453

Łukasiewicz
(Mamdani) 10−2 0.0778 103 0.1296 0.1431

Reichenbach
(Larsen) 101 0.0763 10−2 0.1042 0.1428

Rescher 10−1 0.0831 102 0.0890 0.1536

Zadeh 10−2 0.0800 103 0.0870 0.0913

Table 23. RMSE of prediction in the presence
of outliers (I = 2).

Fuzzy implication DAF + εLSSLI DAF + LS ANBLIR

(relation) RMSE RMSE RMSE

Fodor 0.0940 0.1218 0.1295

Gödel 0.0992 0.1229 0.1313

Gougen 0.0998 0.1233 0.1316

Kleene-Dienes 0.0870 0.0999 0.1257

Łukasiewicz
(Mamdani) 0.0967 0.1291 0.1405

Reichenbach
(Larsen) 0.0900 0.1210 0.1411

Rescher 0.0953 0.1235 0.1318

Zadeh 0.1015 0.1171 0.1194

based on the Gödel, Gougen and Rescher implications.
The best identification quality (RMSE = 0.0728) was
achieved using DAF + εLSSLI for Reichenbach’s impli-
cation (equivalent to Larsen’s fuzzy relation) with I = 2
and Tmax = 10−2. Figures 4 and 5 show the output sig-
nal (a continuous line), the predicted values (a dotted line)
and the prediction error, respectively.

To test robustness to outliers for the prediction prob-
lem, we added one outlier to the training set: the mini-
mal output sample y (1) equal to zero was set to the dou-
bled value of the maximal output sample 2 y (67) equal
to 1.6150. Then, analogously to the previous example,
we performed the second learning stage for I = 2 using
parameters characterized by the best generalization abil-
ity without outliers. The obtained results are shown in
Table 23. From these results we can see significant im-
provements in the generalization ability in the presence
of outliers when we use methods tolerant of imprecision.
The best learning result (RMSE = 0.0870) was achieved
for the Kleene-Dienes fuzzy implication.
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Fig. 4. Sunspots activity: original (a continuous line)
and predicted values (a dotted line) (I = 2,
the Reichenbach implication, Tmax = 10−2).
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Fig. 5. Error values of sunspots prediction (I = 2,
the Reichenbach implication, Tmax = 10−2).

To summarize, the combination of the deterministic
annealing method and ε-insensitive learning leads to an
improvement in fuzzy modeling results. However, it must
be noted that the performance enhancement is achieved
through a decrease in the computational effectiveness of
the learning procedure. The computational burden of the
deterministic annealing procedure is approximately two
times greater compared with the gradient descent method
used in the original ANBLIR learning algorithm, and
the εLSSLI computational burden is approximately three
times greater than that of the least-squares method. To
make a precise comparison of the computational effort
needed by the proposed method, we checked computa-
tional times of the training procedures considered. All

experiments were run in the MATLAB 6.5 environment
using a PC equipped with an Intel Pentium IV 1.6 GHz
processor. The obtained results (time in seconds) are tab-
ulated in Tables 24 (for Reichenbach’s implication and the
identification problem) and 25 (for Reichenbach’s impli-
cation and the prediction problem). The training time us-
ing the proposed hybrid algorithm is approximately three
to six times longer than the genuine training of the AN-
BLIR procedure (with 500 learning epochs), however sim-
ilar (or even lower) in comparison with the DAF + LS
procedure. This is because the precision criterion of the
εLSSLI procedure was usually satisfied earlier than the
criterion based on the maximum number of iterations.

Table 24. Computation times (in seconds) of learning
algorithms for the identification of the gas
oven (the Reichenbach implication).

I DAF + εLSSLI DAF + LS ANBLIR

2 136 138 22

3 141 142 26

4 113 144 31

5 94 158 40

6 187 167 47

Table 25. Computation times (in seconds) of learning
algorithms for the prediction of sunspots
(the Reichenbach implication).

I DAF + εLSSLI DAF + LS ANBLIR

2 133 133 23

3 140 140 27

4 143 146 30

5 130 160 39

6 144 167 52

Another drawback of the DAF procedure is the ne-
cessity of an arbitrary selection of the learning parameters.
The value of the initial stepsize ηini was determined on the
basis of a trial-and-error procedure. Too small values of
ηini slow down the learning convergence and lead to unsat-
isfactory learning results. Too high η ini values may worsen
the learning quality as well since they may lead to an in-
sufficient precision in the gradient descent “searching” in
the parameter space.

Further parameters having considerable influence
on the learning results are the initial pseudotemperature
Tmax, the final pseudotemperature Tmin, the annealing
schedule parameter q and the number of iterations at
each level of the pseudotemperature kmax. The initial
pseudotemperature should be sufficiently high to ensure
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entropy maximization at the beginning of the optimiza-
tion procedure. Too small values of the initial pseudotem-
perature may lead to unsatisfactory learning results as the
influence of the entropy maximization factor may not be
strong enough to ensure the appropriate range of the gra-
dient descent search in the parameter space. The final
pseudotemperature should be low enough to assure the
minimization of the square error at the end. Too high val-
ues of the final pseudotemperature may lead to a decrease
in the learning quality as well since we may not have a
suitable square error minimization phase at the end of the
deterministic procedure. Very high Tmax values and sim-
ilarly, very small Tmin values, lead to an increase in the
number of iterations needed. In our experiments a trial-
and-error method was used to set their values. We at-
tempted to get satisfactory modeling results and as small
the number of iterations as possible.

The formula for the calculation of the annealing
schedule parameter that guarantees finding the global
minimum of the cost for the simulated annealing method
was given in (German and German, 1984). However,
there is no such confirmation for the deterministic anneal-
ing procedure. This method of determining the annealing
schedule parameter leads to a significant increase in the
number of steps needed to find optimal system parame-
ters. Therefore its value was set arbitrarily. Again, we
tried to obtain an acceptable modeling quality and a low
number of iterations.

The number of iterations at each level of the
pseudotemperature was determined on the basis of the en-
tropy variation level (Rao et al., 1999). To ensure faster
convergence, the criterion of the maximum number of it-
erations kmax was added.

The parameters ε and τ of εLSSLI were also set us-
ing a trial-and-error procedure. We cannot give clear rules
for the selection of their values. Too high values of ε and
τ may lead to a decrease in the solution precision. On the
other hand, too small values of ε and τ result in a decrease
in the generalization ability.

The parameters κ and kε max control the solution pre-
cision and the computational cost of LSSLI training. The
selection of their values was based on the trade-off be-
tween the learning quality and the number of iterations
needed to get satisfactory learning results.

7. Conclusions

In this paper, a new learning algorithm of the ANBLIR
neuro-fuzzy system was presented. In the proposed pro-
cedure, the parameters of fuzzy sets from the antecedents
and consequents of fuzzy if-then rules are adjusted sepa-
rately by means of deterministic annealing with a “freez-
ing” phase and ε-insensitive learning by solving a sys-
tem of linear inequalities, respectively. Experimentation

shows the usefulness of the method in the extraction of
fuzzy if-then rules for system identification and signal
prediction problems. The obtained results indicate an
improvement in the generalization ability and robustness
to outliers compared with imprecision-intolerant learn-
ing. However, the performance enhancement is achieved
through an increase in the computational burden of the
learning procedure. Another problem is the necessity of
an arbitrary selection of learning parameters. The deter-
mination of automatic methods for their selection consti-
tutes a principal direction of future investigations.
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Czogała E. and Łęski J. (2001): On equivalence of approximate
reasoning results using different interpretations of if-then
rules. — Fuzzy Sets Syst., Vol. 117, No. 2, pp. 279–296.

German S. and German D. (1984): Stochastic relaxation, Gibbs
distribution and the Bayesian restoration in images. —
IEEE Trans. Pattern Anal. Mach. Intell., Vol. 6, pp. 721–
741.

Ho D. and Kashyap R.L. (1965): An algorithm for linear
inequalities and its applications. — IEEE Trans. Elec.
Comp., Vol. 14, No. 5, pp. 683–688.

Ho Y.C. and Kashyap R.L. (1966): A class of iterative proce-
dures for linear inequalities. — SIAM J. Contr., Vol. 4,
No. 2, pp. 112–115.

Jang J.S.R. (1993): ANFIS: Adaptive-network-based fuzzy infer-
ence system. — IEEE Trans. Syst. Man Cybern., Vol. 23,
No. 3, pp. 665–685.

Jang J.S.R. and Sun J.S.R. (1993): Functional equivalence be-
tween radial basis function networks and fuzzy inference
systems. — IEEE Trans. Neural Netw., Vol. 4, No. 1,
pp. 156–159.

Jang J.S.R., Sun C.T. and Mizutani E. (1997): Neuro-Fuzzy
and Soft Computing. A Computational Approach to Learn-
ing and Machine Intelligence. — Upper Saddle River:
Prentice-Hall.



R. Czabański372
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