
Int. J. Appl. Math. Comput. Sci., 2006, Vol. 16, No. 4, 475–484

A LEARNING PARADIGM FOR MOTION CONTROL OF
MOBILE MANIPULATORS

FOUDIL ABDESSEMED∗, ERIC MONACELLI∗∗, KHIER BENMAHAMMED∗∗∗

∗ UNIVERSITE de Batna
Institut d’Electronique, Rue Chahid Boukhlouf

Batna – 05000, Algeria
e-mail: fodil_a@hotmail.com
∗∗ Laboratoire de Robotique de Paris

1–12 Avenue de l’Europe, 78140 Velizy-Paris, France
e-mail: eric.monacelli@liris.uvsq.fr
∗∗∗ Université de Setif, Institut d’Electronique

Setif – 19000, Algeria
e-mail: khierben@lycos.com

Motion control of a mobile manipulator is discussed. The objective is to allow the end-effector to track a given trajectory
in a fixed world frame. The motion of the platform and that of the manipulator are coordinated by a neural network which
is a kind of graph designed from the kinematic model of the system. A learning paradigm is used to produce the required
reference variables for each of the mobile platform and the robot manipulator for an overall coordinate behavior. Simulation
results are presented to show the effectiveness of the proposed scheme.

Keywords: mobile manipulator, neural network, backpropagation, obstacle avoidance

1. Introduction

In recent years, path planning and motion control of mo-
bile manipulators have emerged as a very significant as-
pect in the area of autonomous robotics. However, few
solutions have been provided. A mobile manipulator sys-
tem is a robotic manipulator mounted on a mobile plat-
form. This combination permits manipulation tasks in un-
limited work spaces. However, since the platform and
the manipulator have independent movements, a partic-
ular point in the workspace may be reached in multiple
configurations, which results in a redundant system. This
can be helpful when it is desirable to perform tasks in a
cluttered environment, or to optimally configure the sys-
tem. Research on investigating the capabilities of mobile
platforms with onboard manipulators has attracted con-
siderable attention. Dubowsky and Tanner (1988) asso-
ciated a holonomic platform to a robotic manipulator. A
framework is used to deal with motion planning and con-
trol to minimize a given criterion. Yamamoto and Yun
(1994) considered the manipulator as being fixed during
platform motion, and the platform to be anchored during
manipulator motion. They proposed a control algorithm
for the platform, so that the manipulator is always posi-
tioned at preferred configurations. Separate control of the

end-effector and the mobile platform was also considered.
This approach, proposed by Ficher et al. (1996), is based
on the natural separation of the two motion subsystems,
using a fuzzy based locomotion control strategy, includ-
ing criteria evaluating the desired system configurations.
The problem of controlling simultaneous motions of the
mobile platform and the robot manipulator has been the
area of research of several authors. Pin et al. (1996a)
proposed the FSP method to optimally solve the inverse
kinematics problem for redundant systems in the presence
of applied constraints and a behavioral criterion. Lee and
Cho (1997) proposed a motion planning method to exe-
cute a sequence of tasks. They formulated the motion-
planning problem as a global optimization one, and si-
multaneously obtained the motion trajectory set and com-
mutation configurations. Zhao et al. (1997) investigated
simultaneous motions of a mobile platform and a manipu-
lator. They developed a genetic algorithm to solve the op-
timal sequence of mobile platform positions and manipu-
lator configurations given a series of task specifications.
Chen and Zalzala (1997) proposed a genetic algorithm
for multi-criteria motion planning of mobile manipulator
systems. They took account of dynamics and nonholo-
nomic constraints. Seradji (1995) obtained the required
mobile platform and robot manipulator motions by solv-

F. Abdessemed et al.476

ing a set of differential kinematic equations resulting from
the combination of the nonholonomic platform constraint,
the desired end-effector motion, and additional constraints
specified by the user. Based on space formulation, Khatib
(Khatib, 1993; Khatib et al., 1996) developed a model for
a mobile manipulator viewed as a combination of two sub-
systems. The mobile platform was considered as a macro-
mechanism with a coarse, slow dynamic response, and
the manipulator was treated as a fast and accurate minide-
vice. Their approach is reduced mainly to controlling re-
dundant systems by obtaining the end-effector dynamic
model by projecting mechanism dynamics into the oper-
ational space, and a dynamically consistent force/torque
relationship that provides decoupled control of motions in
the null space associated with the redundant mechanism.
Nassal (1996) focused on the motion of mobile two-arm
systems. The manipulator controller uses the desired end-
effector position and the current platform position to com-
pute the frame of the end effector with respect to the robot
base. This frame is mapped to a vector of joint angles that
are evaluated by the mobile platform, which uses a cost
function for that purpose. The cost function is mapped to
a gradient that serves as a vector error signal to the co-
ordinated motion controller. But, when focusing on the
different research works, the schemes proposed hitherto
could be classified linto global and local approaches. This
depends on whether we want to compute the optimal con-
figuration with respect to the whole path, see, e.g., (Pin et
al., 1996b) or with respect to the transition of tasks, see,
e.g., (Nagatani, 1996). In contrast to the classical meth-
ods (Abdessemed, 2004; Nakamura, 1991; Renaud and
Dauchez, 1999), a pseudoinverse algorithm could be used
to achieve the primary task of the end-effector trajectory
while the redundant degrees of freedom are used to at-
tempt to satisfy any additional subtasks, such as avoiding
obstacles or preventing the saturation of the joints.

In this paper, the motions of the platform and the
manipulator are coordinated by a neural network. This
neural network is an adaptive graph of operations that pro-
vides reference output values of the desired motion to the
mobile manipulator system. The main contribution here
is the organization of the kinematic model of the mo-
bile manipulator into a neural network in order to apply
the Levenberg-Marquardt backpropagation learning rule
to generate the appropriate parameter-weighting vector.
Once determined, this vector is used to compute inputs
to the mobile platform and to the manipulator so that the
end-effector trajectory, specified in a fixed world frame, is
tracked with a minimum error.

Now, what happens if an object is found in the sur-
roundings or in the path of the end point trajectory? This
is considered as an obstacle to be avoided and we can find
some approaches that deal with this subject (Brock and
Khatib, 2000; Brock et al., 2002). In order to cope with

this situation, in this paper we propose a method to solve
this problem by adding a term that accounts for this new
situation and which is switched each time the system de-
tects an obstacle in the path way of the robot end point.
The control algorithm is tested and the simulation results
show the efficiency of the proposed approach.

This paper is organized into six sections. In Sec-
tion 2, the mobile manipulator description is presented.
Section 3 deals with the design procedure of the coordi-
nated and manipulation motions, while Section 4 details
the learning rule. In Section 5, an obstacle avoidance
method is presented. Simulation results are presented in
Section 6. Section 7 summarizes and concludes the paper.

2. Analysis of the Mobile Manipulator
System

In this section we analyze the mechanical system made up
of a nonholonomic platform upon which a robot manipu-
lator with three rotational degrees of freedom is mounted
as shown in Fig. 1. In this section we briefly discuss its
kinematic model.

YE

XE

ZE

l2

l3
OE

OP OW

ZW

XW

YW

ZB

XB

YB
YP

ZP

XP
OB

l1

Fig. 1. Mobile manipulator configuration.

Consider Fig. 1, where four principal coordinate
frames are shown: the world frame OW , the platform
frame OP , the manipulator base frame OB , and the end-
effector frame OE . Then the manipulator’s end-effector
position/orientation with respect toOW is given by

T W
E = T W

P T P
B T B

E ,

such that the matrix T W
P is determined by some matrix

A(q), T P
B is a fixed matrix and T B

E is determined by the
joint variable vector

θ =
(

θ1, θ2, . . . , θnm

)T

,

and nm represents the degree of freedom of the arm ma-
nipulator. The position of the end-effector xW

E is a nonlin-

ear function of the configuration vector q = (pT , θT)T ∈
R

n, where n = 3 + nm. The joint coordinates of the ma-
nipulator are θ = (θ1, θ2, θ3)T (thus nm = 3). Therefore,

A learning paradigm for motion control of mobile manipulators 477

the generalized coordinates of the mechanical system are

q = (q1,, q2, . . . , q6)T = (xB , yB, zB, θ1, θ2, θ3)T .

Hence, the generalized space dimension of the me-
chanical system is equal to λ = 6. Now, for a given
mechanical configuration system q, its structure imposes
η position and orientation constraints on its end-effector.
In our case, only the end-effector position is considered.
Therefore, the number of constraints is reduced to σ = 3.
On the other hand, we can observe that the system is non-
holonomic, and taking into account the constraint of the
nonholonomy of the mobile platform, we can deduce the
order of redundancy, which is equal to (λ − σ − 1) = 2.
This redundancy helps increasing manipulator dexterity,
prevents the arm from singular configurations, and keeps
the system away from obstacles while completing a given
task. On the other hand, the control of such mechanisms
becomes much harder.

If we refer to Fig. 1 and follow the D–H parameteri-
zation, the outputs of the neural network are given by the
following set of equations:

xW
E

= xW
B

+ cos(θ)
[
l2 cos(θ2) + l3 cos(θ2 + θ3)

]
,

yW
E

= yW
B

+ sin(θ)
[
l2 cos(θ2) + l3 cos(θ2 + θ3)

]
,

zW
E

= zW
B

+ l1 − l2 sin(θ2) − l3 sin(θ2 + θ3),

(1)

where

θ = θ1 + ϕ, (2)

φ is the heading angle of the mobile platform, and l 1, l2
and l3 are the lengths of the three links forming the ma-
nipulator arm. Here xW

B , yW
B andzW

B are the coordinates
of the point B located at the front of the mobile platform
with respect to the world frame {W }. The system (1) de-
fines the Cartesian coordinates of the task variable E, with
respect to the world frame {W }. In a closed form, this
can be written as XE(t) = F (q(t)), where F represents
the direct kinematic mapping from the joint space to the
task space and XE(t) = (xW

E , yW
E ,zW

E)T . In the sequel,
for simplicity, we assume that zW

B equals zero. The goal
is to find the generalized trajectory q(t) for a given task
space trajectory XE(t) such that F (q(t)) = XE(t) is
satisfied. Since the system is redundant, the number of so-
lutions is infinite. To realize a generalized task of the me-
chanical system, one has to derive a set of λ generalized
coordinates. In this context, an approach is suggested to
investigate and solve this problem when we make a com-
plete motion of the end-effector resulting from a combined
operation of the two subsystems working in a coordinated
manner.

3. Motion Control of a Mobile Manipulator

The control strategy combines mobile platform behavior
and manipulator behavior to produce an integrated system
that performs a coordinated motion and manipulation. If
we refer to the arm manipulator as agent1 and the mobile
platform as agent2, then the architecture shown in Fig. 2
illustrates the actions on the environment performed by
the two agents.

Action

Task

Vehicle
Reflex

Action

Perception

Arm Reflex Perception

Fig. 2. Configuration of a coordinated motion and ma-
nipulation of the robotic system architecture.

To provide a solution to the mobile manipulation mo-
tion, we have arranged the direct geometric model equa-
tions into a sort of adaptive graph of operation made up of
three layers (Fig. 3), which forms a neural network. Each
layer has a number of nodes and each node represents a
function of two or more variables. The expression of these
functions is defined by (3). This neural network, being the
kernel of our proposal, is very interesting and uncommon
in robot trajectory generation. This setting will facilitate
the implementation of the back propagation algorithm as a
learning rule to adapt the weights so that the output values
of the neural network come close to the desired reference
values describing the task space trajectory. In this case,

b1

x14

x13

x12

x31

x32

x33

x24

x23

x21

θ2

θ3

Layers: 1 2 3

x22

 x11

33w

22w

11w
f11

f12

f13

f21

xB

 b2 yB

θ

f23

f23

f22

f14
f33

f32

f31

Fig. 3. Neural network of operations.

F. Abdessemed et al.478

m W

EX

d W

EX

q(k)

Ep

Adaptive
Graph

Network

Back-
Propagation
Algorithm

-

+

f(ex,ey)

ψ

q(k+1) Agent 1

Agent 2

W

Fig. 4. Configuration of the controlled system including a neural network.

two mechanical structures are considered as a unique en-
tity. The accomplishment of the task is the result of the
permanent movement of the two structures, for which the
success is based on satisfying of some criterion. Figure 4
illustrates the model architecture of the combined struc-
ture.

The functions fij are defined as follows:

f11(θ, w11) = x11 = cos(w11θ),

f12(qm2, w22) = x12 = cos(w22qm2),

f13(x12) = x13 = cos−1(x12),

f14(x13, qm3, w33) = x14 = (x13 + w33qm3),

f21(x11) = x21 = sin(cos−1(x11)),

f22(x12, x14) = x22 = l3 cos(x14) + l2x12,

f23(x13) = x23 = l2 sin(x13),

f24(x14) = x24 = l3 sin(x14),

f31(x11, x22) = x31 = x11x22 + b1xA,

f32(x21, x22) = x32 = x21x22 + b2yA,

f33(x23, x24) = x33 = l1 − x23 − x24. (3)

For convenience, we define xij as the outputs of the nodes,
where x31, x32, x33 are the network outputs. They consti-
tute the Cartesian coordinates of the task variable E, i.e.,
(xW

E , yW
E ,zW

E).
Let q(k) be the input vector such that

qT (k) = [θ, θ2, θ3, xB, yB],

and mXW
E be the measured output vector such that

mXW
E (k) = [mxW

E , myW
E , mzW

E]T . Morover, introduce
the weighing vectorW such that

W T (k) = [w11, w22, w33] .

If we set the criterionEp as the tracking error,

Ep =
N(3)∑
i=1

(x3i − ri)
2

=
[
(x31 − r1)2 + (x32 − r2)2 + (x33 − r3)2

]
, (4)

where dXW
E = (r1, r2, r3)T = (dxW

E , dyW
E , dzW

E)T rep-
resents the desired operational coordinates and mXW

E =
(x31, x32, x33)T = (mxW

E , myW
E , mzW

E)T defines the op-
erational coordinates measured in the world frame, then
the control objective is to design a control law which guar-
antees that Ep → 0 as k → ∞, k being running time. The
effect of adjusting the weighing vectorW to the error Ep

is determined by the ordered derivatives ∂ +Ep/∂W (k)
(Werbos, 1974).

Now, we apply the backpropagation learning rule
to generate the appropriate parameter-weighing vector
W (k) (Rumelhart et al., 1986). Once determined, the
weights are used to update the input vector q. The ele-
ments of this vector will serve as inputs to the low level
controllers of the two agents as illustrated by the block
diagram of Fig. 4.

The reference states of the plant at the time k + 1 are
functions of the reference states at the time k and the com-
puted weights at the time k + 1, and can be symbolically
expressed as

q(k + 1) = ψ(q(k),W (k + 1)). (5)

4. Back-Propagation Learning Rule

4.1. Output Layer. The error signal for the j-th output
node can be calculated directly as follows:

ε3,i =
∂+Ep

∂x3,i
=

∂Ep

∂x3,i
. (6)

A learning paradigm for motion control of mobile manipulators 479

Therefore,

ε31 = 2(xd
e − x31),

ε32 = 2(yd
e − x32),

ε33 = 2(zd
e − x33).

4.2. Internal Layers. The error signals of these inter-
nal nodes in the j-th position are calculated using the fol-
lowing equation:

εl,i =
∂+Ep

∂xl,i︸ ︷︷ ︸
Error

signal of
Layer 1

=
N(l+1)∑
m=1

∂+Ep

∂xl+1,m︸ ︷︷ ︸
Error

signal of
Layer 1+1

·∂fl+1,m

∂xl,i
, (7)

εl,i =
N(l+1)∑
m=1

εl+1,m
∂fl+1,m

∂xl,i
, (8)

such that 0 ≤ l ≤ L − 1,

ε2,j =
2∑

m=l

ε3,m
∂f3,m

∂x2,j
, j = 1, 2. (9)

Therefore, the error signals of the nodes in the internal
layer are as follows:

ε2,1 = ε3,2x2,2,

ε2,2 = ε3,1x1,1 + ε3,2x2,1,

ε2,3 = −ε33, ε2,4 = −ε3,3.

4.3. Input Layer. The first layer contains four neurons
arranged in the manner presented in Fig. 3. The general
form for the error signal is given by

ε1,i =
4∑

m=1

ε2,m
∂f2,m

∂x1,i
. (10)

Explicitly, the error signals are

ε1,1 = −ε2,1
x1,1√

1 − x2
1,1

+ ε3,1x2,2, (11)

ε1,2 = −ε2,2l2 − ε1,3
1√

1 − x2
1,2

, (12)

ε1,3 = ε2,3l2 cos(x1,3) + ε1,4, (13)

ε1,4 = l3

[
ε2,4 cos(x1,4) − ε2,2 sin(x1,4)

]
. (14)

4.4. Weight Adjustment. To adjust the weights, we
make use of the following update:

wl
ij(k + 1) = wl

ij(k) − μ
∂Ep

∂wl
ij(k)

∣∣∣∣∣wl
ij(k), (15)

where

∂+Ep

∂w
=

∂+Ep

∂xl,i

∂+fl,i

∂w
= εl,i

∂fl,i

∂w
. (16)

Therefore, the weights are altered according to the follow-
ing equations:

w11(k + 1) = w11(k) + ηε1,1θ sin(w11θ), (17)

w22(k + 1) = w22(k) + ηε1,2θ2 sin(w22θ2), (18)

w33(k + 1) = w33(k) − ηθ3ε1,4, (19)

b1(k + 1) = b1(k) − ηxBε3,1, (20)

b2(k + 1) = b2(k) − ηyBε3,2. (21)

Here the last two equations represent the updates of
the biases b1 and b2. However, the steepest descent al-
gorithm is slow for on-line applications. For this reason,
we use the Levenberg-Marquardt algorithm, which has
proven to be an effective way of accelerating the conver-
gence rate (Levenberg, 1944; Marquardt, 1963). It only
needs information about the first and second derivatives
and avoids the inversion of the Hessian matrix. The ex-
pression for updating the weights is

wk+1 = wk − [
JT J + μI

]−1
JT ε, (22)

where I is the identity matrix, J stands for the Jacobian
matrix, μ denotes the learning rate and e stands for the
error. The weights are updated in each iteration in accor-
dance with the following formulas:

w11(k + 1) = w11(k) − j11
j2
11 + μ

ε1,1,

w22(k + 1) = w22(k) − j22
j2
22 + μ

ε1,2,

w33(k + 1) = w33(k) − j33
j2
33 + μ

ε1,4,

b1(k + 1) = b1(k) − j44
j2
44 + μ

ε3,1,

b2(k + 1) = b2(k) − j55
j2
55 + μ

ε3,2,

(23)

F. Abdessemed et al.480

where

j11 = −(θ1 + ϕ) sin(w11(θ1 + ϕ)),

j22 = −θ2 sin(w22θ2),

j33 = θ3, (24)

j44 = xB,

j55 = yB.

Thus, the reference state variables at the time k + 1 are
given by

θ(k + 1) = w11(k + 1)θ(k),
θ2(k + 1) = w22(k + 1)θ2(k),
θ3(k + 1) = w33(k + 1)θ3(k),

θ1 = θ − ϕ,

xB(k + 1) = b1(k + 1)xB(k),
yB(k + 1) = b2(k + 1)yB(k).

(25)

5. Obstacle Avoidance

Obstacle avoidance behavior is added to the previous de-
sign in case the effector moves inside a region where an
obstacle is present. If we assign a spherical safety region
with a radius Ro around an obstacle Po and another with a
radius RE around the end point PE , as depicted in Fig. 5,
then we can define the detection region by a sphere with
a radius Rd, such that Rd = RE + Ro, cf. Fig. 6. The
objective is to track the desired reference trajectory while
avoiding unforeseen obstacles on the path. Such reactive
behavior is easily obtained by adding a second term to the
cost function given by Eqn. (4) as the second term that is
directly related to the distance between the actual position
of the robot and that of the obstacle. Since our goal is to
keep the end-effector away from the obstacle, a straight-
forward choice of the cost function is

Eo = α exp (−β‖d‖) , (26)

where d is the Euclidean distance between the point of the
end-effector and the obstacle such that

d =
[
(x31 − o1)2 + (x32 − o2)2 + (x33 − o3)2

]1/2

, (27)

and o1 = x0, o2 = y0 and o3 = z0 are the coordinates of
the obstacle. Furthermore, α is an inhibitor parameter,

α =

⎧⎨
⎩

1 if the end-effector belongs
to the detection region.

0 otherwise

The overall cost function is then written as

Ep =
N(3)∑
k=1

(x3k − rk)2 + α exp (−β ‖d‖) , (28)

Obstacle

End-effector

Reflex

Fig. 5. Spherical safety regions associated with
the end-effector and the obstacle.

Reference
 trajectory

Actual
end-effector
trajectory

Rd

Detection
region

Obstacle

Fig. 6. Reference and obtained end-effector trajectories
in the vicinity of an obstacle.

where β is the correcting factor used to adjust the shape
of the exponential function. As soon as an obstacle is de-
tected, both types of behavior are activated. But, since the
obstacle fitness function dominates, the keep-away behav-
ior is activated making the end-effector abandon the line
to the goal. Later, when the path is clear and the obstacle
is left behind, the obstacle behavior is inhibited and the
tracking behavior regains importance.

6. Simulation Results

Simulation experiments have been performed in order to
evaluate the developed approach. It is desirable to move
the end-effector from its initial position P1(1, 1, 0.2) to
its desired final position P2(5, 5, 0.5), by tracking instan-
taneously a specified linear trajectory of the end-effector
generated by a uniform Cartesian movement. The neural
network learns the presented desired values and adjusts
the weights appropriately in order to present to the system
the corresponding reference state variables. The conver-
gence of the algorithm for finding the true values of the
weights is proved to be exponentially fast. This conver-
gence helps to enhance the performance of the neural net-
work on motion control. The simulation results are shown
in Figs. 7 to 10, and indicate how closely the Cartesian
coordinates of the end-effector track their corresponding

A learning paradigm for motion control of mobile manipulators 481

Fig. 7. Desired and measured x-trajectories
 and the resulting error.

Fig. 8. Desired and measured y-trajectories
 and the resulting error.

Fig. 9. Desired and measured z-trajectories
 and the resulting error.

Fig. 10. X-Y plots of the end-effector and
 mobile platform trajectories.

Fig. 11. Angular trajectory θ1. Fig. 12. Angular trajectory θ2.

F. Abdessemed et al.482

Fig. 13. Angular trajectory θ3. Fig. 14. Angular trajectory ϕ.

Fig. 15. x-y-z plots of the end-effector and
 mobile platform trajectories.

Fig. 16. 3D perspective of the simulation
 environment.

Fig. 17. Desired and measured x-trajectories
 and the resulting error.

Fig. 18. Desired and measured y-trajectories
 and the resulting error.

A learning paradigm for motion control of mobile manipulators 483

Fig. 19. Desired and measured z-trajectories
 and the resulting error.

Fig. 20. x-y plots of the end-effector and mobile
 platform trajectories.

Fig. 21. Angular trajectory θ1. Fig. 22. Angular trajectory θ2.

Fig. 23. Angular trajectory θ3. Fig. 24. Angular orientation trajectory ϕ.

F. Abdessemed et al.484

Fig. 25. x-y plots of the end-effector and mobile platform
 trajectories in the presence of an obstacle.

obstacle

Fig. 26. 3D perspective of the simulation environment.

obstacle

reference values. We notice that small departures from the
reference trajectories are due to the cumulated tolerable
errors from the learning process. The learning algorithm
was run by using a learning rate of μ = 0.05 for a period
of time not exceeding real time control. All the weights
were initialized to unity. At each step, the learning rate
was updated depending on the obtained behavior. If the
overall error was improved, then the learning rate was in-
creased by the value μ = μ · μinc ; otherwise, it was de-
creased by the value μ = μ ·μdec . Initially, μinc and μdec

took the values of 1.05, and 0.95, respectively. Figs. 11
to 14 show the plots of the manipulator angular values as
well as the orientation of the mobile platform, and Fig. 15
clearly shows the trajectories of the end-effector and the
mobile platform in the xyz-space. Figure 16 depicts a
3D perspective of the simulation environment. Similarly,
when there is an obstacle in the middle path of the end-
effector, the second term of the cost function given by
(28) is activated. The neural network provides angular
values necessary to push the end-effector away from the
line to the obstacle. Later, when the path is clear and the
obstacle is not in the detection region of the end-effector,
the second term of (28) is inhibited and the neural net-
work seeks appropriate angular values that make the end
point of the robot manipulator track successfully the de-
sired trajectory. Curves similar to those presented above
are shown in Figs. 17 to 26. They reflect the results ob-
tained in case an obstacle is met and the end-effector man-
ages to avoid it. In this case, too, the obtained results show
the effectiveness of the proposed controller scheme. The
proposed neural network with the back propagation train-
ing rule is significantly simpler than the use of pseudoin-
verses, mainly when there is a need to avoid obstacles that
are on the desired path of the end-effector.

7. Conclusion

In this paper we proposed a new scheme to motion control
designed to perform mobile manipulation tasks. It com-
bines the motion of the robot manipulator with that of the
mobile platform to execute an end-effector tracking trajec-
tory task. A neural network assures the mapping from the
operational space to the generalized coordinate space. The
latter was implemented in order to supply the low level
controllers of each sub-system with appropriate general-
ized reference values when the operational coordinates of
the end point of the manipulator are given. The results ob-
tained by simulation show that the proposed method per-
formed very well. This controller offers a general solution
to a class of mobile manipulators executing a task in the
operational space in an unknown environment.

References

Abdessemed F. (2004): Control and planning of a mobile ma-
nipulator. — Proc. 12-th Mediterranean Conf. Control and
Automation, Kusadasi, Turkey.

Brock O. and Khatib O. (2000): Real time replanning in high-
dimensional configuration spaces using sets of homotopic
paths. — Proc. Int. Conf. Robotics and Automation, San
Francisco, CA, USA, Vol. 1, pp. 550–555.

Brock O., Khatib O. and Viji S. (2002): Task-consistent obstacle
avoidance and motion behavior for mobile manipulator. —
Proc. IEEE Int. Conf. Robotics and Automation, Washing-
ton, DC, USA, pp. 388–393.

Chen M.W. and Zalzala A.M.S. (1997): Dynamic modeling and
genetic-based trajectory generation for non-holonomic
mobile manipulators. — Contr. Eng. Pract., Vol. 5, No. 1,
pp. 39–48.

A learning paradigm for motion control of mobile manipulators 485

Dubowsky S. and Tanner A.B. (1988): A study of the dynam-
ics and control of mobile manipulator subjected to vehicle
disturbances. — Proc. 4-th Int. Symp. Robotics Research,
pp. 111–117.

Fischer C., Buss M. and Shmidt G. (1996): Soft control of an ef-
fector path for a mobile manipulator. — Proc. Int. Conf.
On robotics and Manufaturing – ISRASM, Montpellier,
France, pp. 299–306.

Khatib O. (1993): Mobile robotic manipulation. — Proc. Symp.
VDI/VDE Soc. Measurement and Automation Intelligent
Robot Control, Langen, Germany, pp. 51–66.

Khatib O., Yokoi K., Chang K., Ruspini D., Holmberg R. and
Casal A. (1996): Vehicle/arm coordination and multiple
mobile manipulator decentralised cooperation. — Proc.
Int. Conf. Intelligent Robots and Systems, IROS96, Osaka,
Japan, pp. 546–553.

Lee J.K. and Cho H.S. (1997): Mobile manipulator motion plan-
ning for multiple tasks using global optimization approach.
— J. Intell. Robot. Syst., Vol. 18, No. 2, pp. 169–190.

Levenberg K. (1944): A method for the solution of certain non-
linear problems in least squares. — Qty. Appl. Math.,
Vol. 2, No. 2, pp. 164–168.

Marquardt D.W. (1963): An algorithm for the estimation of non-
linear parameters. — SIAM J. Contr., Vol. 11, No. 2,
pp. 431–441.

Nagatani K. and Yuta S. (1996): Door-opening behavior of au-
tonomous mobile manipulator by sequence of action prim-
itives. — J. Robot. Syst., Vol. 13, No. 11, pp. 709-721.

Nakamura Y. (1991): Advanced Robotics: Redundancy and
Optimization.— New York: Addison-Wesley.

Nassal U.M. (1996): Motion coordination and reactive control
of autonomous multi manipulators systems. — J. Robot.
Syst., Vol. 13, No. 11, pp. 737–754.

Pin F.G., Morgansen K.A., Tulloch F.A., Hacker C.J. and
Gower K.B.: (1996a): Motion planning for mobile ma-
nipulator with a non-holonomic constraints using the FSP
(Full Space Parametrization) Method. — J. Robot. Syst.,
Vol. 13, No. 11, pp. 723–736.

Pin F.G., Morgansen K.A., Tulloch F.A., Hacker C.J. and Gower
K.B. (1996b): Motion planning for mobile manipulator
with non-holonomic constraint using the FSP method. —
J. Robot. Syst., Vol. 13, No. 11, pp. 723–736.

Renaud M. and Dauchez P. (1999): Modélisation et com-
mande des manipulateurs mobiles à roues. — Proc.
Conf. Journées Nationales de la Recherche en Robotique
(JNRR’99), Monpellier, France, pp. 179–192.

Rumelhart D.E, Hinton G.E. and Williams R.J. (1986): Learning
internal representations by error propagation, In: Parallel
Distributed Processing: Exploration in the Microstructure
of Cognition, Vol. 1 (Rumelhart D.E. and McClelland J.L.,
Eds.). — Cambridge, MA: MIT Press Chap. 8, pp. 318–
362.

Seraji H. (1995): Configuration control of rover-mounted ma-
nipulators. — Proc. IEEE Int. Conf. Robotics and Automa-
tion, Nagoy, Japan, pp. 2261–2266.

Werbos P. (1974): Beyond Regression: New Tools for Prediction
and Analysis in the Behavioral Sciences. — Ph.D. disser-
tation, Harvard Univ.

Yamamoto Y. and Yun X. (1994): Coordination locomotion and
manipulation of a mobile manipulator. — IEEE Trans. Au-
tomat. Contr., Vol. 39, No. 6, pp. 1326–1332.

Zhao M., Ansari N. and Hou E. S. (1997): Mobile manipulator
path planning by a genetic algorithm. — J. Robot. Syst.,
Vol. 11, No. 3, pp. 143–153.

Received: 17 March 2006
Revised: 29 September 2006

