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The role of relaxation oscillator models in application fields such as modeling dynamic systems and image analysis is dis-
cussed. A short review of the Van der Pol, Wilson-Cowan and Terman-Wang relaxation oscillators is given. The key property
of such nonlinear oscillators, i.e., the oscillator phase shift (called the Phase Response Curve) as a result of external pulse
stimuli is indicated as a fundamental mechanism to achieve and sustain synchrony in networks of coupled oscillators. It
is noted that networks of such oscillators resemble a variety of naturally occurring phenomena (e.g., in electrophysiology)
and dynamics arising in engineering systems. Two types of oscillator networks exhibiting synchronous behaviors are dis-
cussed. The network of oscillators connected in series for modeling a cardiac conduction system is used to explain causes
of important cardiac abnormal rhythms. Finally, it is shown that a 2D network of coupled oscillators is an effective tool for
segmenting image textures in biomedical images.
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1. Introduction

In the recent two decades, increased research interest in
computational systems that mimic nature for solving com-
plex modeling and data processing tasks has been ob-
served. Paradigms such as supervised and unsupervised
artificial neural networks (Tadeusiewicz, 1993), evolu-
tionary computations (Michalewicz, 1996) or neuro-fuzzy
systems (Rutkowski, 2004) are notable examples. Due
to their capabilities of solving complex multi-dimensional
data processing tasks, these paradigms have won a signif-
icant role in applications such as data classification (Jain,
2000), signal processing (Hu and Hwang, 2001), diagno-
sis support systems (Korbicz et al., 2004), prediction and
control (Narenda and Parthasarathy, 1990).

There is also a less exposed line of research in the
computational intelligence field that mimics a specific as-
pect of biological systems, i.e., their rhythmic nature, and
exploits this feature for solving a wide class of problems
encountered in biomedical and technical sciences. Rhyth-
mic behavior is common for most living organisms (Glass
and Mackey, 1990). It occurs in human electrocardio-
graphic (ECG) and electroencephalographic (EEG) sig-
nals, gait patterns, breathing cycles and circadian rhythms.
Figure 1 illustrates samples of ECG and EEG signals
which reveal various modes of cyclic patterns.

An interesting aspect of these phenomena is that
these patterns reflect complex interactions between popu-

(a)

(b)

Fig. 1. Examples of biological rhythms observed
in human ECG (a) and EEG signals (b).

lations of excitatory cells themselves and interactions with
the environment. As a result, rich dynamic behavior of
such cell populations can occur that range from a quies-
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cent state to a synchronised oscillating action or irregular
spatiotemporal chaotic dynamics.

Coherent oscillations were discovered in an olfactory
system by Freeman (1978) and a decade later in visual cor-
tex neural cells (Eckhorn et al., 1988). Synchronised neu-
ronal oscillations within a frequency range of 35–85 Hz
were reported. These observations are in accord with the
theory of temporal correlation proposed by Von der Mals-
burg and Schneider (1986). This theory states that syn-
chronised oscillations of neuron groups arise once atten-
tion is focused on a coherent stimulus. For more than one
perceived stimulus, these synchronised patterns switch in
time between different neuron groups thus forming tem-
poral maps coding several features of the analysed scene.
Figure 2 illustrates the concept of the temporal correlation
theory.

Fig. 2. Illustration of the concept of temporal correlation theory.

Apart from time coherence, also spatial ordering of
oscillations plays an important role in the overall dynam-
ics of biological rhythms. The so-called spatial oscilla-
tions are associated with propagating waves either in one-
dimensional structures, e.g., electrical excitation of the
heart conduction network or two- and three-dimensional
excitable tissues, e.g., heart or brain tissues (Strumiłło and
Durrani, 1996). In fact, spatial disorder in these propa-
gating waves has been found to be the cause of critical
health breakdowns, such as a heart attack or an epileptic
attack, that were termed dynamical diseases by Glass and
Mackey (1990). Figure 3 illustrates a characteristic pat-
tern of multiple spiral waves of the type believed to persist
in the cardiac tissue during the critical state of fibrillation.

Fig. 3. Multiple spiral wave fronts coexisting in the state
analogous to cardiac fibrillation (Strumiłło, 1993).

In this paper, we intend to define principal types of
nonlinear oscillators and explain their fundamental prop-
erty of phase locking, which is the basic mechanism un-
derlying emergent global dynamics in populations of ex-
citatory cells. We also show how models of coupled os-
cillating neurons can serve different modeling and com-
putational tasks in biomedical research. Firstly, models of
coupled neural oscillators are used for explaining heart-
beat dynamics. Secondly, the application of a 2D-network
of coupled oscillators to an image texture segmentation
task is shown and example results are given.

2. Nonlinear Oscillators

Consider the following dynamic system of two coupled
differential equations:⎧⎪⎪⎨

⎪⎪⎩
dx

dt
= f1 (x, y) ,

dy

dt
= f2 (x, y) ,

(1)

where x, y ∈ R are system states and f1, f2 are transfer
functions that define this two-state system dynamics. Note
that the harmonic oscillator given by

d2x

dt2
+ x = 0 (2)

can be defined in terms of (1) with f1 = y, f2 = −x after
introducing the new variable

y =
dx

dt
.

Thus, the harmonic oscillator is a linear oscillator. It
leads to a circular limit cycle (center singularity) in the
(x, y) phase plane. Linear oscillators having different free
running frequencies cannot mutually synchronise (Terman
and Wang, 1995). This fundamental shortcoming makes
them useless in modeling phenomena exhibiting synchro-
nous oscillations existing in many biological or technical
systems.

Historically, the first important model of a nonlinear
oscillator was proposed by Van der Pol and Van der Mark
(1928) while studying electronic triode circuits. In temrs
of the first-order difference equations (1), their oscillator
can be defined by the set of equations⎧⎪⎪⎨

⎪⎪⎩
dx

dt
= μ

(
y + x − x3

3

)
,

dy

dt
= −x

μ
,

(3)

where μ > 0. Plots of the x and y nullclines for (3), i.e.,
the points of the (x, y) phase plane satisfying dx/dt = 0
and dy/dt = 0 are shown in Fig. 4(a). The x-nullcline is
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the cubic function y = −x
(
1 + x2/3

)
and the y-nullcline

given by x = 0 is simply the y-axis. The intersection of
these nullclines is at the origin of the (x, y) phase plane,
giving rise to an unstable equilibrium point. The limit cy-
cle of this oscillator shown in arrows reveals the so-called
two-time scales (in contrast to linear oscillators). At the a
and c branches there is a slow advancement of oscillator
dynamics (relaxation), whereas for the b and d branches
there is an abrupt jump in the oscillator’s operation point.
These timings are clearly visible in Fig. 4(b) in the time
plot of the oscillator activity for the state variable x.

(a)

(b)

Fig. 4. Nullclines of the Van der Pol oscillator and its limit cycle
(a) and the x-variable plotted in time (b).

The property of slow and fast advancements of os-
cillator dynamics resembles closely a variety of periodic
phenomena arising in biological systems and engineer-
ing. Another key property of nonlinear oscillator net-
works, which is not displayed by linear oscillators, is that
locally coupled nonlinear oscillators can rapidly synchro-
nise (Somers and Kopell, 1993). This fundamental obser-
vation has led to widespread applications of this type of
networks to various modeling and computational tasks.

3. Wilson-Cowan and Terman-Wang
Oscillators

Wilson and Cowan (1972) studied the properties of a ner-
vous tissue modeled by populations of oscillating cells
composed of two types of interacting neurons: excitatory
and inhibitory ones. A simplified model of such an oscil-
lating cell, comprising an interconnected excitatory node

x and an inhibitory node y, is given by⎧⎪⎪⎨
⎪⎪⎩

τx
dx

dt
= −x + Sx (wxxx + wxyy + I) ,

τy
dy

dt
= −y + Sy (wyyy + wyxx) ,

(4)

where τx < τy are decay time constants of excitatory
and inhibitory neurons, respectively, wxx, wyx > 0 and
wyy, wxy < 0 are local excitatory and inhibitory connec-
tion weights, respectively, I denotes nonlocal interactions
from other cells in the network or external global inputs
to the network (for I = 0 the oscillator is said to be in
the “free-running” mode), and S is a sigmoidal nonlinear
function characterized by the respective threshold θ and
the gain factor β:

S (x) =
1

1 + exp [− (x − θ) /β]
. (5)

A scheme of the Wilson-Cowan oscillator is shown
in Fig. 5. Its nullclines, as defined for the Van der Pol
oscillator, admit sigmoidal shapes and, for a proper choice
of parameters, they intersect at a single unstable singular
point giving rise to a stable limit cycle. An example of
firing patterns of the excitatory and inhibitory nodes of
this oscillator is displayed in Fig. 6.

Fig. 5. Two-node Wilson-Cowan oscillator model.

The Wilson-Cowan oscillator model was used by a
number of researches (Konig and Schillen, 1991; Stru-
miłło and Durrani, 1991; Wang, 1995) to demonstrate syn-
chronous activity in locally coupled networks of such os-
cillators. Applications range from excitatory tissue mod-
eling (cardiac and nerve tissues) to associative memory
models.

Another important nonlinear oscillator model was
proposed by Terman and Wang (1995):⎧⎪⎪⎨

⎪⎪⎩
dx

dt
= 3x − x3 + 2 − y + I,

dy

dt
= ε

[
γ
(
1 + tanh

(x

β

))
− y

]
,

(6)
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Fig. 6. Firing pattern of the Wilson-Cowan oscillator (solid line
– excitatory variable, dashed line – inhibitory variable).

where, similarly to the Wilson-Cowan oscillator, x is re-
ferred to as an excitatory variable while y is an inhibitory
variable. I represents external stimulation of an oscilla-
tor and ε, γ, β are parameters. The x-nullcline is a cubic
curve while the y-nullcline is a sigmoid function as shown
in Fig. 7. If IT > 0, then (6) has a periodic solution repre-
sented by a thick solid line in Fig. 7. The operating point
moves along this line, from the left branch (LB, the so-
called silent phase), then jumps from the left knee (LK)
to the right branch (RB, the so-called active phase), next
reaches the right knee (RK) and jumps again to the left
branch. If IT ≤ 0, the oscillator is inactive (no oscilla-
tions occur). A 2D grid of coupled Terman-Wang oscil-
lators was used for solving complex image segmentation
tasks (Strzelecki, 2004a; Terman-Wang, 1995).

Fig. 7. Nullclines and the limit cycle trajectory
of the Terman-Wang oscillator.

4. Phase Analysis of a Series of Coupled
Nonlinear Oscillators

Here we concentrate on a key property of the discussed
oscillator models, i.e., their capability of achieving syn-
chronous actions in populations of interconnected oscilla-
tors. This capability is demonstrated for a chain of pulse
coupled relaxation oscillators.

Consider a chain of N coupled oscillators locally
connected through excitatory nodes. The coupling via the
external input I for the j-th oscillator in a chain is given
by

Ij = Vj,j−1xj−1 + Vj,j+1xj+1, (7)

where Vj,j−1 > 0 and Vj,j+1 > 0 are the coupling
strengths of the connections of the j-th oscillator with its
two neighbors. Note that for the relaxation oscillators,
Ij influences the j-th oscillator dynamics at the time in-
stances at which neighbor oscillators fire. Thus, the analy-
sis of interactions between oscillators can be simplified
to a phase analysis, as proposed first by Winfree (1967).
Phases of N coupled oscillators evolve according to the
following formulas:

dϕ1

dt
= ω1 + V1,2Δ (ϕ1 − ϕ2) ,

dϕ2

dt
= ω2 + V2,1Δ (ϕ2 − ϕ1) + V2,3Δ (ϕ2 − ϕ3) ,

...
dϕj

dt
= ωj + Vj,j−1Δ (ϕj − ϕj−1)

+Vj,j+1Δ (ϕj − ϕj+1) ,

dϕN

dt
= ωN + VN,N−1Δ (ϕN − ϕN−1) ,

(8)

where ωj is the uncoupled frequency, Δ(ϕj − ϕk) is the
phase shift of the j-th oscillator resulting from stimula-
tion received from the k-th oscillator. If the variables
representing phase differences φj = ϕj − ϕj+1 and
the variables denoting uncoupled frequency differences
Ωj = ωj − ωj+1 are introduced, and then the consecu-
tive equations (8) are subtracted pairwise, the following
equations are obtained in a vector form:

dΦ
dt

= Ω + V Δ, (9)

where

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vf + Vb −Vb 0 · · · 0

−Vf Vf + Vb −Vb
. . .

...

0 −Vf Vf + Vb
. . . 0

...
. . .

. . .
. . . −Vb

0 · · · 0 −Vf Vf + Vb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)



Application of coupled neural oscillators for image texture segmentation and modeling of biological rhythms 517

while making the simplifying assumption that the for-
ward Vf and backward Vb coupling strengths along the
chain of oscillators are invariant, i.e., Vf = Vj,j−1 and
Vb = Vj,j+1. For 1:1 phase-locked entrainment of the
oscillators, i.e., dφj/dt = 0, Eqn. (9) becomes

0 = Ω + V Δ. (11)

Since V is nonsingular (it is a positive definite tridiagonal
matrix), we get

Δ = −V −1Ω. (12)

Thus a phase locked-solution occurs if the following is
satisfied: ∣∣V −1Ω

∣∣ < max |Δ| , (13)

and we conclude that the larger the uncoupled frequency
differences Ωj between the oscillators, the stronger the
coupling connections need to be used to keep up the syn-
chrony of this system of oscillators.

It remains to determine that the obtained solution is
stable under small perturbations to system parameters. If
constant phase-locked phases are assumed, i.e., φj = ϕ0,
the solution of the linearized equation (11) is given by

ε(t) = ε0 exp
(
V × Δ′(φ)t

) |φ=φ0 , (14)

where ε (t) denotes a small perturbation vector to the sys-
tem. If the connection strengths are Vf

∼= Vb, the matrix
V is positive definite with real and positive eigenvalues.
Thus, the solution (14) is stable for the phase values for
which Δ (φ) is a monotonously decreasing function, i.e.,
Δ′ (φ) < 0. The stability of this solution plays an impor-
tant role in sustaining synchrony in biological oscillator
populations, and Δ (φ) is known as the Phase Response
Curve (PRC). The PRC represents the amount of oscil-
lator phase shift as a response to external pulse stimula-
tion. In their electrophysiologic experiments, Guevara et
al. (1990) measured the PRC for cardiac pacemaker cells.
They obtained shapes of PRCs resembling the plot shown
in Fig. 8. Note that this is a monotonously decreasing

Fig. 8. Shape of the phase response curve.

function except for φ = π. We can interpret this func-
tion in the following way: For φ ∈ (0, π), the oscillator’s
phase range, an external stimulus delays oscillator phase
(slows it down) whereas for φ ∈ (π, 2π) the stimulus ad-
vances the phase (speeds up the oscillator). Hence, the
phase shift in both cases results in the reduction in the
phase difference φ = ϕj −ϕk between the phase of the k-
th stimulating oscillator (at the firing instant ϕk = 0 ) and
the phase of the j-th stimulated oscillator. This manner
of phase shift is the mechanism underlying the phenom-
enon of synchronisation in populations of coupled oscilla-
tors, as confirmed by electrophysiologic studies (Guevara
et al., 1990)

In another approach at explaining the synchronous
behavior of coupled oscillators, Somers and Kopell (1993)
used the so-called fast threshold modulation mechanism.
They proved a theorem saying that, for pulse coupled re-
laxation oscillators, a phase locked solution is achieved at
an exponential rate.

5. Wilson-Cowan Oscillators for Modeling
Synchronisation in Cardiac Pacemaker
Cells

The main concept behind this approach is the striking
similarity observed between heart rhythm dynamics and
nonlinear oscillators. This analogy has inspired Van der
Pol and Van der Mark (1928) who first built an electrical
model of the heartbeat by using three coupled relaxation
oscillators.

Strumiłło and Durrani (1991) observed that serially
connected Wilson-Cowan oscillators coupled via excita-
tory nodes can serve as a viable model of the heart conduc-
tion system. In such a network, dynamic interactions be-
tween cardiac rhythm generating elements (pacemakers)
can be demonstrated and the genesis of important cardiac
arrhythmias explained. A more comprehensive discussion
of this concept is given in (Strumiłło, 1993). Here we
show selected examples and results obtained for serially
coupled Wilson-Cowan oscillators.

The parameters of the Wilson-Cowan model were
chosen to achieve autonomous oscillations and identify its
PRC. The parameters of the oscillator, as defined in (4),
which were used in the demonstrated simulation results
are the following: τx = 0.2, τx = 0.24, wxx = 9.8,
wxy = −9.5 wyy = −1.0, wyx = 6.5, and the parameters
of the sigmoidal functions defined in (5) were θx = 0.4,
βx = 0.09, θy = 0.6, βy = 0.09 for the excitatory x-
node and the inhibitory y-node. In each simulation run,
the oscillator was perturbed using a single pulse with the
amplitude I = 0.2 at a different phase of the oscillator
cycle. In each subsequent test, the pulse administration
phase was shifted by a fixed small amount to obtain 50
samples of the oscillator’s PRC. The simplest numerical
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integration method based on the Euler integration with
time step Δt = 0.05 was used for simulating the oscil-
lator dynamics.

The plot of the PRC obtained from computer simu-
lations shown in Fig. 9 resembles the shape of the PRC

Fig. 9. Phase response curve obtained for the
Wilson-Cowan oscillator model.

shown in Fig. 8, which retains the stability of synchro-
nised oscillations. The results of this simulated pertur-
bation analysis closely match the relevant behavior dis-
played by cardiac pacemaker cells (Guevara et al., 1990).
In much the same way as for the biological counterpart,
stable entrainment zones of this oscillator model were ob-
tained. Figure 10 shows that the Wilson-Cowan oscillator
is capable of 1:1 synchronisation to an external stimulus
of considerable different firing rates from the oscillator
free-running frequency.

Fig. 10. Zones of stable entrainment of the Wilson-Cowan
oscillator to the periodic stimulus of a varying
frequency.

In order to model the synchronization mode of the
pacemaker cells, different free-running frequencies ω j

were associated with each j-th oscillator in a chain-like

Fig. 11. Chain of oscillators coupled bidirectionally
through excitatory nodes.

network as illustrated in Fig. 11. As for the cardiac con-
duction system, there is a leading pacemaker with the
highest free-running frequency and there is a decrease in
the uncoupled frequency of the serially connected pace-
makers, i.e., ω1 > ω2 > · · · > ωj > · · · > ωN .
Similarly as for the real cardiac natural pacemaker struc-
ture, the frequency ratio between the leading and the ter-
minal pacemaker is ω1/ωN = 3. The number of bidi-
rectionally coupled oscillators used in simulations was in
the range from N = 20 to N = 60. This number was
sufficient to demonstrate different synchronisation scenar-
ios between the oscillators in the given chain-like struc-
ture. The coupling strengths between the adjacent oscil-
lators for which stable 1:1 entrainment is sustained was
V = Vf = Vb ≥ 2.0 (see Eqns. (7)–(10)). Note from
Fig. 12(b) that, in the so coupled oscillators (which is in
agreement with the theoretical analysis provided in Sec-
tion 4), there is a small phase delay between each subse-
quent oscillator in a chain.

Two main types of arrhythmic conditions were sim-
ulated within the chain model of oscillators, i.e., those
due to an abnormal function of the pacemaker and those
due to conduction abnormalities. Numerically simu-
lated arrhythmias of both types show arrhythmic patterns
that match different abnormal heart functions (Strumiłło,
1993).

Figure 12 provides an example of a conduction sys-
tem abnormality known as the 2:1 conduction block, i.e.,
the condition in which every second pulse transmitted
along the oscillator chain is blocked. By varying coupling
strengths between the oscillators (V = Vf = Vb < 2.0),
different entrainment patterns of higher orders, e.g., 3:2,
4:3 or 3:1, 4:1 were obtained. These results have im-
portant clinical relevance since clinical observations show
that even small disturbances in the conduction system can
lead to life-threatening arrhythmias.

6. Image Segmentation by Means of a 2D
Network of Terman-Wang Oscillators

The segmentation method presented in this chapter im-
plements a network of synchronized oscillators of the
Terman-Wang type. This recently developed tool, which
is based on temporal correlation theory, attempts to ex-
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Fig. 12. Illustration of 2:1 oscillators entrainment: (a) transi-
tion from 1:1 synchronisation to 2:1 entrainment of
the oscillator activity plotted as a solid line to the os-
cillator plotted as a dashed line, (b) spatio-temporal
plots of the oscillator chain activity with 2:1 entrain-
ment shown in the upper-right part of the plot.

plain scene recognition as it would be performed by a hu-
man brain. This theory assumes that different groups of
neural cells encode different properties of homogeneous
image regions (e.g., shape, color, texture). Monitoring the
temporal activity of cell groups allows detecting such im-
age regions and, consequently, leads to scene segmenta-
tion. Oscillator networks were successfully used for seg-
mentation of Brodatz textures (Çesmeli and Wang, 2001),
MR brain images (Sharef et al., 1999), MR foot cross-
sections textures (Strzelecki, 2002), heart tumor echocar-
diograms (Strzelecki et al., 2006). The advantage of this
network is its adaptation to local image changes (related
both to image intensity and texture), which in turn en-
sures correct segmentation of noisy and blurred image
fragments. Another advantage is that synchronized oscil-
lators do not require any training process, unlike artificial
neural networks. An oscillator network is also able to de-
tect texture boundaries (Strzelecki, 2004b). Finally, such
a network can be manufactured as a VLSI chip for very
fast image segmentation (Kowalski and Strzelecki, 2005).

The oscillators defined by (6) are connected to form
a two-dimensional network. In the simplest case, each
oscillator is connected only to its four nearest neighbors
(larger neighborhood sizes are also possible). Such a net-
work is shown in Fig. 13. Network dimensions are equal
to the dimensions of the analyzed image and each oscil-
lator represents a single image pixel. Each oscillator in
the network is connected to the so-called global inhibitor
(GI in Fig. 13). It receives signals from oscillators and, in
turn, can eventually inhibit the whole network. Generally,
the total oscillator stimulation I is given by

I = Iin +
∑

k∈N(i)

WikH(xk − θx) − Wzz, (15)

Fig. 13. Region of the 2D oscillator network; each
oscillator is connected with its neighbors
through positive weights Wik; the global in-
hibitor (GI) is connected to each oscillator.

where Iin denotes external stimulation to the oscillator
(the image pixel value). The Wiks are synaptic weights
connecting the oscillators k and i. The number of these
weights depends on the neighborhood size N(i). Due
to these local excitatory connections, an active oscilla-
tor spreads its activity over the whole group of oscillators
which represent an image object. It provides a synchro-
nization of the whole group. θx is a threshold above which
the oscillator k becomes active. H is a Heaviside function.
Wz is the weight associated with of the inhibitor z, which
is equal to one if at least one network oscillator is in the ac-
tive phase (x > 0), and it is equal to zero otherwise. The
role of the global inhibitor is to provide the desynchroni-
sation of oscillator groups representing different objects
from the one which is currently being synchronized. The
global inhibitor will not affect any synchronized oscillator
group because the sum in (15) has a greater value than W z .

For the task of image texture segmentation, the net-
work weights are set according to (Çesmeli and Wang,
2001):

Wij =

A

√
s∑

k=1

fk
i

s∑
k=1

f̄k
N(i)

ε +
s∑

k=1

|fk
i − fk

j |
, (16)
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where A is the number of active oscillators in the neigh-
borhood N(i), f k

i and fk
j correspond to the k-th texture

feature evaluated for the oscillators i and j, respectively,
f̄k

N(i) is the mean value of the feature f k calculated for
active oscillators in the neighborhood N(i), and s is the
number of texture parameters. These parameters are eval-
uated for some windows centered at the pixels i and j, and
are high for homogeneous texture regions and low for a
region representing texture boundaries. Because the exci-
tation of any oscillator depends on the sum of the weights
of its neighbors, all oscillators in the homogeneous tex-
tured region oscillate in synchrony. Each texture region is
represented by a different oscillator group. Oscillator ac-
tivation is switched sequentially between groups in such
a way that at a given time only one group (representing a
given texture) is synchronously oscillating. The segmen-
tation of texture regions is performed by analyzing oscil-
lator outputs (Çesmeli and Wang, 2001; Strzelecki, 2002).

For the task of texture boundary detection, the weight
connecting the oscillators i and j is set as follows (Strz-
elecki, 2004b):

Wij = FW (fk
j , fk

N(i))
s∑

k=1

∣∣fk
i − fk

j

∣∣, (17)

where Fw is a function used for reducing weight varia-
tion over homogeneous regions (e.g., of the same form as
the numerator of Eqn. (16)). This function depends on
the texture features f k

j of the j-th pixel and features f k
N(i)

evaluated for the neighborhood N(i) of the pixel i. Thus,
the weights are large on texture boundaries (due to large
differences between the texture features f k

j and fk
i ) and

only oscillators located there are activated. Active oscil-
lators delineate an edge of a given texture region and the
analysis of their outputs permits texture boundary detec-
tion.

A segmentation algorithm using an oscillator net-
work was presented in (Linsay and Wang 1998). It is
based on a simplified oscillator model and does not re-
quire the solution of Eqn. (6) for each oscillator. This al-
gorithm was applied to segment biomedical images (Çes-
meli and Wang, 2001; Shareef et al., 1999; Strzelecki,
2002; 2004a).

7. Image Segmentation Examples

The oscillator network was applied to the segmentation
of sample tumor echocardiac images (Strzelecki et al.,
2006). This kind of mass is relatively large and clearly
distinguishable from the image background. A sample
image of size 640 × 480 with 256 gray levels is shown in
Fig. 14(a). A region of interest (ROI) marked by the white
line was defined by a cardiologist to outline an intracar-
diac mass. It was assumed that the image contains two
textures: one representing a tumor and the other related to

the image background. Then, for each ROI, 266 texture
parameters were calculated (based on the co-occurrence
matrix, the run length matrix, the gradient matrix, the first
order autoregressive model and Haar wavelet transform
coefficients). The number of parameters was reduced us-
ing the minimization of the classification error along with
the average correlation coefficient (Mucciardi and Gose,
1971). This method generates a set of least correlated fea-
tures that provides a minimum classification error. The
selected parameters came from the run length matrix and
the autoregressive model. Next, nonlinear discriminant
analysis (NDA) was performed using a three-layer feed-
forward neural network. NDA transforms the input tex-
ture features into a new nonlinear feature space to pro-
vide a further feature reduction and its linear separabil-
ity. Another advantage of NDA is reduction in input data
variance in the new space (Strzelecki, 2004a). The ob-
tained NDA features were further applied to define oscilla-
tor weights according to (16) and (17). Texture feature es-
timation, selection and the NDA were performed using the
MaZda software, a tool developed for texture analysis at
the Institute of Electronics, Technical University of Łódź
(Materka, 2002). Image segmentation was performed us-
ing the algorithm described in (Strzelecki, 2004a). Choos-
ing the values for oscillator network parameters (such as
the global inhibitor weight Wz in (15) or the constant A
in (16)) is rather an iterative and heuristic procedure that
depends on the estimated features of the textured image
regions. A detailed discussion of the settings of network
parameters can be found in (Strzelecki, 2004a).

(a) (b)

(c) (d)

Fig. 14. Echocardiac image containing a benign tumor (a);
segmentation results using the oscillator network
with weights programmed for the detection of tex-
ture regions (b) and the texture boundary (c); the
same for an artificial neural network (d).
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Segmentation results for a sample benign tumor from
Fig. 14(a) are shown in Fig. 14(b). Only the echocar-
diogram part of the image was analyzed. Generally, the
masses were correctly separated from the background.
The white margins between the detected masses and the
background represent a nonclassified area. An artefact ob-
ject detected by the oscillator network can be seen in the
upper part of the mass in Fig. 14(b). Intracardiac mass
boundaries, obtained by the network with weights set ac-
cording to (17), are presented in Fig. 14(c). The detected
outlines resemble the correct mass shapes from Fig. 14(b).
For comparison, the same images were segmented using a
feed forward neural network. The results are presented in
Fig. 14(d). Also in this case intracardiac masses were de-
tected correctly. There are no unclassified white regions.
However, some fragments in the middle part of the image,
representing the background, were misclassified as a mass
area.

The proposed method was also tested on sample
MR biomedical images representing human foot cross-
sections, containing heel and metatarsus bones. These im-
ages were recorded in the German Cancer Research Cen-
tre, Heidelberg, Germany, using a 1.5 T Siemens scanner.
An exemplary 512 × 512 image is shown in Fig. 15(a).
The segmentation of these images is aimed at the detec-
tion of foot and heel bones (marked with white lines) from
other tissues and the image background. The extracted
region is interpreted by physicians to evaluate the bone
microarchitecture in the diagnosis of osteoporosis. As
texture features, Gaussian-Markov random field (GMFR)
model parameters were assumed. In (Strzelecki, 2004a) it
was demonstrated that the GMRF model fits very well this
class of textures. Thus the GMRF parameters were esti-
mated for each image point (a vector of 15 parameters).
Then an NDA analysis was performed, as in the case of
echocardiograms. Two new nonlinear features were used
to form oscillator network weights. The following three
segmentation tools were tested on the same texture feature
set: a multilayer perceptron network, an oscillator net-
work programmed to detect the texture region, and an os-
cillator network with weights set for boundary detection.
A detailed estimation procedure of GMRF parameters and
an algorithm that employs an oscillator network for image
segmentation are described in (Strzelecki, 2002).

Segmentation results for the perceptron network and
the oscillator network programmed for region detection,
shown in Figs. 15(b) and (c), are similar. Generally,
the bones were correctly extracted from the image back-
ground. Segmentation errors can be seen in the im-
age background, where tissue regions were identified as
bones. The oscillator network provides bone object la-
belling that can be useful for further processing. For
the oscillator network with the weights set using (17),
only the texture boundaries were detected. However,

(a) (b)

(c) (d)

Fig. 15. Sample MR image of human foot cross-section (a);
segmentation results using: a multilayer perceptron
network (b), an oscillator network programmed for: re-
gion detection (c) and boundary detection (d). Seg-
mented images are smaller than the original because
texture features are calculated for pixel masks that are
clipped at image borders.

some wrongly detected metatarsus (soft) tissue located in
Figs. 15(b) and (c) is not found in Fig. 15(d). This can
be explained by a lower number and weaker activation of
the boundary tissue oscillators compared with the oscil-
lators located inside the tissue region. This segmentation
method is also much faster than the method for which the
network was programmed for region detection (60% re-
duction in the computation time was gained). This is be-
cause the number of active boundary oscillators is much
smaller than the number of oscillators associated with the
texture area.

8. Summary and Conclusions

Models of different relaxation oscillators have been dis-
cussed. These oscillator types are inspired by rhythmic
behavior observed in biology and engineering. The non-
linearity of the oscillators proved necessary in achiev-
ing synchronised actions in populations of interconnected
oscillators. For pulse coupled oscillators, only a phase
analysis suffices, as was first proposed by Winfree (1967)
for the explanation of emergent synchronised rhythms.
Such rhythms characterize physiological mechanisms in
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most living organisms. This is the reason why so much
research interest has been focused recently on this type of
nonlinear systems. Models of relaxation oscillators cur-
rently play an important role in studies of physiological
phenomena and pave their way into image analysis appli-
cations (Wang, 2005). The latter area of study is exempli-
fied in a successful application of the Terman-Wang 2D
oscillator network for image texture segmentation tasks.

In this work, the following contributions to the afore-
mentioned research field were made:

• identification of the phase response curve (PRC) of
the Wilson-Cowan oscillator and the indication of its
shape resemblance to the relevant curve observed in
cardiac pacemakers (the shape of the demonstrated
PRC is a key issue in obtaining a stable entrainment
rhythm between pacemakers of different intrinsic fre-
quencies);

• explanation of particular cardiac arrhythmias (by
means of a computer simulated structure of coupled
oscillators) as synchronisation disturbances between
coupled pacemaker models;

• development of an image segmentation algorithm
that uses a network of synchronised oscillators for
detecting texture boundaries; it was shown that this
algorithm offers a significant computation speed-up
and superior quality on difficult segmentation tasks
in comparison with region based algorithms.
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Polish).

Strzelecki M. (2004b): Texture boundary detection using
network of synchronized oscillators. — Electron. Lett.,
Vol. 40, No. 8, pp. 466–467.

Strzelecki M., Materka A., Drozdz J., Krzemińska-Pakuła M.
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