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The paper proposes a design procedure for the creation of a robust and effective hybrid algorithm, tailored to and capable
of carrying out a given design optimisation task. In the course of algorithm creation, a small set of simple optimisation
methods is chosen, out of which those performing best will constitute the hybrid algorithm. The simplicity of the method
allows implementing ad-hoc modifications if unexpected adverse features of the optimisation problem are found. It is
postulated to model a system that is smaller but conceptually equivalent, whose model is much simpler than the original
one and can be used freely during algorithm construction. Successful operation of the proposed approach is presented in
two case studies (power plant set-point optimisation and waveguide bend shape optimisation). The proposed methodology
is intended to be used by those not having much knowledge of the system or modelling technology, but having the basic
practice in optimisation. It is designed as a compromise between brute force optimisation and design optimisation preceded
by a refined study of the underlying problem. Special attention is paid to cases where simulation failures (regardless of
their nature) form big obstacles in the course of the optimisation process.
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1. Problem Description

Let us consider optimisation problems where the scalar
objective function value can be calculated only by some
complex algorithm. Here, we call an algorithm complex
when its overall operation cannot be represented by an-
alytic formulae. This means that the algorithm output is
unpredictable.

There may be various reasons behind such complex-
ity. The first one is the computation accuracy, which may
make even simple procedures (like square root computa-
tion) “complex” if the data representation precision is in-
adequate. However, sheer increasing of the precision may
not help if the algorithm itself is extremely sensitive to
disturbances (e.g. fractal computation).

In the above examples, the algorithm output was un-
predictable but at least deterministic. This is not a strict
requirement; in fact, in a large number of cases the al-
gorithm introduces (artificial) randomness reflecting the
(true) nature of some real object—the randomness the op-
timisation procedure has to deal with.

Naturally, the algorithms considered model the be-
haviour of various systems. They are the mathematical
models of those systems in different phases of their life.
Accordingly, one can model a system still being under
design, one can investigate the best way an existent ob-
ject may operate, or one may try to track back the chain
of events that led to system malfunction or destruction.
Probably this is the cause of so many names given to our
optimisation problems. A common one is “design optimi-
sation”, another one is “computer aided engineering”, yet
another one is “computationally complex engineering”, to
end with “simulation-optimisation”. All refer to optimisa-
tion problems whose features were once described accu-
rately by Sandia Laboratories (2006):

The coupling of optimization with complex computational
methods is difficult, and optimization algorithms often fail to
converge efficiently, if at all. The difficulties arise from the fol-
lowing traits, shared by many computational methods:

1. The time required to complete a single function evaluation
with one parameter is large [. . . ].
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2. Analytic derivatives (w.r.t. the parameters) of the objective
and constraint functions are frequently unavailable [. . . ].

3. The parameters may be either continuous or discrete, or
a combination of the two.

4. The objective or constraint functions may not be smooth or
well behaved; i.e. the response surfaces can be severely
nonlinear, discontinuous, or even undefined in some re-
gions of the parameter space. The existence of several local
extrema (multi-modality) is common.

5. Convergence tolerances in embedded iteration schemes in-
troduce nonsmoothness (noise) in the function evaluation
response surface, which can result in inaccurate numerical
gradients.

6. Each function evaluation may require an “initial guess”.
Function evaluation dependence on the initial guess can
cause additional nonsmoothness in the response surface.
Moreover, a solution may not be attainable for an inade-
quate guess, which can restrict the size of the allowable
parameter changes.

Such problems impose very tough, if not to say con-
tradictory, requirements on the optimisation routines, even
if the dimensionality is moderate. On the one hand, un-
pleasant properties of the objective and constraints tempt
to use brute force, i.e. some very unrefined routine, of-
ten executed massively in parallel. On the other hand,
every function evaluation requires lengthy computations
to be run. This implies that the selected optimisation rou-
tine should be efficient, effective and robust. The method-
ology of such a routine construction is the key problem
for everyone interested in design optimisation. This pa-
per presents an approach for making an efficient, effective
and robust optimisation routine that differs from widely
known practices.

In addition to the above problem features, two im-
portant things must be said. One is the fact that it may
not be known whether the unpleasant model properties
are just a result of an inaccuracy or are inherent to the
modelled system. In plain words, there may be no “knob”
for adjusting the modelling accuracy—and the optimisa-
tion routine must take the numerical model as it is, with-
out asking about the nature of its behaviour. This is re-
lated to the other feature: the numerical algorithm for sys-
tem modelling is closed in a separate computation mod-
ule. This piece of software may be completely opaque,
with no possibility of inspecting its internal values (with-
out even making any changes). It is frequently described
as a “black box”—with the difference that a true black box
never explodes, while a third-party simulator—sometimes
does.1

1 Drawing such an analogy is completely adequate here: possible
malicious behaviour of simulators includes hanging or casting an
exception that may destroy the controlling optimisation module.

1.1. Problem Formulation. The design optimisation
problem can be formally defined as follows:

min
x

f(x, y), (1)

where x is a vector of decision variables, i.e. values passed
as the input to the numerical algorithm. The algorithm
computes a vector of its output values y, called dependent
variables. Only then can the value of the performance in-
dex f(·) can be computed. The operation of the numeri-
cal algorithm can be described formally as finding, for any
given x, an element y such that

⎧
⎨

⎩

h1(x, y) = 0,
...

hN (x, y) = 0,

(2)

or, briefly, h(x, y) = 0 is satisfied. Here, h(x, y) rep-
resents relationships between the input and output of the
modelled system. Usually, the optimisation process is ad-
ditionally constrained by

(a) x ∈ Dx, (b) y ∈ Dy. (3)

The domains Dx and Dy almost always have positive
measure, and are well defined by regular inequality con-
straints. Their shape is not a factor complicating optimi-
sation in any meaningful way, so in this paper they are as-
sumed to be hypercubes, which is in fact a common case
(Papalambros, 1988, pp. 383 and 387).

Therefore, the set of feasible decision variable values
is determined by three restrictions: explicitly by (3a), im-
plicitly by the existence of a solution to (2), and implicitly
by (3b). The second constraint is particularly troublesome
because, when violated, no output is calculated at all and
no faintest idea is given regarding the reason or degree of
constraint violation.

A typical approach to solve design optimisation
problems will be briefly presented in Section 2. Next,
two practical problems of the kind considered will be pre-
sented in Section 3, and followed by the author’s proposal
of a methodology for solving them that is alternative to the
typical approach. The results of applying such a method-
ology to the two example problems will be discussed in
Section 4.

2. Standard Methodology for Design
Optimisation

Every calculation of the objective function can be per-
ceived as a costly experiment consisting in performing an
analysis of the system behaviour. The analysis is usually
performed by simulation or a modelling module, but it can
also be done in a real system. Such experiments are costly
in the sense of both money and time consumption. The
time is particularly inconvenient as it is an inevitable cost
that cannot be substituted by anything else.
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A widely recognised and applied strategy to over-
come such a difficulty is to perform optimisation using
a “surrogate model”, i.e. some cost-effective but less ac-
curate model to calculate the objective value. The remain-
der, i.e. the modelling and optimisation techniques, is just
the effect of following the paradigm of simplified mod-
elling. Let us discuss the three component strategies: how
to choose points for the tuning surrogate model, how to
form such a model, and how to find an optimum using
such a model.

2.1. Design of Experiments. Selecting points for sur-
rogate model tuning is called the Design Of Experiments
(DOE). The term comes from statistics and encompasses
also techniques for detecting which decision variables
have bigger and which lesser impact on the system per-
formance. The DOE is usually performed at the initial
stage of design optimisation with the purpose of detecting
the importance of decision variables, but it is also used
to set up (and sometimes update continuously) the surro-
gate model. The most popular strategies are: random sam-
pling, the factorial DOE and orthogonal arrays. In the case
of random or quasi-random sampling, simulations are run
for a number of feasible points with equal probabilities of
being selected. In the factorial DOE the objective value
is calculated for every combination of selected values of
decision variables (in particular, those values can be the
upper and lower decision variable bounds). Orthogonal
arrays strategies, like Fisher’s or Taguchi’s, have the ad-
vantage of evaluating each decision variable importance
even in the presence of disturbances. Taguchi’s strategy
has become particularly popular in industrial design prob-
lems.

2.2. Preparation of a Surrogate Model. A number
of techniques exist for the construction of a surrogate or
approximate model. Using such model responses for op-
timisation, instead of running the “true” experiments, is
called the Response Surface Methodology (RSM). The
term RSM nowadays means the application of simplified
models, of which the polynomial, neural, Bayesian and
Krigging ones are most popular. Originally, the RSM was
fitted by linear, quadratic, cubic (and so on) regression
models, as more and more simulation output values were
available with the optimisation progress. Also, neural net-
works can be used for approximate modelling as they can
model functions of any complexity—however, one has to
plan the network structure reasonably. Bayesian, numeri-
cally laborious, technique has the advantage of modelling
distributions rather than crisp objective values, and Krig-
ging is considered to be a good compromise between the
classical RSM and Bayesian regression.

Many design optimisation packages make it possible
for the the user to specify a custom model template: using
a model matching well a particular problem is worth more

than any general purpose standard RSM technique. Such a
problem-specific surrogate model can be written in some
programming (typically, scripting) language, but it may
be created with any other effective technique. Sometimes
it is made of yet another coarse-grain simulator running
orders of magnitude faster than the accurate one, cf. e.g.
(Plambeck et al., 1996). It should be emphasised that at
any stage of modelling and optimisation the dimensional-
ity of the analysed problems remains unchanged (unlike
in the methodology proposed further in this paper).

2.3. Application of Optimisation Methods. The type
of optimisation methods used to solve design optimisa-
tion problems heavily depends on whether the gradients
of the objective function and constraints with respect to
the decision variables can be reliably estimated. If yes,
the Successive Quadratic Programming (SQP) (Bazaraa
et al., 1993) and Generalised Reduced Gradient (GRG)
(Edgar and Himmelblau, 1988) methods are nowadays
considered the most advanced and efficient techniques—
but, of course, simpler first or second-order methods are
also in use (Poloni et al., 2005). If the gradients are not
available, direct search methods are preferred: the Nelder-
Mead simplex search, simulated annealing, controlled
simplex and complex searches of many kinds and, most
of all, evolutionary strategies. The inherent inefficiency of
direct search routines, i.e. the number of required objec-
tive function evaluations being often prohibitively large,
can be mitigated to some extent with parallel processing
(the most recently published solutions suggest to employ
grid technologies for parallel optimisation).

Recapitulating, design optimisation consists of the
interplay of three general components: the DOE, the RSM
and optimisation—but the details of those interactions de-
pend strongly on the type of the problem and are often left
to be defined by the user. Particularly, the way a surrogate
model is used and fit can be different: it can be global (for
the whole domain) or local, it can be made more accu-
rate by adding more points or increasing the original mod-
elling accuracy, it can model all output variables or only
selected and adequate ones. This is strongly linked with
the type of the optimisation routine, which may change
with the progress of optimisation.

2.4. Present Design Optimisation Packages. Let us
make a brief overview of commercial integrated design
optimisation tools present on the market. The goal is to
show that issues of interest in this paper, i.e. the sup-
port for simulation failures and flexibility in combining
the DOE, the RSM and optimisation, are addressed with
varying attention. The questions are as follows:

• Can the modelling be done by an external “black-
box” module, or must it use the procedur-supplied
modelling language?
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Table 1. Key features of selected design optimisation packages. The question mark means that the relevant
information was not easily attainable; it should be understood as ‘probably no’.

Package “black-box” opt. routine opt. method RSM model support for

name model supplied chosen supplied simulation

supported by the user adaptively by the user failures

HyperWorks no1 no2 ? ? yes3

DAKOTA yes no4 yes5 no yes

ModelCenter yes yes ? ? ?

iSight yes no ? yes yes

Epogy yes yes yes yes yes

1Specialised models provided for metal forming, extrusion, mechanic part motion, etc.
2Interfaces to many solvers.
3Special treatment of singularities in simulations.
4Source code available—any changes possible.
5Sequence of standard methods can be determined in advance by the user.

• Can the optimisation be done by a user-supplied rou-
tine, rather than by a built-in one?

• Can the tool apply optimisation procedures au-
tonomously and adaptively, according to detected
problem features?

• Is the RSM with a user-supplied model supported?

• Are simulation failures safely handled?

The answers, collected from (Hyperworks, 2006; El-
dred et al., 2005; Scott, 2001; Synaps, 2003), are given
in Table 1. It can be noticed that, while the attention and
freedom are given to the simulation side (using a support
for the user supplied model and the handling of failures),
the choice of the optimisation strategy can be controlled
by the user in a quite limited way. The reason is undoubt-
edly that the coupling of simulation with optimisation is
the piece of work that must be done, and a relatively sim-
ple (though sometimes laborious) one. On the other hand,
playing with optimisation settings is not obligatory, not to
mention that it requires by far better expertise.

2.5. Stochastic Design. Stochastic design problems
can be—and are in fact—treated like deterministic ones.
It is assumed that random inputs affect the model output,
which may be therefore treated as a vector of random vari-
ables with some standard deviations. Consequently, the
objective and constraints (3b) are redefined taking into
account their randomness. One type of stochastic design
problems is particularly popular, namely the N -σ design,
in which the solution is required to have a given confi-
dence interval with respect to the constraints, which is de-
termined by N .

The key issue is how to infer about the model output
distribution for a given design. This is typically done by
producing a number of realisations of random input val-
ues in a more or less systematic way. Then a number of
simulations are performed to find out how the cumulative
distribution functions for model outputs might look like.
Optimisation algorithms applied to such problems are de-
terministic. They work well if the number of random sam-
ples taken from inputs is adequate for the optimisation ac-
curacy.

3. Examplary Problems and the Proposed
Methodology

The main innovation regarding the design optimisation
proposed in this paper is the alternative way of construct-
ing the optimisation algorithm. The suggested procedure
comes as a result of the author’s experience in design opti-
misation of two practical problems: set-point optimisation
for a power plant and shape optimisation for a microwave
guide.

3.1. Power Plant Set-Point Optimisation. The prob-
lem of power systems modelling has been present in the
community of power engineers for long time (Portacha,
1969). As the modelled systems consist of many ele-
ments, modelling them using polynomial models usually
fails due to the lack of the appropriate amount or sort of
data that could be used for tuning them. So, another ap-
proach has been taken that utilises the knowledge of ex-
perts, which is expressed in the form of a large set of equa-
tions describing phenomena taking place in power plant
elements. Such a physical model spans diverse branches
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Fig. 1. Two-dimensional exemplary cuts through Dx with sets of decision variable values for which
the modelling (i.e. computing y by simulation) fails marked in black.

of science and is extremely sophisticated but allows to
model system behaviour already at the design stage.

The structure of the coal industrial power plant con-
sidered is comprised of boilers, turbines and regeneration
blocks, with water circulating through them in cycles, see
Appendix A for a detailed diagram of the plant. The basic
physical model comes from (Jankowski et al., 1972). It
is essentially in the form of (2) with some elements of y
being hidden inside the simulation module. The equation
of the type (2) may be solved by finding, for a given x,

argmin
y

N∑

i=1

h2
i (x, y) (4)

using an optimisation procedure. Unfortunately, the so-
lution to (4) satisfying (2) may not exist. Such situa-
tions usually correspond to real-life cases where the plant
reaches dangerous states and must be switched off. How-
ever, solving (2) with (4) leaves no chance of tracing the
reason for such emergency situations.

Another approach to solve (2) is to decompose it into
subsystems (usually corresponding to functional blocks of
the plant) that may be solved by the calculation of un-
known variables by means of consecutive substitutions.
The violation of any equation in the set is cancelled out
by iterative adjustments of selected elements of y. (Those
elements play a role analogous to that which the vector
y has in (4), but their number is lower; moreover, such
an approach makes it possible to track the equations that
determine the modelling success or failure).

The modelling procedure is stopped when (and
if) a desired accuracy is reached for each equation
hi(x, y) = 0 in the set (2).

The goal of design optimisation here is to find a set-
point [x�, y�] for an existing power plant where the per-
formance index is minimised (cf. Appendix A). A set-
point in the model considered is a vector of model vari-
ables: flows of fuel (coal), the working factor (water)
and electric current, pressures, temperatures, entalpies and
helper coefficients. There are 539 such variables in the
analysed model, which describe the states of 67 model el-
ements.

The performance index is the difference between the
profit from selling electric energy and the cost of the fuel.
It must be noted that electric energy is just a by-product
here: the major objective is to supply the factory with
steam having desired parameters. However, producing
steam is raison d’être of the plant, so there is no point
in treating steam parameters as the decision variables.

The need to adjust the plant working point so that it
operates at the minimal cost appears several times a day,
mainly because of the changing steam demands follow-
ing the production schedule, which is usually known in
advance. The optimal set-point location may also be af-
fected by changes in the price of electric energy.

In the model, there are 21 decision variables, selected
by a skilled engineer so that (2) is solved efficiently. They
are subject to box constraints (3a). The main purpose
of those constraints is to curb the range of decision vari-
able values in an attempt to approximate roughly the set
a trained human operator would consider reasonable for
model input values.2

2 Moreover, upper and lower bounds on x bracket the nominal val-
ues of the corresponding internal model variables, and hence de-
termine the region of numerical model validity.
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Fig. 2. Other cuts through Dx where feasible regions are drawn in light grey, regions with the implicit constraints (3b)
violated drawn in dark grey, and regions with the implicit constraints (2) violated marked in black.

While inspecting the model behaviour, important ad-
verse features of both constraints and objective function
have been found that hinder the search for a solution. They
were reported earlier in (Kamola and Malinowski, 2000).
Regarding constraints, the implicit ones defined by the
existence of a solution to (2) have very irregular shapes.
Some of them are shown as black areas in Fig. 1, where
exemplary cuts through the search domain Dx are drawn.
They are in the form of disconnected sets or isolated
points, and are extremely difficult to handle by any op-
timisation routine.

Implicit constraints defined by (3b) are not so numer-
ous and nasty: they appear to lead to convex but still dis-
connected feasible sets. They are shown in Fig. 2 in dark
grey. It is interesting to point out that the areas of feasible
points (light grey) can adjoin areas where the simulation
fails altogether (the black colour means nonexistence of
a solution to (2)). This is particularly inconvenient be-
cause the optimisation procedure may step from a “safe”
area directly into a “minefield”.3 None of these problems
matter too much when the design optimisation is to be
performed by a user acquainted with the specifics of the
modelled plant. In fact, the modelling module was made
with the intention to be operated manually by such a user.
While a specialist avoids dangerous or nonsense combina-
tions of design variable values, an automatic optimisation
routine wanders in every corner of Dx, causing modelling
failures. However, replacing a human operator with an
optimisation algorithm is desirable in the aftermath as it

3 In practice, the nonexistence of a solution to (2) is manifested by
the modelling module by reporting a numerical exception, or en-
tering an infinite loop. It is practically impossible to judge whether
such action is an effect of errors in model implementation, mod-
elling errors, or it represents forbidden states of the object and
denotes real emergency situations—all cases are likely.

never gets tired. Moreover, by operating in a nonroutine
way it can discover completely new solutions.

The adverse features of the objective function men-
tioned above are the harshness and sudden steps of the
response surface, as is shown on the directional graphs
of f(·) in Figs. 3 and 4, respectively. There is noth-
ing unusual about them in design optimisation; however,
together with irregularity of constraints, they effectively
prevent the use of gradient-based optimisation. The harsh-
ness or simulation noise is caused by finite accuracy ter-
mination criteria in loops calculating y for given x. The
stepwise character is the effect of switching in the mod-
elling formulae, which, for example, is the result of a tran-
sition of the working factor between fluid and gas states.

3.2. Shape Optimisation of a Microwave Guide. The
process of microwave circuit design optimisation is con-
cerned with adjusting waveguide dimensions with the pur-
pose to obtain an element with desired electromagnetic
properties. The analysis of the designed microwave cir-
cuit behaviour is performed nowadays by electromagnetic
field simulators rather than by using field theory open for-
mulae. Simulators make it possible to calculate the prop-
erties of microwave elements of fancy shapes.

The modelling is done using the finite difference
time domain method (Taflove, 1995), where both space
and time domains are discretised; next, discrete Maxwell
equations are employed to compute an electromagnetic
field distribution in every single cell of the partitioned ob-
ject and in every single time instant. Therefore, the sim-
ulation speed (not so much as accuracy) depends dramat-
ically on discretisation. Choosing appropriate temporal
and spatial discretisation patterns is essential to make the
simulation tool practically usable.
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Fig. 3. Graph of the performance index computed close to the problem optimum along a given direction d.
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Fig. 4. Stepwise character of f(·) shown on the directional graph drawn near the problem solution.

In the particular optimisation problem considered
here (Kamola and Miazga, 2001), three dimensions
x1, x2, x3 of a waveguide bend are the decision variables,
as is shown in Fig. 5. The waveguide is a kind of trans-
mission line, frequently used in gigahertz frequency de-
vices, and transmitting quite big energy—like in the case
of radars. Waveguide walls are made of metal and the air
inside is the media the wave propagates through.

The objective of the optimisation process is to find
a design in which the wave reflection coefficient of the
waveguide remains small within a specific range of fre-
quencies. If the output vector containing reflection coeffi-
cients for frequencies in the range of interest is the simu-

lation output y, then the performance index is

f (y) = ‖r (y) ‖Lp , (5)

where r(y) is a linear penalty function, activated if the re-
flection coefficient exceeds some threshold. The penalty
function r(y) computes a vector of penalties for all fre-
quencies in the range considered, and f(y) is the usual
Lp norm of r(y). To complete the definition of the opti-
misation problem, x is subject to simple box constraints.

Unlike in the power plant problem, there is no way
for the electromagnetic field simulator to fail, and so the
implicit constraints (2) are always satisfied. Also, the
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Fig. 5. Three-dimensional (left) and top (right) views of the waveguide bend subject to design optimisation.

Fig. 6. Performance function for the waveguide
bend design optimisation problem.

other sort of implicit constraints (3b) vanishes, incorpo-
rated into the penalty function r(·). Therefore, the prob-
lem poses no difficulties related to constraints. However,
the shape of the performance index itself is deteriorated
as p increases. In the most desirable case of p = ∞ (i.e.
when there is no indulgence even for the slightest viola-
tion of (3b)), the response surface is corrupted with noise
and steps mixed, as shown in Fig. 6. As in the case of
the power plant model, the noise is the effect of numeric
inaccuracies and computations being carried out mostly
in loops. The stepwise character of f(·) is the effect of
space discretisation: increasing some detail size causes
new cells to be created automatically—at this juncture an
instant performance change is observed. The finer the dis-
cretisation, the larger the number of steps observed, their
size decreasing.

3.3. Proposed Methodology for Solving Design Opti-
misation Problems. It has been shown that drawbacks
of design optimisation problems may be rooted directly
in the system nature, they may be modelling artefacts,
or they may result from sheer model implementation er-

rors. What to do about them if they are really a se-
rious obstacle for any optimisation routine? Many au-
thors (Papalambros, 1988; Hammel, 1997) suggest that
the models must first be verified and simplified before the
optimisation process can start. However, it seems from
the author’s experience that in many cases changing the
way the modelling is performed is impossible. This is ei-
ther because the modelling routine is contained in an off-
the-shelf analysis tool, or its intricacies are so serious that
tracing errors and inaccuracies (e.g. by reverse engineer-
ing or in any other way) would take ages. Therefore, an
optimisation engineer has his or her hands tied—at least
as far as operation of the simulation module is concerned.

The admittedly, the designer cannot change the way
the modelling is done, but he or she can play with the
optimisation strategy or with the system modelled. These
are the fundamental assumptions contained in the work
(Kamola, 2004). Let us examine these two possibilities in
the context of current trends in design optimisation.

It follows from Table 1 that the user is usually not
allowed to provide his or her own optimisation procedure,
neither can he or she prescribe which optimisation rou-
tines built into the tool will be used in the course of optimi-
sation, and in which order.4 As regards models used in the
course of design optimisation, the standard approach is to
apply a coarse-grain one for preliminary, and a fine-grain
one in the final stage of optimisation. This is a standard
approach, and definitely a working one. For instance: use
a nongradient optimisation routine with a rough model,
and local gradient optimisation routine with a fine one.
But how can one know precisely which routine is most
adequate at each stage of the optimisation process? The
existing design optimisation packages require the user to
use his or her own brains and problem knowledge to spec-

4 Epogy (now iSight by Engineous, Inc.) is one of the very few
exceptions to this rule; its operation and results will be used as
a reference point in Section 4.
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ify that. However, in many practical cases the user buys
an off-the-shelf analysis tool and, striving to couple it with
an optimisation solver, is perplexed because the user’s ac-
tual knowledge of the nature of the problem generated by
the modelling tool can be extremely rudimentary. There-
fore, the user does not know which optimisation routines
to use, in which order, and what the termination criteria
should be there, so that desirable solution quality be at-
tained in reasonable time. The example of waveguide de-
sign is in place to be mentioned here: as the end user (say,
the chief designer in a microwave device manufacture) ac-
quires modelling software, he or she expects his or her
team to embed it into an optimisation routine quickly and
effectively. Possibly none of those people knows much
about the modelling tool (nor the optimisation theory) in
order to be able to utilise this knowledge and to choose
the optimisation routine matching best.

The methodology proposed in this paper tries to help
the user with the construction of an optimal hybrid opti-
misation routine. It proceeds as follows:

1. Use as much a priori knowledge of the problem as
available in order to choose a relatively small set
of candidate optimisation routines capable to solve
the problem jointly. They should be simple enough
to allow some ad hoc modifications. If nothing
is known about the problem, choose several direct
search global methods to be run at the preliminary
stage of optimisation, and some gradient-based local
search algorithm to be run close to the optimum.

2. Define a system that is simpler than the original one
(e.g. by taking away a part of the original system)
but preserves the original system features. Use the
original modelling tool and methodology to model
it.

3. Use the selected optimisation routines to find a so-
lution to the simplified problem, and to determine
a combination of those that constitute the most ef-
ficient and effective hybrid optimisation tool. (This
will take much less time than for the original prob-
lem as the dimensionality of the simplified model is
smaller.)

4. If any unpleasant features of the simpler problem ap-
pear, make necessary improvements in the optimisa-
tion routines so that they are capable of solving this
problem. If this does not help, look for some other
optimisation algorithms. (The simplicity of the algo-
rithms in the candidate set will make rapid modifica-
tions possible).

5. Work out efficient criteria for switching between rou-
tines qualified to be combined into the hybrid algo-
rithm.

6. Apply the optimisation algorithm made for and
trained on the simplified problem to the original
problem.

This methodology does not introduce any revolu-
tionary concept, but allows the engineer to inspect prob-
lem features while making the optimisation procedure,
which—when applied to the original problem—should
work properly without undue effort spent. Section 4
present the results of applying this methodology to the
problems described in Sections 3.1 and in 3.2. Both the
standard and proposed methodologies are presented in the
form of flowcharts in Appendix B.

4. Results

4.1. Power Plant Example.

Initial selection of candidate optimisation methods.
This selection was affected by what has been known so far
about the specifics of the modelling tool used, and by the
way the modelling was done in competitive design optimi-
sation packages for heat and electric systems. In general,
those packages adopt much simpler models and are capa-
ble of modelling much simpler structures (e.g. turbosets
not interlinked by common steam collectors, unlike ours).
Consequently, they use simple, sometimes linear, optimi-
sation methods. On the other hand, the modelling tool
used employs highly nonlinear formulae. Eventually, two
global procedures were qualified for preliminary optimi-
sation and one gradient local procedure for the final opti-
misation stage.

Those global methods are a Controlled Random
Search (CRS2) and an Evolutionary Algorithm (EA).
Both are direct search routines that operate by transform-
ing a pool of trial solutions so that they finally focus on
the global solution with high probability. The Generalised
Reduced Gradient (GRG) method was chosen for final
optimisation as it efficiently handles implicit constraints
(2) without violating them in the intermediate phases of
its operation. The major competitor, sequential quadratic
programming, was discarded mostly because it relies on
quadratic approximations to f(·) (that may be highly in-
accurate) and because it violates the constraints (2) in the
course of operation. By this choice, it was almost sure that
the final hybrid algorithm would discover a globally opti-
mal set point, while being efficient in tracing it precisely.
The question was only which global routine to choose, and
when to stop it and activate GRG.

Definition and modelling of a simplified system. The
simplified system (cf. Appendix A) was created by ex-
cluding three one-stage turbines and the accompanying
devices, such as the regeneration system or collectors,
from the original system. All pumps were removed, too.
However, most nonlinear elements, i.e. turbines (and, po-
tentially, boilers), were preserved along with the perfor-
mance index. System simplification reduces the search
space dimension from 21 to 9, and the average simulation
time from 0.5 to 0.2 s, which makes it possible to exper-
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iment quite freely even with time consuming nongradient
optimisation routines.

Selection of the best optimisation methods. Numerous
tests were performed with the purpose to find the best opti-
misation settings for CRS2 and the EA. They are reported
in detail in (Kamola, 2004, pp. 87–94). The main conclu-
sions are as follows:

• Discarding trial points for which the simulation fails
does not make a difference for efficiency from the
case of keeping them in the algorithm pool, marked
with very high objective values. This applies to both
CRS2 and the EA.

• Enhancing the algorithm’s exploratory nature (by in-
creasing the point pool size in CRS2 and by increas-
ing the variability of mutations in the EA) comes at
the cost of considerable computational effort. Both
algorithms are capable of finding an optimum if the
computational budget is high.

• Neither of the two algorithms is suited to carry out
optimisation on its own as the optimal solution is
situated in the active set for the constraint (3b), cf.
Fig. 7, which is supported well by neither CRS2 nor
the EA.
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Fig. 7. Reference locations of the simplified problem solutions
in the search subspace of x5 and x6 and the performance
index surface. (The location of the CRS2 solution is
marked with a triangle; the Epogy solution is marked
with a square.)

• When run with cost-efficient settings (small pool
point, little explorability), both CRS2 and the EA
find feasible solutions. It seems that the solution
quality depends mainly on the number of objective
evaluations, not on the algorithm type, see Table 2.

Table 2. Average performance index (boldface) values and the
numbers of f(·) evaluations (italics) for simplified
problem solving by CRS2 and the EA. The termina-
tion criterion was the relative accuracy εA (subsequent
solutions differ by a ratio not exceeding εA).

accuracy εA 10−6 10−5 10−4 10−3 10−2 10−1

CRS2 1.764 1.720 1.733 1.850 1.855 1.876

solutions 100000 72071 36893 2969 927 442

EA 1.690 1.694 1.693 1.694 1.765 1.997

solutions 94413 99075 96613 99050 55400 5638

Based on such observations, CRS2 was selected as
the preliminary routine. It has a very short “cycle” of
producing new solutions, so it is easy to quickly verify
whether to switch to the next routine in the hybrid opti-
misation algorithm. However, there is no strong argument
behind such a decision. Probably, an extra CRS2 feature
acting in its favour is that the results are more predictable
and in line with common sense (the relevant tougher ter-
mination criterion implies that more function evaluations
yield a better solution).

Modification and reselection of methods. The problem
of simulation failures encountered (and worked around)
while applying the two direct search methods was con-
sidered to be the main obstacle in applying GRG. Fortu-
nately, a solution neighbourhood, i.e. the region in which
gradient methods should be applied, was free of such pe-
culiarities. However, numerical experiments aiming at
computing to make objective gradient estimates using a
finite forward difference scheme with adaptive step size
selection revealed a great gradient variability (cf. Fig. 3).
Consequently, cursory optimisation tests made with a sim-
ple sort of the steepest descent scheme completely failed,
and the idea of GRG application had to be replaced by
something else.

The COMPLEX algorithm (Box, 1965) was then
considered for the final optimisation stage. It is a direct
search algorithm (its name stands for “constrained sim-
plex”), and it has a direct support for constraints in the
form of (3b). Its only drawback is that it is designed for
convex search domains, let alone being able to support
simulation failures. Changes were necessary in order to
make it applicable to our case, and not only in the close
neighbourhood of the optimum.

In the case of COMPLEX, similarly to CRS2 and the
EA, the optimal solution is sought by transformations of
a pool of trial points, by means of the worst point reflec-
tion with respect to the reflection centre. In the case of an
implicit constraint violation, a standard remedy in COM-
PLEX is to move the reflection centre toward the pool cen-
tre of gravity. The modification proposed by the author is
based on the observation that such a gravity centre may be
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infeasible. But the best solution found so far is feasible,
and thus it was made the reflection centre of last recourse,
approached gradually when everything else failed.

Such changes made the procedure robust enough: the
undesirable phenomenon of getting stuck before reaching
a solution was eliminated as shown in Table 3, where the
average performance indices and the corresponding num-
bers of algorithm steps are shown. One may draw the
conclusion that such a modification is a prerequisite for
any qualitative improvement of a solution. It can also im-
prove efficiency, especially if only moderate accuracy is
required.

Table 3. Average performance index values (boldface) and the
numbers of f(·) evaluations (italics) for the simplified
problem solved by the COMPLEX routine without and
with the author’s improvements. (The parameter w is
explained in the paragraph Switching Criteria.)

w 100 50 20

original 1.862 2.037 2.111
version 608 286 180

improved 1.759 1.786 1.897
version 483 319 190

Switching criteria. Finally, the hybrid procedure consists
of CRS2 being run with a pool size of 8(dimx+1), which
is about the minimum pool size suggested in the literature.
Then COMPLEX takes over, running with a pool size of
only 2(dimx + 1) and terminating when the objective
value has not changed within the last w = 50 algorithm
steps by more than εI = 0.001%. Such parameter values
result from tests reported in detail in (Kamola, 2004, pp.
97–101).

In view of CRS2 inefficiency and significant variabil-
ity in both the number of iterations and the solution qual-
ity, it was proposed that the switchover criterion be sim-
ple and not based on the current CRS2 efficiency. Conse-
quently, the CRS2 operation was terminated after a given
number of objective function evaluations, and COMPLEX
was started from the best solution5 found so far. The so-
lution quality, the numbers of objective evaluations and
the resulting efficiency are shown in Fig. 8. Also, the
switchover after the first feasible solution was found is in-
cluded as an extra criterion. It is evident, cf. Fig. 8(a),
that increasing the CRS2 budget substantially has very
little impact on the CRS2 solution quality, which is in
turn even less correlated with the final solution quality,
cf. Fig. 8(c). Consequently, with the budget growing, cf.
Fig. 8(b), the total efficiency decreases, cf. Fig. 8(d). The
conclusion can be drawn that CRS2 should be run until it

5 Starting COMPLEX with only the best point found by CRS2 or
with a whole content of the CRS2 point pool (as an extra infor-
mation) does not have any effect on the quality of COMPLEX
solutions.

finds any feasible solution. Then COMPLEX should be
used to do the rest of the job. This may mean that the
problem considered is not truly multimodal, and its major
difficulty lies in an efficient treatment of simulation fail-
ures, surface harshness and implicit constraints. It must
be mentioned that the graphs in Fig. 8 present mean val-
ues from 100 optimisation runs. By observing standard
deviations one may conclude that COMPLEX results also
vary much from one run to another, and running several
instances of the algorithm (if a parallel computation envi-
ronment is available) would be the best strategy. The aver-
age results obtained for the simplified model are superior
to those produced by a commercial design optimisation
tool.6

Solving the original problem. The combination
CRS2/COMPLEX was then applied to solve the origi-
nal full-size problem. The only alterations in the algo-
rithm parameters concerned the change in the point pool
size, and setting the history window w to 120. It must be
stressed that the algorithm finds the problem solution reli-
ably and efficiently with no need for any further changes.
The solution is reasonable in the opinion of specialists.
This judgement is based, among other factors, on flow dis-
tributions at the solution: less efficient boilers receive as
little water as possible in order to maximally reduce the
use of this part of installation, and the flows through re-
duction valves are reduced to zero, which means that all
industrial steam is first used for electricity generation be-
fore reaching the factory outlets.

The original problem was not solved by the com-
mercial design optimisation tool because the evaluation
release available to the author did not support problems
of such dimensionality. Therefore, no final verification of
the effectiveness and efficiency of the author’s methodol-
ogy was possible at that stage.

4.2. Waveguide Example.

Initial selection of candidate optimisation methods.
The reason for which the waveguide design is formulated
as a design optimisation problem is that it has become too
troublesome to operate the simulation tool manually, ex-
actly as in the case of the power plant problem. The re-
placement of the operator’s experience and intuition with

6 The objective function has the value of 1.646 at the best solution
found by CRS2. In turn, the Epogy package found a solution with
a performance value of 1.650. This value was found after nearly
25100 evaluations of f(·), and no further improvement was de-
tected in the following 20000 evaluations. In much the same way
as for CRS2, the Epogy solution is also located on the brink of
the implicit constraint area (cf. Fig. 7). Nevertheless, the Epogy
professional optimisation solver was apparently unable to ‘glide’
along it in pursuit of a better point. This confirms the general ob-
servation that solving simulation-optimisation problems is a tough
task, in spite of a number of worked out pre- and post-optimisation
techniques.
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Fig. 8. Selected statistics for the operation of the CRS2/COMPLEX hybrid optimisation algorithm. Bars indicate average values; lines
attached to them indicate standard deviations from the average values. Results are drawn for a varying switching criterion kS

being the number of f(·) evaluations after which a switchover from CRS2 to COMPLEX is performed. (a) The performance
index value at the solution found by CRS2 (white bars) and COMPLEX (grey bars) along with the best results in a series
of algorithm runs (black bars), (b) the total number of f(·) evaluations for COMPLEX (grey bars) and for the whole hybrid
algorithm (white bars), (c) the complement of (a), (d) optimisation efficiency (an improvement in the solution quality divided
by the number of f(·) evaluations) for the whole algorithm.

unemotional operation of an algorithm finally turns out to
be more economic. However, it is still the engineer that
decides which optimisation routine to use, and which so-
lution is to be accepted.

In the case of the waveguide there were earlier trial
applications of Powell’s optimisation routine (Press et
al., 1992, pp. 412–420). However, Powell’s method was
found incapable of performing the whole optimisation
process as it appeared to be very sensitive to the location
of the starting point, and to the stepwise character of the
response surface. Therefore, it was designated as a candi-
date for an optimisation routine to be used at the final stage
of optimisation. CRS2 was chosen again for performing

the initial optimisation. This choice was biased by a good
CRS2 performance in the case of the power plant prob-
lem and by an inadequate performance of a competitive
EA which is an opinion shared by the specialists so far
operating the stimulator manually.

Definition and modelling of a simplified system. To ac-
celerate the optimisation process, the dimensionality of
the search space was decreased to two by fixing the value
of the decision variable x3. It defines the width of a cham-
fer used for the compensation of the so-called fringing
field effects which occur at sharp metal edges (see Fig. 5).

Selection of the best optimisation methods. In the case
of the waveguide design there was no possibility to freely
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Fig. 9. Location of the CRS2 (black dots) and Powell (white square) solutions for the simplified waveguide design problem on the
contour plot of the performance index. White areas denote regions of good performance (low values of the performance index).

test and compare several optimisation methods, since the
simulator was a commercial product controlled by a com-
pany and the design optimisation plug-in was to become
a part of it. Therefore, the possibilities to use the simula-
tor at wish and to change the operation of the optimisation
routine were limited.

Separate tests of CRS2 and Powell’s routine revealed
that CRS2 needed more evaluations in a single run than
Powell’s method, but it found satisfactory solutions much
more reliably. On the average, CRS2 run alone needs
30% less of the computational budget to work equally ef-
ficiently as Powell’s method. This result seemed satisfac-
tory, and CRS2 was assigned to do the whole work alone.
Therefore, the parts Reselection of methods and Switch-
ing criteria of the proposed procedure were no longer ap-
plicable. Figure 9 presents the locations of several CRS2
solutions and of the best Powell solution. CRS2 solutions
are sometimes located in proximity to a local minimum,
but prevalently in proximity to the global one. Powell’s
method started from a location chosen at random is capa-
ble of finding a good solution, but this is a rare case.

Modification of methods. Those were directed to im-
prove CRS2 efficiency in two ways: by changing the rules
of trial point reflection, and by making the algorithm run
in parallel. If a reflected trial point was found to violate

the constraints (3a), it was no longer cast on the search do-
main but “bounced” at the domain boundary back into the
feasible region. This prevented the CRS2 pool from “flat-
tening” at the boundary. The parallel version of CRS2
(Kamola and Miazga, 2001) is not based on suggestions
found in the literature (Price, 1987). Instead, it maintains
a common pool of points, and parallel execution threads
use consecutive worst points in the pool producing simul-
taneously as many trial points as is the number of active
threads. Such a solution promotes explorability, rather
than efficiency, but the so-modified CRS2 was found to
work quickly and reliably enough.

Solving the original problem. To verify quite peculiar
observations and assumptions about CRS2 capabilities,
a number of optimisation trials were performed for the
original 3-D problem. The Powell and CRS2 methods
were started from points randomly selected from the do-
main. Out of 100 optimisation runs, the number of suc-
cessful ones, i.e. with the performance index value re-
duced to values below 0.012, was 8 for Powell’s method
and 49 for the CRS2 routine. Respectively, the average
numbers of f(·) evaluations after which the algorithms
stopped were 167 and 1000.7 Let us calculate the num-

7 Alternatively, one could use the actual number of f(·) evaluations
after which the solution was found. But this number is known
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ber N of objective function evaluations needed to find
a satisfactory solution with the probability p:

N = n log1−r(1 − p), (6)

where n is the average number of f(·) evaluations made
by an algorithm and r is the ratio of good quality solutions
obtained in a series of optimisation runs. A smaller value
of N means a more efficient method. Using (6) as the
efficiency measure, we find Powell’s method (N = 6000)
still less efficient than CRS2 (N = 4449) in the 3-D case.

However, an increase in the required computational
budget (due to the increase in the problem dimensional-
ity) made it possible to reconsider the application of a hy-
brid CRS2/Powell routine. Fifty optimisation runs of such
a routine were made, where Powell was activated after
kS = 130 or after kS = 260 function evaluations made
by CRS2. The results are given in Table 4, along with the

Table 4. Statistics for the 3-D waveguide design
problem solved by different algorithms.

algorithm Powell
only

hybrid
(kS = 130)

hybrid
(kS = 260)

CRS2
only

average number
of f(·) evaluations

167 223 338 1000

percentage
of good solutions

8 38 58 49

efficiency N 6000 1397 1167 4449

reference performance of CRS2 and Powell’s method run
alone. It turns out that by applying a hybrid routine one
can significantly reduce the effort needed to obtain a good
solution with acceptable confidence.

5. Concluding Remarks

The main conclusions of this paper are the following:

1. Complex design optimisation tasks are solved best by
hybrid optimisation routines, consisting of a global
search algorithm and a local search algorithm acti-
vated by some robust switchover criterion (e.g. after
executing a predefined number of steps by the global
algorithm).

2. Selection of the component algorithms can be done
using a simplified model of the system considered,
i.e. simpler than the original model (especially in
terms of dimensionality) but preserving the features
of the original system that are important for the opti-
misation process (the character of the constraints and
of the response surface, etc.).
only when the stopping criterion is satisfied. The stopping crite-
rion was set arbitrarily by a trained operator, and reflects both his
knowledge of the behaviour Powell’s method and disbelief regard-
ing CRS2 applicability.

3. Preferring simple optimisation algorithms pays when
unexpected and adverse problem features appear, as
it is much easier to construct ad-hoc workarounds.

4. A recipe for making an efficient and robust optimisa-
tion routine can roughly be presented in the form of
some design procedure; making the simplified model
is both engineering and art, which is not subject to al-
gorithmisation.

The first conclusion was confirmed by the final results
for both example problems. The applicability and bene-
fits of the approach outlined in Conclusion 2 is best vis-
ible in the case of the power plant model. Conclusion 3
is justified by both examples: avoiding gaps in the feasi-
ble domain or parallelising an optimisation algorithm was
particularly simple for the COMPLEX and CRS2 direct
search routines. The last conclusion is also supported by
both examples: in the case of the power plant, eliminat-
ing from the original model a part of the installation just
reduced the number of complicated formulae, but it did
not eliminate any formulae of a particular type. In the
case of the waveguide, the true effect of problem simpli-
fication was not tested in all respects for objective rea-
sons. However, from some preliminary tests (not pre-
sented here) concerning similar models of higher dimen-
sionalities it turns out that the CRS/Powell tandem’s effi-
ciency decreased rapidly. This might mean that Conclu-
sion 2 may be applicable only to selected types of design
optimisation problems. The characterization of this class
needs further investigations.

Finally, the basic fact should be emphasised that the
proposed methodology is really useful for solving design
optimisation problems that are considered to be very dif-
ficult. It does so not by designing optimisation routines
resulting from an in-depth problem analysis nor does it
so by the application of the brute force—it leads another
way in between those extreme approaches, somewhere be-
sides the current standard approach to design optimisation
problems. Additionally, it gives an engineer full control
and freedom when composing and operating the hybrid
optimisation routine, which in general should not perform
worse than professional integrated design optimisation
tools.
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Appendices

A. Description of the Power Plant Model

In a coal power plant the energy from coal combustion
in a boiler is received by water, which is the working
medium. The water, in the form of steam, goes through
other devices of the plant, giving away its energy and
changing its parameters. The most complex receivers of
the steam are turbines of turbosets. In a turbine the steam
gradually decompresses and cools down on a series of pro-
pellers in the three turbine parts (high-, medium- and low-
pressure) spinning them. Usually, it is possible to let out
some steam of various parameters at several extractions
along its passage through the turbine. The output from
a turbine is mechanical power, converted subsequently by
the generator into electricity, and heat energy carried by
steam flows of different parameters. The steam, to be
warmed again, has to be regenerated, i.e. condensed in
condensers, cooled down in heat exchangers, deareated
and pumped, under high pressure, again into the boiler.
Big systems may consist of many such power blocks
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(boiler–turbine–regenerator), interconnected through col-
lectors to ease working medium distribution in order to
react to changing power demand or to failures, for exam-
ple.

The diagram of the plant considered is given in
Fig. 10. The efficiencies of selected devices are given
in italics. Flows that are decision variables are marked
with the symbol , with the decision variable index given
beside. Industrial steam outlets are marked with the sym-
bol . Flows or power levels contributing to the positive
f(·) component in (7) are marked with the symbol •, and
those contributing negative component—with the symbol
◦. The factory needs three types of steam of a given
pressure, temperature and flow, and one of a partially ad-
justable flow. Steam of desired parameters comes from
taking and mixing steam from various points in the instal-
lation. The factory management is interested in minimis-
ing running costs of the power plant by setting its steady-
state working point appropriately. The running costs are
defined as a simple balance of the cost of coal consump-
tion, the cost of pump operation and the gains from selling
the electric power:

f(x, y)=cC

dim yC∑

i=1

yC,i+cE

(
dim yP∑

i=1

yP,i −
dim yE∑

i=1

yE,i

)

,

(7)
where yT

C = [yC,1 yC,2 . . . ] is the vector of coal flows
(expressed in kg/sec), yT

P = [yP,1 yP,2 . . . ] is the vec-
tor of power consumption by plant pumps (expressed in
kilowatts), yT

E = [yE,1 yE,2 . . . ] is the vector of power
levels in generators, and cC and cE are coal and electric-
ity prices: 0.3 PLN/kg and 5.555 · 10−5 PLN/(kW·sec),
respectively.

The diagram of the prepared reduced dimensionality
plant model is presented in Fig. 11.

B. Flowcharts for the Standard and the
Proposed Optimisation Approach

The schemes of execution for both the usual design opti-
misation procedure and for the one proposed in this pa-
per are presented in Fig. 12. Most of the reasoning and
the decision procedures are presented there as mere func-
tions. This is because one can easily identify their input
and output. However, they can hardly be considered Tur-
ing machines as their effective execution requires in many
cases human reasoning.

Symbols common for both procedures:

Π – a set of vectors containing numeric values, Π =
{π1, π2, . . . , πΠ̄}. Those vectors are the formal way
of presenting any kind of information collected in
the process of design optimisation. In particular,
they include optimisation constraints, trial points
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Fig. 11. Diagram of the test power system that is
a simplified version of the plant model.

and the location of solution approximations, the val-
ues of the performance index, and the information
of the context in which it has been obtained (e.g. the
index of the optimisation method used, the step num-
ber, etc.) (Π̂ refers to the same kind of data for the
model of reduced dimensionality.)

M – a set of functions, M = {μ1, μ2, . . . , μM̄}. Each
function represents the action undertaken in one step
of an optimisation method i, i.e. π = μi(f, h, Π).
Each function produces a new piece of information π
(particularly, a new solution estimate) out of a subset
of information available so far.

i – the index of the currently used optimisation
method.

S – the termination test function; S(Π). The decision
about the termination of the design optimisation pro-
cedure may be based on the whole history of the
process, represented by Π. (Ŝ refers to the test func-
tion for the termination of the optimisation of the
reduced dimensionality problem.)

T – a function that selects the optimisation method;
T (Π). The decision is presumably based on all op-
timisation results obtained so far. The index of the
new optimisation method is the function output.
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Fig. 10. Diagram of the industrial power plant at the ‘Janikosoda’ chemical works in Janikowo, Poland.
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START
h(·), f(·) – original problem

formulation (1,2),
Π = {π1} – problem

formulation data,
M = {μ1, μ2, . . . , μM̄} – set

of preselected optimisation
methods

i = 1 – index of the
optimisation method currently

used (initially, a dummy
method μ1),

h̃ – an initial dummy modelling
function

DOE & model update
(h̃, π) = D(h, h̃, μi, Π)

Π := Π ∪ {π}

Algorithm step
π := μi(f, h̃, Π)
Π := Π ∪ {π}

Termination
test: S(Π)

TRUE

FALSE

Model update
test: U(Π)

TRUE

FALSE

New method selection
iold := i

i := T (Π)

Method change
test: i �= iold

TRUE FALSE

STOP

START
h(·), f(·) – original problem

formulation (1, 2),
Π = {π1} – problem

formulation data,
M = {μ1, μ2, . . . , μM̄} – set

of preselected
optimisation methods
i = 1 – index of the

optimisation method currently
used (initially, a dummy

method μ1)

Creation of a problem of
reduced dimensio-

nality: ĥ(x̂, ŷ), f̂(x̂, ŷ),
Π̂ := {π̂1}

Method selection
i := T (Π̂)

Algorithm step
π̂ := μi(f̂ , ĥ, Π̂)

Π̂ := Π̂ ∪ {π̂}

Termination
test: Ŝ(Π̂)

TRUE

FALSE

Method repair
test: R(Π̂)

TRUE

FALSE

Method repair
μnew = V (μi, Π̂)

Π̂ := Π̂ ∪ {μnew}

Preparations to run design
optimisation of the

original model
(S, A, M) := W (Π̂),

i = 1

Algorithm step
π := μi(f, h, Π)
Π := Π ∪ {π}

Termination
test: S(Π)

TRUE

FALSE

Method change
test: A(Π)

FALSE

TRUE

Method change
i := i + 1

STOP

initial selection
of candidate
optimisation methods

definition and modelling
of a simplified system

selection of the best
optimisation methods

modification of methods

optimal switching
criteria preparation,
selection of the best
optimisation methods

solving of the original problem

Fig. 12. Flowcharts for the operation of the standard (left) and the proposed (right) approaches to design optimisation.
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Symbols specific for the standard design optimisation ap-
proach:

h̃ – the currently used modelling function, i.e. the
function defining a relation between x and y, as
in (2), where x and y are formally subvectors of
π. This function gives only an approximation of the
original model defined fully by h(·).

D – the design of experiments and model update rou-
tine, D(h, h̃, μi, Π). It runs using the original model
h, the current model h̃ and the optimisation method
μi used, and the trial points of the domain examined
so far, which are contained by Π. It chooses new trial
points to be examined, evaluates the performance in-
dex f(·) there, and updates the current model. The
new modelling function and a vector of information
about the points examined are returned.

U – the model update test function, U(Π). It is a func-
tion determining whether the modelling function
currently used needs fine tuning.

Symbols specific for the design optimisation approach
proposed in this paper:

R – the method repair test function, R(Π̂). It is used to
determine whether the currently used optimisation
method needs (and is subject to) repair, or just an-
other method must be activated in order to carry out
the task of the optimal hybrid algorithm preparation
phase. The decision is, in theory, dependent on the
whole information Π̂ gathered so far.

V – a method repair procedure, V (μ, Π̂). The pro-
cedure produces an improved version of μ, poten-
tially capable of dealing with new discovered ad-
verse problem features, described by the optimisa-
tion history stored in Π̂.

W – the procedure of preparation for the final optimisa-
tion run, performed on the original model h. W (Π̂)
uses all the information Π̂ gained so far in the phase
of trial optimisation executed on the model of re-
duced dimensionality ĥ. Functions for the effective
termination criterion and the method switchover are
the effect of W , along with the appropriate optimi-
sation method toolbox, M .

A – a method change test function, A(Π). It is used
to determine whether the next optimisation method
from M can be activated.
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