
Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 1, 99–106
DOI: 10.2478/v10006-007-0009-0

A FEDERATED APPROACH TO PARALLEL AND DISTRIBUTED
SIMULATION OF COMPLEX SYSTEMS

ANDRZEJ SIKORA ∗, EWA NIEWIADOMSKA-SZYNKIEWICZ ∗∗

∗ Research and Academic Computer Network (NASK)
ul. Wąwozowa 18, 02–796 Warsaw, Poland

e-mail: asikora@nask.pl

∗∗ Institute of Control and Computation Engineering
Warsaw University of Technology

ul. Nowowiejska 15/19, 00–665 Warsaw, Poland
e-mail: ens@ia.pw.edu.pl

The paper describes a Java-based framework called ASimJava that can be used to develop parallel and distributed simu-
lators of complex real-life systems. Some important issues associated with the implementation of parallel and distributed
simulations are discussed. Two principal paradigms for constructing simulations today are considered. Particular attention
is paid to an approach for federating parallel and distributed simulators. We describe the design, performance and applica-
tions of the ASimJava framework. Two practical examples, namely, a simple manufacturing system and computer network
simulations are provided to illustrate the effectiveness and range of applications of the presented software tool.

Keywords: parallel simulation, distributed simulation, federated simulators, computer networks simulation, Frame Relay

1. Introduction – Parallel and Distributed
Simulations

The simulation of physical systems is an important tool
for researchers that allows them to analyze the behavior
or/and performance of the system considered and to ver-
ify new ideas. A variety of software environments for
computer simulation are available today (JavaSim, 2007;
Niewiadomska-Szynkiewicz et. al, 2003; NS, 2007; OP-
NET, 2007; SFNET-Java, 2007; SSFNET-C++, 2007;
Szymański et. al, 2002). There are a number of possible
sets of criteria that could be used for simulator compari-
son, e.g., the model size, execution time, memory require-
ments, scalability, programming interface, etc. Different
tools are optimized for different purposes. For example,
comparative studies of some popular network simulators
are reported in (Małowidzki, 2004; Nicol, 2003).

We are involved in the development of large hetero-
geneous systems simulating in near real time. In the case
of complex real-life systems, it is natural to model these
systems as a set of computing processes which then can
be handled by distributed machines or processors. For
the last two decades, parallel and distributed simulation

has been an active research area (Chen and Szymański,
2002; Niewiadomska-Szynkiewicz et. al, 2003; Zeigler et.
al, 2000). Distributed simulations not only reduce the
computation time and permit to execute large programs
which cannot be executed on a single machine, but they
first of all reflect better the structure of the physical system
to be simulated, which usually consists of several compo-
nents.

Parallel and distributed discrete-event simulations
can be described in terms of logical processes (LPs) that
communicate with each other through message passing.
LPs simulate real life physical processes FPs. Each logical
process starts processing as a result of event occurrence
(from the event list or having received a new message).
It performs some calculations and usually generates some
local events and/or messages to other processes.

In parallel simulations each logical process maintains
its own local clock (LVT, i.e., Local Virtual Time). Lo-
cal times of different processes may advance asynchro-
nously. Events arriving at the local input message queue
of a logical process are executed according to the local
clock and the local schedule scheme. Synchronization
mechanisms fall into three categories: conservative, opti-

100 A. Sikora and E. Niewiadomska-Szynkiewicz

mistic and lookback-based. They differ in their approach
to time management. Conservative schemes, described in
(Misra, 1986; Nicol and Fujimoto, 1994; Niewiadomska-
Szynkiewicz and Sikora, 2004; Zeigler et. al, 2000), avoid
the possibility of causality error occurrence. These pro-
tocols determine safe events that can be executed. Op-
timistic schemes (Jefferson, 1985; Nicol and Fujimoto,
1994; Niewiadomska-Szynkiewicz and Sikora, 2004; Zei-
gler et. al, 2000) allow for the occurrence of causality er-
rors. They detect such errors and provide mechanisms for
their removal. The calculations are rolled back to a consis-
tent state by sending out antimessages. It is obvious that,
in order to allow rollback, all results of previous calcula-
tions have to be recorded. Lookback schemes (Chen and
Szymański, 2002; Chen and Szymański, 2003) permit to
consider only causality errors, which require rollback but
no antimessages, so they fall in between conservative and
optimistic schemes.

2. Paradigms for Constructing Simulators

There are two basic directions when developing paral-
lel and distributed large scale systems simulators (see
(Ferenci et al., 2000)):

• development of problem dedicated (specialized) sim-
ulators, specific to the environment for which they
were created,

• development of general purpose simulators, designed
as federations of disparate simulators, utilizing run-
time infrastructure software (RTI) to interconnect
them.

In the case of the first paradigm, the simulation en-
gine, interface, libraries and tools to create new high per-
formance simulators are defined. It is difficult, in general,
for the user to modify and apply such software to a new
environment.

The second paradigm results in a collection of dis-
parate simulators (simulation entities) designated as fed-
erates. All simulators involved in a federation are viewed
as black boxes. Runtime infrastructure software used for
interconnecting simulators is typically designed for coarse
granularity concurrence. RTI implements relevant ser-
vices required by the relevant federated simulation envi-
ronment. The most important services are: the synchro-
nization of simulators, secure and efficient communica-
tion and a scalable platform architecture. An example of
a federated simulation with four entities simulating four
subsystems or parts of a simulated physical system is pre-
sented in Fig. 1.

An approach for federating simulators is utilized in
the high level architecture (HLA) (HLA, 2007), a stan-
dard for distributed discrete-event simulations. The main
advantage is a high possibility of simulation model reuse.

However, we pay for this universal applicability. This ap-
proach imposes certain restrictions concerning the struc-
ture of the federation members. In addition, federates have
to obey some rules that are included in the federation in
order to enable interactions between the federates. In this
paper we describe our approach to parallel and distrib-
uted federated simulations developed based on the soft-
ware tool ASimJava.

RTI (LAN, WAN,
Shared memory)

Simulator 1
Submodel A

Simulator 2
Submodel B

Simulator 3
Submodel C

Simulator 4
Submodel D

Fig. 1. Architecture of a federated simulator.

3. Asynchronous Simulation Java
(ASimJava) Framework for Simulation

3.1. Design Overview. ASimJava (Asynchronous
Simulation Java) is a Java-based framework for the sim-
ulation of large-scale physical systems. The ASimJava
general structure enables discrete-event simulations that
can be described in terms of logical processes that com-
municate with one another through message passing. LPs
simulate real life physical processes.

Two of ASimJava’s principal goals were portabil-
ity and usage in heterogeneous computing environments.
Two versions of ASimJava are implemented: parallel and
distributed. It is possible to develop one simulator com-
bining both of them. The combined parallel and distrib-
uted simulation is presented in Fig. 2.

Application 1

LP1 - asim.SimEntity

Application 2

LP2 - asim.SimEntity

asim.DistributedPort asim.DistributedPort

asim.ParallelPort

LP3 - asim.SimEntity

asim.ParallelPort

1. – distributed connection

1.

2.

Fig. 2. Combined parallel and distributed simulation.

The JXTA technology platform provided by Sun Mi-
crosystems was used for inter-process communication in

A federated approach to parallel and distributed simulation of complex systems 101

the case of a distributed version of ASimJava. JXTA is a
set of open, generalized peer-to-peer (P2P) protocols that
allow any connected device in the network to communi-
cate and collaborate as peers (see Fig. 3). JXTA protocols
are independent of the programming language. Multiple
implementations are provided for different environments.
This technology enables developers to build and deploy
interoperable P2P services and applications. JXTA proto-
cols standardize the manner in which peers discover one
another, selforganize into peer groups, advertise and dis-
cover network services, securely communicate with one
another and remotely monitor one another.

Peer ID

Peer ID
Peer ID

Peer ID

Peer ID

Peer ID

Peer ID

JXTA Virtual
Network

Peer
Peer

Peer

Peer Peer

Physical Network

TCP/IP NAT

Fig. 3. JXTA logical network mapping.

Synchronous and asynchronous variants of simula-
tors are available. In the case of an asynchronous realiza-
tion, four protocols managing calculations (conservative,
optimistic and hybrid) are provided: conservative proto-
col with null messages (CMB) (Misra, 1986), the window
conservative protocol (WIN) (Nicol and Fujimoto, 1994),
the optimistic Time Warp (TW) (Jefferson, 1985) and the
hybrid Moving Time Window protocol (MTW) (Sokol et
al., 1988).

The current version of the ASimJava framework is
composed of five components:

• Basic Library – a collection of classes implement-
ing the basic elements of a simulator, such as logical
processes, events, event lists, message passing, etc.;

• Synchronization Protocols Library – the library of
classes implementing four synchronization algo-
rithms (CMB, WIN, TW and MTW);

• Runtime Infrastructure – the library of classes that
provides communication between the calculating
processes;

• ASimL language – the XML Schema specification
for building an XML file that contains the description
of the system to be simulated;

• Toolboxes – collections of classes implementing the
basic elements of various physical systems. Cur-
rently there is available the Computer Network Tool-
box, which is a collection of classes implementing el-
ements of computer networks, e.g., network devices
(routers, hubs, switches, etc), protocols (IP, Frame

Relay, ATM, etc.). The ASimJava package is flexi-
ble and can be easily extended by other toolboxes of
classes which are specific to a chosen case study.

3.2. Simulation under AsimJava. During a simula-
tion experiment performed with ASimJava one can distin-
guish two main stages: the preparatory one and the experi-
mental one. At the preparatory stage the model of the sys-
tem to be simulated is investigated and implemented based
on ASimJava classes. Each simulator that is built upon
ASimJava classes has a hierarchical structure. The sim-
ulated system is partitioned into several subsystems (sub-
tasks), with respect to functionality and data requirements.
Each subsystem is implemented as a logical process. Each
LP can be divided into smaller LPs. Hence, the logical
processes are nested, see Fig. 4. Computing processes be-
longing to the same level of hierarchy are synchronized.
The approach to synchronization depends on the chosen
version: the global clock in synchronous simulation and
one of the above-mentioned four protocols (CMB, WIN,
TW or MTW) in asynchronous simulation.

Consequently, the application developed based upon
ASimJava classes is a federation of simulators (logical
processes responsible for the simulation of physical sub-
systems) that are connected through the RTI infrastruc-
ture. Each simulator can be easily reused in many other
experiments.

Two types of simulators can be distinguished:

1. A simulator consists only of classes provided in
ASimJava. The structure of the simulated system
together with all model parameters is read from an
XML file. We can simply run the simulator writing
the command line:
java <application_name> -f <file_name.xml>

2. A new simulator. The user’s task is to implement
the subsystems’ simulators responsible for the sim-
ulation of adequate physical subsystems. He or she
can create this application applying adequate classes
from the ASimJava framework and including his or
her own code, i.e., the numerical part of the appli-
cation. The ASimJava classes provide communica-
tion between running processes, their synchroniza-
tion and an interface between the user applications
and the RTI infrastructure. This allows the user to
focus on the numerical part of the application.

To support the process of defining the analysed
user application (simulator type 1), a bidirectional in-
terface to the XML configuration and the state save file
is provided. The ASimL language based on the XML
Schema (www.w3.org standard) specification for build-
ing the XML file with a description of the parameter-
ized system model was developed. It consists of several

102 A. Sikora and E. Niewiadomska-Szynkiewicz

RTI
Simulator 1

Domain C

Domain C/1 LP C/2

Domain C/1/1

LP C/1/1/2 LP C/1/1/1

LP C/1/1/2/1

Domain B

LP B/1 LP B/2 LP B/3

LP C/1/1/2/2 LP C/1/1/2/3

Simulator 2

RTI – network connection

Local memory Local m
em

ory

H
ierarchy

Interconnectivity

RTI – (Real-time Infrastructure) eg. HLA, JXTA
LP – Logical Process

Fig. 4. Federation of simulators consisting of two members: “Simulator 1” and “Simulator 2”.

defined keywords, such as simulator – the user applica-
tion, logicalProcess – a logical process, domain – a group
of logical processes, port – a communication port, link
– a link between two ports, message – a message with
events to be served, eventService – a module that services
an event, parameter Type – the type of any parameter.
The part of an exemplary XML file defining the model
of the system to be simulated in the ASimL language
is presented in Fig. 5.

<logicalProcess name=‘LP2” engine=“Proc_WIN”>
<port name=“LP2_port” communicationType
=“Parallel” />
<parameter name=“timeSEND1” value
=“3.0” />
<parameter name=“portSEND1”
value=“LP2_port” />
<eventService messageType=“SEND1”
serviceClass=“SEND”

/>
</logicalProcess>

<link srcStrictPortName=“Test simulator/Domain 1
/LP1/LP1_port1”

dstStrictPortName=“Test simulator/Domain 1/
LP2/LP2_port1”/>< link

srcStrictPortName=“Test simulator/Domain 1
/LP2/LP2_port1”

dstStrictPortName=“Test simulator/Domain 1/
LP1/LP1_port1”/>

Fig. 5. Sample file with the description of the
simulation model using ASimL.

The simulation model can be fully loaded (run, re-
run) from the XML file. It may contain any number of
user-defined parameters.

The experimental phase begins when all decisions re-
garding the simulated system are made. The simulation
starts. The adequate calculating processes corresponding
to the physical subsystems are executed. The results of
the calculations are recorded into the disc file during the
experiment. The user decides which data should be col-
lected.

4. Case Study Results

The ASimJava framework was used to perform the sim-
ulation of several physical systems. In this paper, appli-
cations to a simple manufacturing system and computer
networks are presented. The objective of the first series
of tests was to compare the effectiveness of the synchro-
nization protocols provided in the framework. The sec-
ond case study, i.e., a Frame Relay network simulator il-
lustrates the effectiveness of the simulator implemented
based on the ASimJava classes.

4.1. Comparative Study of Synchronization Proto-
cols. The first case study, i.e., the simulation of a sam-
ple manufacturing system (Example 1) and an IP network
(Example 2) was performed to compare the effectiveness
of four synchronization protocols provided in ASimJava.
The first series of experiments were related to the sim-
ulation of a simple distributed manufacturing system, as
presented in Fig. 6. The system considered consists of
two sources P1 and P2, eight workstations P3–P10 and

A federated approach to parallel and distributed simulation of complex systems 103

one sink P11. Jobs enter the manufacturing system at the
workstations P3 or P4.

P1 P3 P5

P2 P4 P6

P11

P9

P10

P7 P8

Fig. 6. Example 1: Manufacturing system.

When a job has been serviced at a workstation Pi,
it proceeds to the next workstation. Service times at dif-
ferent workstations are different. Jobs may be queued at
a station awaiting service. A workstation takes one job
from its input queue when it is free, services that job, and
then sends it to the queue of the following workstation.
All workstations service the jobs in the first-come, first-
served order. The job leaves the system after being ser-
viced at the workstation P9 or P10. It is collected at the
sink (P11).

The sources, the sink and all workstations were sim-
ulated by 11 logical processes. It was assumed that after
entering a job with the identifier j at a workstation Pi at
time t, its service began either immediately (at time t), if
Pi was idle, or it began right after the departure of the job
k from this Pi, where k = Pred(i, j) denotes the identi-
fier of the job that had been executed at a workstation Pi
just before j entered it. Let tAj be the time of the arrival
of the job j at Pi, tDk

the time of the departure of the job
k from Pi and Δtij the service time of the job j at this
Pi. Then we obtain

tDj = max(tAj , tDk
) + Δtij . (1)

Simulation experiments were performed under the
following assumptions:

• Two variants of application were considered: Vari-
ant A (each source generated 2 jobs), and Variant B
(each source generated 25 jobs). The service times at
different workstations are given in Table 1.

Table 1. Service times (two variants of application).

Variant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Variant A 2 3 2 3 3 3 7 5 3 3

Variant B 2 5 7 2 2 8 9 5 7 1

• The experiments were performed in the network of
four Celeron 433 computers. The allocation of LPs
simulating adequate physical processes to the com-
puters was as follows: Computer 1: LP1, LP3,
LP5; Computer 2: LP2, LP4, LP6; Computer 3:
LP7, LP8; Computer 4: LP9, LP10, LP11.

The results of the numerical experiments are pre-
sented in Tables 2 and 3. Different aspects were consid-
ered with respect to the synchronization protocols applied:

• time of simulation,

• number of additional messages sent by computing
processes (CMB – null messages, WIN – global
messages used for the calculation of time window
lengths, TW – antimessages, MTW – antimessages
and additional messages used for synchronization),

• number of rollbacks at TW,

• different lengths of the time window at MTW.

Table 2. Simulation results — execution
times of experiments.

Application CMB [s] WIN [s] TW [s] MTW [s]

Variant A 247,83 25,81 34,55 20,93

Variant B 316,86 88,43 52,34 41,25

Table 3. Simulation results for different lengths of time
windows (MTW algorithm, Variant B).

Time window
size

Simulation time
[s]

Additional
messages

Number of
rollbacks

5 54,87 134 0

10 45,09 71 1

20 41,25 36 1

30 44,87 33 2

40 63,82 34 0

50 59,87 23 1

It can be observed (see Table 2) that the speed of sim-
ulation strongly depends on the protocol applied. The best
results (decreased execution times) were obtained for the
hybrid approach MTW, and the worst for the conserva-
tive CMB. This was connected with different degrees of
parallelism in the case of conservative and optimistic ap-
proaches, as well as overheads (additional messages and
rollbacks).

The second case study included a series of experi-
ments related to the simulation of an IP network consist-
ing of five LANs and one server room (13 servers), as
presented in Fig. 7. Two scenarios of traffic with small
packets of transmitted data (Variant A) and large packets
(Variant B) were considered.

The experiments were performed in a network of
four Celeron 433 computers. The allocation of logical
processes simulating the analysed computer network to
the computers was as follows:
• Computer 1: LAN1, LAN2;

• Computer 2: LAN3, LAN4;

• Computer 3: LAN5;

• Computer 4: server room.

104 A. Sikora and E. Niewiadomska-Szynkiewicz

Fig. 7. Example 2: Computer network.

The results obtained for two synchronization proto-
cols (the conservative WIN and the hybrid MTW) are pre-
sented in Table 4. Two lengths of the window in MTW
(1 time unit and 10 time units) were tested.

Table 4. Simulation times for the computer network.

Application WIN [ms] MTW–1 [ms] MTW–10 [ms]

Variant A 18186 18090 15742

Variant B 72072 71097 63996

The application of CMB and TW synchronization
protocols produced much worse results, as the computa-
tion time increased considerably. Similarly to Example 1
(the manufacturing system), the best results were obtained
for the hybrid protocol. The hybrid techniques seem to
be promising with respect to the optimistic TW. It may
be profitable to decrease the degree of the available par-
allelism, increase the number of additional messages but
reduce the number of rollbacks. In the case of combin-
ing TW and window techniques, the main problem is to
estimate an optimal length of the window. The simula-
tion results strongly depend on this parameter, see Table 3
and 4. It seems that the length of each window should
be calculated adaptively, taking into account the applica-
tion considered and the available hardware platform, see
(Sokol et al., 1988). Accordingly, the degree of paral-
lelism reduction remains the topic of a hot debate.

4.2. Frame Relay ASimJava Simulator. In the sec-
ond case study we evaluated the complexity of Frame
Relay networks simulation. Frame Relay is a high-

performance WAN protocol that operates at the phys-
ical and data link layers of the OSI reference model
(McCabe, 2003). This is a standard protocol for LAN in-
ternetworking which provides a fast and efficient method
of transmitting information from a user device to LAN
bridges and routers. Frame Relay is an example of a
packet-switched technology. Variable-length packets are
used for more efficient and flexible data transfers. These
packets are switched between various segments in the net-
work until the destination is reached. The Frame Relay
traffic is described based on several characteristic para-
meters. Detailed information about FR parameters can be
found on the Frame Relay Forum website (Frame Relay
Forum, 2007).

The simulators of four network systems (Examples
E1–E4) describing different network sizes and configu-
rations were implemented upon ASimJava. Detailed de-
scriptions, i.e., network models and traffic characteristics
are given in Table 5.

The goal of all experiments was to simulate 30 sec-
onds of physical network operation. The efficiency of the
parallel federated simulation was compared with the se-
quential realization.

To compare the performance of packet-level simu-
lators, we used two characteristics, i.e., the simulation
time (the time of the experiment execution) in miliseconds
and the average simulator speed PTS (simulated packets
transmissions per second) defined as follows (Fujimoto et
al., 2003):

PTS ≈ NF PF HF

T
, (2)

where T denotes the execution time, NF stands for the
number of flows (edge router to edge router), PF is the
number of packets sent per flow, HF signifies the average
hops per flow (queuing, transmitting over link, etc.). The
presented definition ignores lost packets and additional
messages generated by the protocols.

All simulations were performed in a network of PC
computers. Three series of experiments were executed:

• C1 – sequential simulation: one machine (AMD
Athlon-M 1.2 GHz, 512 RAM),

• C2 – distributed simulation: two machines (AMD
Athlon-M 1.2 GHz, 512 RAM and AMD Sempron
1.67 GHz, 512 RAM),

• C3 – distributed simulation: three machines (AMD
Athlon-M 1.2 GHz, 512 RAM, AMD Sempron 1.67
GHz, 512 RAM and AMD Sempron 1.67 GHz, 512
RAM).

The results of the experiments for four network con-
figurations (Examples E1–E4) performed on a single ma-
chine (Variant C1) are presented in Table 6.

It can be observed that the execution time of the ex-
periment performed for the network E4 exceeds the real

A federated approach to parallel and distributed simulation of complex systems 105

Table 5. Tested Frame Relay network models.

E1 E2 E3 E4

1 switch 1 switch 2 switches 3 switches

2 interfaces 6 interfaces 14 interfaces 22 interfaces

2 edge routers 6 edge routers 12 edge routers 18 edge routers

2 links 1.544 Mb/s 6 links 1.544 Mb/s 12 links 1.544 Mb/s 18 links 1.544 Mb/s

1 links 44.736 Mb/s 2 links 44.736 Mb/s

Table 6. Results of experiments: four sample Frame
Relay networks (sequential version).

Example LPs number Number of packets Simulation time [ms] PTS

E1 7 (∼ 13500 × 2) = 27000 4800 22.5

E2 19 (∼ 13500 × 6) = 81000 12900 25.1

E3 42 (∼ 13500 × 12) = 162000 24300 46.6

E4 65 (∼ 13500 × 18) = 243000 34100 71.2

Table 7. Results of experiments: two sample Frame
Relay networks (distributed versions).

Example Number
of LPs

Number of
packets

Simulation
time [ms]

PTS

model decomposition

E3 SIMULATOR 1 21 (∼ 13500 × 12)= 162000 19300 58.7

1 switch, 7 interfaces

6 edge routers

6 links 1.544 Mb/s

1 link 44.736 Mb/s

SIMULATOR 2 21

1 switch, 7 interfaces

6 edge routers

6 links 1.544 Mb/s

E4 SIMULATOR 1 21 (∼ 13500 × 18) = 243000 19300 125.2

1 switch, 7 interfaces

6 edge routers

6 links 1.544 Mb/s

1 link 44.736 Mb/s

SIMULATOR 2 21

1 switch, 7 interfaces

6 edge routers

6 links 1.544 Mb/s

1 link 44.736 Mb/s

SIMULATOR 3 23

1 switch, 8 interfaces

6 edge routers

6 links 1.544 Mb/s

time operation of the physical network (the simulation
time is greater than the simulated time, i.e., 30 seconds).

Next, two series of experiments for distributed im-
plementations were performed. Two exemplary networks
E3 and E4 were taken into consideration. In both cases

the simulators of the whole networks were partitioned into
several federated simulators: two simulators in Exam-
ple E3 and three simulators in the case of E4 (see Fig. 8).

A detailed description of all subnetwork configura-
tions is presented in Table 7. The calculations of each

106 A. Sikora and E. Niewiadomska-Szynkiewicz

Simulator 1, ASimJava Simulator 2 , ASimJava Simulator 3 , ASimJava

JXTA

Fig. 8. Federated simulator of Network E4.

member of the federation were performed by a separate
computer. The window conservative scheme (WIN) de-
scribed in (Nicol and Fujimoto, 1994; Niewiadomska-
Szynkiewicz and Sikora, 2004) was applied to the syn-
chronization of federated simulators. The execution time
of each experiment and simulator speeds are given in Ta-
ble 7.

We can observe that federated, distributed simula-
tions developed based on ASimJava can seriously speed
up simulations of network operation compared with se-
quential implementations. The calculation speed-up de-
pends on the size of the network model considered and
the assumed degree of parallelism. It should be indicated
that, in the case of a distributed implementation, the re-
serve of efficiency to meet real time requirements is quite
large, see Example E4 in Table 7.

5. Summary

We have described ASimJava, a software framework suit-
able to solve many small and large scale problems, based
on simulation. The focus was on a federated approach to
parallel and distributed simulation. We demonstrated that
this approach is suitable to perform fast simulations of
large-scale systems. Our experience with federated, dis-
tributed network simulations confirms the ability of the
federated simulation approach to execute large simulation
models. The ASimJava framework is useful in all applica-
tions in which the speed of simulation is of essence, such
as real time simulation.

References

Chen G. and Szymański B.K., Lookback (2002): A new way
of exploiting parallelism in discrete event simulation. —
Proc. 16-th Workshop Parallel and Distributed Simulation,
Washington, DC, pp. 153–162.

Chen G. and Szymański B.K. (2003): Four types of lookback. —
Proc. 17-th Workshop Parallel and Distributed Simulation,
San Diego, USA, pp. 3–10.

Ferenci S.L., Perumalla K.S. and Fujimoto R.M. (2000): An
approach for federating parallel simulators. — Proc. 14-
th Workshop Parallel and Distributed Simulation (PADS
2000), Bologna, Italy, pp. 63–70.

FRF (2007) Frame Relay Forum,
http://www.frforum.com.

Fujimoto R.M., Perumalla K., Park A., Wu H., Ammar M.H.,
Riley G.F. (2003): Large-scale network simulation: How
big? How fast?. — 11-th IEEE Symp. Modeling, Analy-
sis, and Simulation of Computer and Telecommunication
Systems, Los Alamos, USA, pp. 116–125.

HLA (2007): High Level Architecture homepage,
http://www.dmso.mil/public/transition/
hla/.

Java Sim (2007) JavaSim homepage,
http://www.javasim.org.

Jefferson D.A. (1985): Virtual time. — ACM Trans. Programm.
Lang. Syst., Vol. 7, No. 3, pp. 404–425.

Małowidzki M. (2004): Network simulators: A developer’s per-
spective. — Proc. Int. Sym. Performance Evaluation of
Computer and Telecommunication Systems (SPECTS’04),
San Jose, USA, pp. 1–9.

McCabe J.D. (2003): Network Analysis, Architecture, and De-
sign. — New York: Morgan Kaufman.

Misra J. (1986): Distributed discrete-event simulation. — Com-
put. Surveys, Vol. 18, No. 1, pp. 39–65.

Nicol D.M. and Fujimoto R. (1994): Parallel simulation today.
— Anna. Oper. Res., No. 53, pp. 249–285.

Nicol D.M. (2003): Utility analysis of network simulators. —
Int. J. Simul.: Syst. Sci. Technol., Vol. 4, No. 3–4, pp. 55–
69.

Niewiadomska-Szynkiewicz E., Żmuda M., Malinowski K.
(2003): Application of Java-based framework to parallel
simulation of large-scale systems. — Appl. Math. Comput.
Sci., Vol. 13, No. 4, pp. 537–547.

Niewiadomska-Szynkiewicz E. and Sikora A., AsimJava (2004):
A Java-based library for distributed simulation. — J.
Telecommun. Inf. Technol., No. 3, pp. 12–17.

(OPNET, 2007) OPNET Modeler homepage
http://www.opnet.com/products/modeler/
home.html.

Sokol L.M., Briscoe D.P. and Wieland A.P., MTW (1988): A
strategy for scheduling discrete simulation events for con-
current execution. – Proc. SCS Multiconf. Distributed Sim-
ulation, San Diego, USA, pp. 34–42.

SSFNET-C++ (2007): SSFNET-C++ homepage,
http://www.cs.dartmouth.
edu/ghyan/dassfnet/overview.htm.

SFNET-Java (2007): SFNET-Java homepage,
http://www.ssfnet.org.

Szymański B.K., Saifee A., Sastry A., Liu Y., Mandnani K.,
Genesis (2002): A system for large-scale paralel network
simulation. — Proc. Int. Conf. Parallel and Distributed
Simulation, PADS 2002, Washington, USA, pp. 89–96.

NS-2 (2007): The Network Simulator ns-2 homepage,
http://www.isi.edu/nsnam/ns/.

Zeigler B.P., Praehofer H. and Kim T.G. (2000): Theory of Mod-
eling and Simulation. — Orlando, USA, Academic Press.

Received: 6 April 2006
Revised: 5 November 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /PLK ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [594.720 841.680]
>> setpagedevice

