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To obtain smooth solutions to ill-posed problems, the standard Tikhonov regularization method is most often used. For
the practical choice of the regularization parameter α we can then employ the well-known L-curve criterion, based on the
L-curve which is a plot of the norm of the regularized solution versus the norm of the corresponding residual for all valid
regularization parameters. This paper proposes a new criterion for choosing the regularization parameter α, based on the
so-called U-curve. A comparison of the two methods made on numerical examples is additionally included.
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1. Introduction

Ill-posed problems are frequently encountered in science
and engineering. The term itself has its origins in the
early 20-th century. It was introduced by Hadamard who
investigated problems in mathematical physics. Accord-
ing to his beliefs, ill-posed problems did not model real-
world problems, but later it appeared how wrong he was.
Hadamard defined a linear problem to be well posed if it
satisfies the following three requirements: (a) existence,
(b) uniqueness, and (c) stability. A problem is said to be
ill-posed if one or more of these requirements are not sat-
isfied. A classical example of an ill-posed problem is a
linear integral equation of the first kind in L2 (I) with a
smooth kernel. A solution to this equation, if it exists,
does not continuously depend on the right-hand side and
may not be unique. When a discretization of the problem
is performed, we obtain a matrix equation in Cm,

Ku = f, (1)

where K is an m×n matrix with a large condition number,
m ≥ n. A linear least-squares solution of the system (1)
is a solution to the problem

min
u∈Cn

‖Ku − f‖2
, (2)

where the Euclidean vector norm in Cm is used. We say
that the algebraic problems (1) and (2) are discrete ill-
posed problems.

The numerical methods for solving discrete ill-posed
problems in function spaces and for solving discrete ill-
posed problems have been presented in many papers.
These methods are based on the so-called regularization
methods. The main objective of regularization is to in-
corporate more information about the desired solution in
order to stabilize the problem and find a useful and sta-
ble solution. The most common and well-known form
of regularization is that of Tikhonov (Groetsch, 1984). It
consists in replacing the least-squares problem (2) by that
with a suitably chosen Tikhonov functional. The most ba-
sic version of this method can be presented as

min
u∈Cn

{
‖Ku − f‖2 + α2 ‖u‖2

}
, (3)

where α ∈ R is called the regularization parameter. The
Tikhonov regularization is a method in which the regu-
larized solution is sought as a minimizer of a weighted
combination of the residual norm and a side constraint.
The regularization parameter controls the weight given to
the minimization of the side constraint. Thus, the qual-
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ity of the regularized solution is controlled by the regu-
larization parameter. An optimal regularization parameter
should fairly balance the perturbation error and the regu-
larization error in the regularized solution.

A suitable choice of the regularization parameter is
still a current and vital problem. There are several pos-
sible strategies that depend on additional information re-
ferring to the analysed problem and its solution, e.g., the
discrepancy principle and the generalized cross-validation
method. The discrepancy principle is an a-posteriori strat-
egy for choosing α as a function of an error level (the in-
put error level must be known). The generalized cross-
validation method is based on a-priori knowledge of a
structure of the input error, which means that the errors
in f can be considered to be uncorrelated zero-mean ran-
dom variables with a common variance, i.e., white noise.

Another practical method for choosing α when data
are noisy is the L-curve criterion (Hansen, 1992; Hansen
and O’Leary, 1993). The method is based on the plot of
the norm of the regularized solution versus the norm of the
corresponding residual. The practical use of such a plot
was first introduced by Lawson and Hanson (1974). The
idea of the L-curve criterion is to choose a regularization
parameter related to the characteristic L-shaped “corner”
of the graph.

In Section 2, we recall the L-curve criterion for
choosing the regularization parameter α and some proper-
ties of the L-curve. In Section 3, we formulate a new cri-
terion for choosing the regularization parameter α, based
on the U-curve, and we give some of its properties. Sec-
tion 4 presents numerical results obtained using the new
U-curve criterion and compares them with those resulting
from the application of the L-curve criterion.

The present work constitutes an extension of our pre-
vious investigations on this research topic (Krawczyk-
Stańdo and Rudnicki, 2005; Neittaanmaki et al., 1996;
Stańdo et al., 2003).

2. L-Curve Criterion for Choosing

the Regularization Parameter

If K ∈ C
m,n is a matrix of rank r, then there exist unitary

matrices U ∈ C
m,m and V ∈ C

n,n such that

K = UΣV ∗, Σ =

(
Σr 0
0 0

)
,

where Σ ∈ Rm,n, Σr = diag (σ1, . . . , σr), and σ1 ≥
σ2 ≥ · · · ≥ σr > 0. The σis are called the singular val-
ues of K and the i-th column vectors ui, vi of U and V ,
respectively, are the left and right singular vectors corre-
sponding to σi, i = 1, . . . , r. The singular value decom-
position (SVD) for the matrix K is a well-known approach
to least-squares problems (Wahba, 1977).

The least-squares minimum-norm solution to (1) is
the solution of the normal equation K∗Ku = K∗f, and
thus if

f =
m∑

i=1

fiui, (4)

where fi = u∗
i f , i = 1, . . . , m, then

u =
r∑

i=1

fi

σi
vi. (5)

For a discrete ill-posed problem the singular values
σi tend rapidly to zero. Due to the errors on the right-
hand side (we may not assume that u∗

i e, i = 1, . . . , r ,
tend to zero faster than σi), the solution u is perturbed by
the contributions corresponding to small singular values.

The regularized solution to (3)

uα =
r∑

i=1

σifi

σ2
i + α2

vi (6)

satisfies the normal equation K∗Ku+α2u = K∗f . Since
α > 0, the problem of computing uα becomes less ill-
conditioned than that of computing u (the influence of
the errors corresponding to small singular values becomes
smaller).

It is easily found (Hansen and O’Leary, 1993;
Regińska, 1996) that

x (α) = ‖Kuα − f‖2 =
r∑

i=1

α4f2
i

(σ2
i + α2)2

+ ‖f⊥‖2
, (7)

where f⊥ =
m∑

i=r+1

fiui, and

y (α) = ‖uα‖2 =
r∑

i=1

σ2
i f2

i

(σ2
i + α2)2

. (8)

In (Hansen and O’Leary, 1993; Regińska, 1996), it is
shown that y as a function of x is decreasing and strictly
convex.

A good method of choosing the regularization pa-
rameter for discrete ill-posed problems must incorporate
information about the solution size in addition to using
information about the residual size. This is indeed quite
natural, because we are seeking a fair balance in keeping
both of these values small.

A more recent method of choosing the regular-
ization parameter makes use of the so-called L-curve,
see (Hansen, 1992; Hansen and O’Leary, 1993). For
Tikhonov regularization the L-curve is a parametric plot
of (x (α) , y (α)), where x (α) and y (α) measure the size
of the regularized solution and the corresponding resid-
ual, respectively, for all α > 0. The work (Hansen and
O’Leary, 1993) contains many properties of the L-curve
for Tikhonov regularization. In particular, whenever
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(a) the discrete Picard condition is satisfied,

(b) the errors on the right-hand side are essentially
“white noise”,

(c) the signal-to-noise ratio is reasonably large,

the L-curve (x (α) , y (α)) for Tikhonov regularization
has two characteristic parts, namely, a “flat” part and an
almost “vertical” part.

The L-curve is basically made up of two parts. The
more horizontal part corresponds to the solutions where
the regularization parameter is too large and the solution
is dominated by the regularization errors. The vertical part
corresponds to the solutions where the regularization pa-
rameter is too small and the solution is dominated by the
right-hand errors, magnified by the division by small sin-
gular values. This behavior does not rely on any addi-
tional properties of the problem, e.g., a statistical distrib-
ution of the errors, the discrete Picard condition, etc. It
should be taken into account that the vertical and horizon-
tal parts correspond to the solutions that are under- and
over-smoothed, respectively.

It is difficult to inspect the features of the L-curve
when it is plotted in linear scale due to the large range
of values for the two norms. As shown in (Hansen and
O’Leary, 1993), the features become more visible (and
easier to inspect) when the curve is plotted in the double-
logarithmic scale. The log-log scale actually emphasizes
the corner of the L-curve. One more advantage of the
log-log scale is that particular scalings of the right-hand
side and the solution simply shift the L-curve horizon-
tally and vertically. So, in many cases it is better to ana-
lyze the L-curve (x (α) , y (α)) in the log-log scale. There
is a strong intuitive justification for this. Since the sin-
gular values typically span several orders of magnitude,
we carry out all our computations related to curvature
on (log x (α) , log (y)).The log-log transformation has a
theoretical justification, see (Hansen and O’Leary, 1993).
Some properties of the L-curve in other scales are shown
in (Regińska, 1996).

The L-curve is of an interest because it shows how
the regularized solution changes as the regularization pa-
rameter α changes. A distinct l-shaped corner of the L-
curve is located exactly where the solution xα changes,
from being dominated by the regularization errors to be-
ing dominated by the errors on right-hand side. That is
why the corner of the L-curve corresponds to a good bal-
ance between the minimization of the sizes, and the cor-
responding regularization parameter α is a good one.

Two meanings of the “corner” were suggested by
Hansen and O’Leary (1993). First – it is the point where
the curve is closest to the origin, second – it is the point
where the curvature is maximum.

The L-curve for Tikhonov regularization is important
in the analysis of discrete ill-posed problems. Fig. 1 shows

a typical L-curve.

Fig. 1. A typical L-curve for Tikhonov regularization.

3. U-Curve Criterion for Choosing

the Regularization Parameter

Consider the discrete ill-posed problem (2), its solution u
(5) and the regularized solution (6) obtained by means of
Tikhonov regularization (3).

The right-hand side f in (1) is assumed to be contam-
inated with measurement errors. The perturbation vector
f − f does not need to meet the discrete Picard condition
when the unperturbed right-hand side f satisfies it. That
is why there is a large influence of the errors fi − fi cor-
responding to small singular values on the solution norm.
Any α > 0 reduces the norm of u. The problem is how
to decide on an appropriate regularization parameter α for
which y (α) is not overly large and it is a small norm of
the residual.

3.1. U-Curve and Its Properties. Define

U (α) =
1

x (α)
+

1
y (α)

, (9)

where α > 0 and x (α) and y (α) are defined by (7)
and (8), respectively.

Definition 1. We define the U-curve to be the plot of
U (α), i.e., the plot of the sum of the reciprocals of the
regularized solution norm and the corresponding residual
norm, for α > 0.

The U-curve consists of three characteristic parts,
namely
• on the left and right sides, it is almost “vertical,” and
• in the middle it is almost “horizontal.”

The vertical parts correspond to the regularization para-
meter for which the solution norm and the residual norm
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are dominated by each other. The more horizontal part
corresponds to the regularization parameter for which the
solution norm and the residual norm are close to each
other.

Figure 2 shows an example of a typical U-curve.

Fig. 2. A typical U-curve for Tikhonov regularization.

Theorem 1. The function U (α) is strictly decreasing on

the interval α ∈
(
0, σ

2
3
r

)
and strictly increasing on the

interval α ∈
(
σ

2
3
1 ,∞

)
, where σ1 ≥ σ2 ≥ · · · ≥ σr > 0

are the singular values.

Proof. For simplicity, assume that x = x (α) and y =
y (α), so that

U (α) =
1
x

+
1
y

and its first derivative is

U ′ (α) =
−x′

x2
+

−y′

y2
.

From (Hansen and O’Leary, 1993; Regińska, 1996), we
know that x′ = −α2y′, and thus

U ′ (α) =
−y′ (x + αy) (x − αy)

(xy)2
.

To analyze the sign of U ′ (α), we consider the factor
x − αy because

−y′ (x + αy)
(xy)2

> 0.

Recall that

x = x (α) =
r∑

i=1

α4f2
i

(σ2
i + α2)2

and

y = y (α) =
r∑

i=1

σ2
i f2

i

(σ2
i + α2)2

.

Thus

x − αy =
r∑

i=1

α4f2
i

(σ2
i + α2)2

− α
r∑

i=1

σ2
i f2

i

(σ2
i + α2)2

=
r∑

i=1

αf2
i

(
α3 − σ2

i

)
(σ2

i + α2)2
.

Since
r∑

i=1

αf2
i

(σ2
i + α2)2

> 0,

we consider only the factor α3 − σ2
i . Consequently,

α3 − σ2
i > 0 ⇔ α > σ

2
3
i

and
α3 − σ2

i < 0 ⇔ α < σ
2
3
i .

To generalize, we can deduce that

α ∈
(
0, σ

2
3
r

)
⇒ U ′ (α) < 0

and
α ∈

(
σ

2
3
1 ,∞

)
⇒ U ′ (α) > 0.

It follows that the function U (α) is strictly decreasing on

the interval α ∈
(
0, σ

2
3
r

)
and strictly increasing on the

interval α ∈
(
σ

2
3
1 ,∞

)
.

Lemma 1. For the function U (α) we have the following:

(i) lim
α→0+

U (α) = +∞,

(ii) lim
α→+∞U (α) = +∞.

Proof. Consider the function

U (α) =
1
x

+
1
y
.

From (7) and (8), we obtain

U (α) =
r∑

i=1

(
σ2

i + α2
)2 (

σ2
i + α4

)
f2

i α4σ2
i

=
r∑

i=1

(
σ2

i /α2 + 1
)2 + σ2

i + α2 + α4/σ2
i

f2
i

.

It is immediate that

lim
α→0+

U (α) = +∞

and
lim

α→+∞U (α) = +∞.
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Remark 1. The function U (α) certainly has a local min-

imum in the interval α ∈
(
σ

2
3
r , σ

2
3
1

)
.

Remark 2. If in the SVD there is only one non-zero value
(it may be multiple, too) we can analytically calculate a
unique α for which the U-function will reach the mini-
mum (the U-function then has only one minimum).

The objective of the U-curve criterion for selecting
the regularization parameter is to choose a parameter for
which the curvature attains a local maximum close to the
left vertical part of the U-curve.

The regularization parameter appropriate for the U-
curve criterion is calculated numerically by applying rou-
tines available in the Matlab Regularization Tools pack-
age.

4. Numerical Examples

A classical example of an ill-posed problem is a Fredholm
integral equation of the first kind (Groetsch, 1984) with a
square integrable kernel,

b∫
a

K (s, t) u (t) dt = f (s), c ≤ s ≤ d,

where the right-hand side f and the kernel K are given,
and u is unknown.

Example 1. Consider the test problem ‘shaw’ (Hansen,
1993), in which the integral equation is a one-
dimensional model of an image reconstruction problem
with [−π/2, π/2] as both integration intervals. The kernel
K and the solution u are respectively given by

K (s, t) =
(
cos (s) + cos (t)

)( sin (l)
l

)2

,

where

l = π
(
sin (s) + sin (t)

)
,

and

u (t) = 2 exp
(
−6 (t − 0.8)2

)
+exp

(
−2 (t+0.5)2

)
.

The numerical results are shown in Figs. 3–7. We get

‖uexact − uL-curve‖ = 0.012633,

‖uexact − uU-curve‖ = 0.010521.

Example 2. Consider now the test problem ‘heat’ from
(Hansen, 1993). Our numerical results are shown in
Figs. 8–12.

We get

‖uexact − uL-curve‖ = 0.007084,

‖uexact − uU-curve‖ = 0.006962.

Fig. 3. The L-curve and the selected regularization parameter.

Fig. 4. The U-curve and the selected regularization parameter.

Fig. 5. The exact solution and the solution for
the parameter from the L-curve.
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Fig. 6. The exact solution and the solution for
the parameter from the U-curve.

Fig. 7. The exact solution the solution for the parameter
from the U-curve and the solution for the parame-
ter from the L-curve.

Fig. 8. The L-curve and the selected regularization parameter

Fig. 9. The U-curve and the selected regularization parameter.

Fig. 10. The exact solution and the solution for
the parameter from the L-curve.

Fig. 11. The exact solution and the solution for
the parameter from the U-curve.
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Fig. 12. The exact solution the solution for the parameter
from the U-curve and the solution for the para-
meter from the L-curve.

Example 3. Consider now an example of (Neittaanmaki
et al., 1996). The Fredholm integral equation of the first
kind is

b∫
a

K (s, t) u (t) dt = f (s), c ≤ s ≤ d,

where the right-hand side f (s) = 1 and the kernel is

K(s, t) =
1

π
[
1 + (s − t)2

] 3
2
.

Here 0.2 ≤ s ≤ 0.8 is given, and u is unknown. The
numerical results are shown in Figs. 13–15.

Some of the numerical results were analyzed by us
and presented in (Krawczyk-Stańdo and Rudnicki, 2005;
Neittaanmaki et al., 1996).

5. Conclusions

As can be seen, the results we obtained from both the L-
curve and U-curve methods are comparable. In the first
two examples the norm of the error for the U-curve cri-
terion is smaller than that for the L-curve criterion. We
cannot calculate the norm of the error in the third example
because the exact solution is not known. However, the re-
sult we obtained is close to the results which we published
in (Krawczyk-Stańdo and Rudnicki, 2005; Neittaanmaki
et al., 1996).

Obviously, we realize that an example might be pro-
duced for which the U-curve criterion will fail, but our
feeling is that it works well in practice and that it is a use-
ful method. We do hope that further work on this method
can yield interesting results.

Fig. 13. The L-curve and the selected regularization parameter.

Fig. 14. The u-curve and the selected regularization parameter.

Fig. 15. The solution for the parameter from the L-curve,
the solution for the parameter from the U-curve.
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