
Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 1, 105–110
DOI: 10.2478/v10006-008-0010-2

REMARKS ON HARDWARE IMPLEMENTATION
OF IMAGE PROCESSING ALGORITHMS

MAREK WNUK

Institute of Computer Engineering, Automation and Robotics
Wrocław University of Technology

ul. Janiszewskiego 11/17, 50–372 Wrocław, Poland
e-mail: marek.wnuk@pwr.wroc.pl

Image processing in industrial vision systems requires both real-time speed and robustness. Modern computers, which
fulfill the first demand, are sensitive to hard industrial environment conditions and require considerable amounts of energy.
Programmable logic chips are available, which can realize many simple, still time-consuming operations in a parallel or a
pipelined manner. The paper discusses particular features of the pipelined architecture and presents selected techniques of
implementing early image processing procedures in hardware.

Keywords: On-line image processing, real-time, hardware, pipeline, programmable logic.

1. Introduction

Industrial vision systems are, in most cases, designed to
work on-line, as real-time systems. Software implemen-
tation of early processing procedures requires computers
(microprocessors, DSPs) of great computational power,
which work with high clock frequency and hence are
very sensitive to hard industrial environment conditions
(temperature, electromagnetic noise, etc.). Moreover, the
higher the clock speed, the higher the power demand and
dissipation. On the other hand, most of the required
procedures can be implemented in hardware, using pro-
grammable logic chips.

Image acquisition in most cases (CCD, CMOS sen-
sors) is based on line-by-line scanning of the image plane
with a constant pixel rate. This results in an input data
stream of limited speed. For example, standard VGA-size
sampling of a typical CCTV image (640× 480, 25 frames
per second) requires the sampling rate of approximately
11MHz.

In order to preserve real-time system constraints, a
vision system has to guarantee an explicitly defined worst-
case latency during on-line image processing.

Many image processing algorithms are based on lo-
cal image features, which requires simultaneous access to
many input image pixels, forming the neighborhood, in
order to calculate the result for a single pixel of the out-
put image. For example, in the case of the 5 × 5 (radius

r = 2) neighborhood, meeting the 11MHz pixel rate re-
quires at least 275 MHz memory access rate (assuming
sequential readouts).

Moreover, the complexity of many procedures in-
creases the requirements for computational power. Con-
temporary DSPs offer enough speed and architectural fea-
tures for image processing (DMA, multiple cores, vector
processing, etc.), but still at the cost of high clock rates,
power consumption and unit price of the devices.

The solution based upon hardware implementation of
image processing algorithms is free of the above draw-
backs. Using programmable logic devices (FPGA) is a
cheap and easy way to build dedicated processors for
many widely used image transformations. The solu-
tions are flexible, in contrast to the early implementations
(Drzazga et al., 1983), as FPGA based implementation
is fully programmable. Moreover, many powerful design
tools are available, which makes the development process
fast and effective. For example, Spartan-3A DSP FPGA
(Xilinx, 2007) offers 53712 Equivalent Logic Cells and
126 DSP48A slices (enhanced MACs) at 250 MHz with a
very good price/performance ratio.

2. Idea of pipelined image processing

Consider a memory based image processing system which
implements local operators, defined for a given neighbor-

marek.wnuk@pwr.wroc.pl

106 M. Wnuk

hood of the currently processed image pixel (Fig. 1). As-
suming the region of interest W × H inside the frame-
buffer of line width L, a standard way of accessing pixel
f(j, j) is to calculate its address as shown in the fig-
ure. Many processors (especially DSPs) provide mem-
ory address generator blocks, facilitating this task. Nev-
ertheless, a more effective way is to set up a pointer to
the memory and provide consecutive accesses with auto-
postincrementation (available in most advanced proces-
sors). This resembles the situation when we receive the
image as a sequential data stream (e.g. from CCD or
CMOS image sensors or USB/Firewire/Ethernet devices).

In a general case, the local operator calculates the re-
sulting value of the pixel g(i, j) on the basis of the values
of all the pixels from the given window, accessible with
constant offsets from the current (central pixel) pointer.
Actually, there is no need for multiple pixel access. As-

�

�

W

H

L

�������� 	
�
��������
�

�
�
�
�

	

L

	
�
�
�
��	
�
��

	
�
�
�
��

Fig. 1. Pipeline structure.

suming an 8-connected neighborhood of radius r (a square
window of the size (2r + 1) × (2r + 1)), one can create
a pipeline consisting of 2r delay lines (SISO registers) of
the image line length L (Fig. 1). The currently accessed

(received, in the case of a serial input data stream) pixel,
together with the outputs of all 2r delay lines, forms one
column of the requested window (the data are accessible
in parallel). In a general case, a (2r+1)×(2r+1) array of
additional pixel-size registers (forming 2r + 1 SIPO row
buffers) provides simultaneous access to the surrounding
pixels. The delay TD introduced by such a pipeline de-
pends on pixel sampling period TS , image line period TL

and the neighborhood radius r:

TD = rTL + (r + 1)TS .

In the case of a line containing L pixels with no
blanking period, we have

TD = TS(r(L + 1) + 1).

Any local operator can thus be implemented as a static
function Φ of multiple inputs and one output:
g(i, j)

= Φ (f(i + m, j + n)| − r ≤ m ≤ r , −r ≤ n ≤ r) .

The output g(i, j), delayed from the original data
stream by TD, can be used as input data for the next pro-
cessing stage of the same form. The delays of the cas-
caded procedures accumulate, but the overall latency re-
mains strictly defined and constant.

Operators that use only one pixel value to perform
the transformation can be considered as a special case of
the local ones, with the neighborhood radius r = 0. The
implementation is much simpler, as the delay lines are not
needed and we use only one input. Typically, such trans-
formations are realized via programmable LUTs (LookUp
Tables), memory arrays addressed by the input value and
containing the output values for all possible input values.

The presented implementation concept is suitable
for a great variety of early image processing (linear and
non-linear): filtering (hi- and low-pass, gradients, edge
enhancement, background subtraction, etc.), segmenta-
tion (thresholding, clipping, double thresholding, tem-
plate matching, etc.), morphology (hit-or-miss, dilation,
erosion, opening, closing, etc.), parameterization (label-
ing, moments, moment invariants, etc.). The implemented
procedures can be cascaded and combined parallely, form-
ing fast image preprocessing systems, well suited to a
given task.

Note that a brute force implementation of Φ is not
always efficient, or even possible. Even in the case of
the smallest non-trivial 3 × 3(r = 1) neighborhood and
8-bit gray-scale image, Φ requires a 72-bit input word.
Good results can be obtained via the decomposition of the
operator, which will be shown next.

3. Separable operators

A special class of local operators (both linear and nonlin-
ear) are separable ones. The problem size decreases sig-
nificantly if the operator Φ can be decomposed in such a

Remarks on hardware implementation of image processing algorithms 107

manner that every column is processed independently and
the partial results for the columns are composed to form
the result.

Consider the so-called Gaussian filter defined by the
convolution kernel:

⎡
⎢⎣

1 2 1
2 4 2
1 2 1

⎤
⎥⎦ .

It is widely used for image smoothing (low-pass filtering),
as it is easily normalized by 16 (bit shift instead of divi-
sion). Moreover, to obtain a Gaussian filter of a greater
radius, we can compose (cascade) two Gaussian filters:

Gr1 � Gr2 = Gr1+r2,

which implies that it is sufficient to implement G1.
Introducing a three-input operator Γ:

Γ(a, b, c) = a + 2b + c

we can calculate partial results γ(i, j) for the consecu-
tive columns of the neighborhood, storing them in a single
SIPO buffer (Fig. 2):

γ(i, j) = Γ(f(i, j − 1), f(i, j), f(i, j + 1)).

The final result g(i, j) is calculated in another Γ
block, using γ(·, j) as inputs:

g(i, j) = Γ(γ(i − 1, j), γ(i, j), γ(i + 1, j)).

Instead of a function with a 72-bit input, we need two
copies of a function with a 24-bit input.

Local minimum and local maximum operators on
large windows are used for finding lower/upper image en-
velopes:

lmin(lmax) , lmax(lmin),

which are very useful in background subtraction methods.
Both the operators are separable. Every neighborhood
column can be minimized in the pipeline:

μ(i, j)

= MIN 2r+1

{
f(i, j−r), . . . , f(i, j), . . . , f(i, j+r)

}
,

and the final result g(i, j) is the minimum of 2r+1 partial
results (Fig. 3):

g(i, j)

= MIN 2r+1

{
μ(i, j−r), . . . , μ(i, j), . . . , μ(i, j+r)

}
.

Thus the decomposition results in reducing the problem
size from (2r + 1)2 to 2(2r + 1).

(a+c)[0 . .8]

(b<<1) [0 . .8]

a[0 . .7]

c[0. .7] (a+2b+c) [2 . .9]

A

B

C S

Γ

A

B

C

S

Γ

A B C

S Γ

f (i+1, j-1)

f (i+1, j)

f (i+1, j+1)

γ (i+1, j) γ (i, j) γ (i-1, j)

g (i , j)

Fig. 2. 3 × 3 Gaussian filter.

4. Median filter: A special case

The median operator replaces the original pixel value by
the median of the surrounding pixel values. A typical
neighborhood size varies from 3 × 3 (r = 1) to 7 × 7
(r = 3). It is particularly useful for suppressing impulse
noise, as it rejects extremal values from the sampled win-
dow. Preserving step and ramp functions minimizes im-
age blurring, but results in poor efficiency in the case of
additive (e.g., Gaussian) noise.

The described hardware implementation is based on
an algorithm by Jeremiah Golston, included in a software
library for a TMS320C8x DSP family (Texas Instruments
Europe, 1997). The main block is a 3-input sorter ORD3

(Fig. 4). It returns the minimal input value on output N ,
maximal on X , and median on D. The algorithm works
for the 3×3 neighborhood only. In the case of nine values,
the median cannot be greater (nor less) than five or more
values in the window. Finding the median value reduces
to rejecting pixel values which do not meet the above con-
ditions.

In the described pipeline scheme, we sort consecu-
tive columns f(i + 1, ·) with the ORD3 block (Fig. 4).
The results (N,D,X) are pushed into three SIPO regis-
ters and thus are available simultaneously for three con-
secutive columns. From the minimal values (row N) we
can reject the minimum value N(N), which is the global

108 M. Wnuk

A 1

A r + 1

A 2 r + 1

M

���
����

f (i+r, j-r)

f (i+r, j)

f (i+r, j+r)

μ (i+r, j) μ (i, j) μ (i-r, j)

g (i , j)

M I N k
a 1

a 2

a k

min {a1, a2, . . . ,ak }

A 1

A 2

A k

M

M

A 1A r + 1A 2 r + 1

M I N 2r+1

. . .

. . .
. . .

.

Fig. 3. Local minimum filter.

Fig. 4. 3 × 3 median calculation.

minimum in the neighborhood. Moreover, for the me-
dian value of this row (D(N)) there exist at least five
pixels with greater or equal values (two in its own col-
umn and three in the maximal column). The only pixel
left for further consideration is the X output of this block

(X(N)). The calculations for the row X are dual and re-
sult in leaving only the pixel N(X). For the median row
D, the maximum value X(D) is greater than five pixel
values (row N in its column and rows D and N in the
other two). Dually, the minimum value of N(D) is re-
jected, leaving only the median value (D(D)) for sorting.
The last ORD3 block determines the median value of the
candidates, which gives the final result g(i, j). The ac-
tual implementation requires fewer comparisons than five
full ORD3 blocks, as three of them use only one output.
Note that the median is a non-linear operator and hence
the cascading of medians gives different results than us-
ing a higher order median.

5. General convolution filters

Linear local operators are in general performed by convo-
lution with a given kernel of radius r. Consider the one-
dimensional example

g(i) =
r∑

k=−r

akf(i + k),

where ak are kernel elements (weights).
In Fig. 5 two realizations of the convolution are

shown. The first one reflects directly the definition. It

� � ��

� � � �

Fig. 5. Convolution and MAC blocks.

requires an SIPO register of the length 2r, for consecu-
tive f(k) values, 2r + 1 multipliers with predefined (pro-
grammable) weights ak, and an adder with 2r + 1 inputs.

Alternatively, we can define the convolution as fol-

Remarks on hardware implementation of image processing algorithms 109

lows (Fig. 5):

g(i) = arf(i + r) + (ar−1f(i + r − 1)
+ (· · · + (a−rf(i − r) + 0)) . . .),

which can be realized by MAC (Multiply and ACcumu-
late) blocks:

Mk = akf(i + k) + Mk−1

for k ∈ [−r, r] and M−r−1 = 0.
In this case we need 2r + 1 MACs, each consisting

of the multiplier and a two-input adder. The shift regis-
ter stores accumulated partial results Mk, rather than f(·)
values, and is distributed among MACs.

The second implementation is easily scalable and
particularly good for both software and hardware imple-
mentation, as MAC processing units are available in all
DSPs and many FPGAs.

A good example of a MAC-based hardware pipeline
convolver is an IMSA110 integrated circuit (SGS-
THOMSON, 1994) (Fig. 6). It contains three delay lines

PCRc τ 3τ

τ 2ττ

CRxc6 CRxc5 CRxc0

PCRb τ 3τ

τ 2ττ

CRxb6 CRxb5 CRxb0

PCRa τ 3τ

τ 14ττ

CRxa6 CRxa5 CRxa0

post-
procesor

6τ

τ

τ

�����

������ �	�
� �	����

Fig. 6. IMSA110 convolution processor.

PRCy of programmable length (0–1220), and a 3 × 7 ar-
ray of MAC blocks with programmable weights CRxy,i

(where y ∈ [a, c], i ∈ [0, 6]). The input is PSRin, and

the output signal is available on CASout after a barrel
shifter and a post-processor. The additional multiplexer,
the PSRout output, and the CASin input provide a possi-
bility of cascading the convolvers in order to increase the
MAC processing array.

Programming the delay lengths, the weights, and the
barrel shifter is available via a parallel microprocessor in-
terface. The coefficients (CRxy,i) are 8-bit signed values
and the barrel shifter provides division/multiplication by a
power of 2 in the bit range (−2,+14). The implementa-
tion of the convolution kernels for many linear operators
requires taking the above constraints into account. For ex-
ample, a simple 3 × 3 averaging kernel:

1
9

⎡
⎢⎣

1 1 1
1 1 1
1 1 1

⎤
⎥⎦

can be approximated by

1
29

⎡
⎢⎣

57 57 57
57 57 57
57 57 57

⎤
⎥⎦ .

The normalization of the operator (division by 9) was re-
placed by shifting the result to the right by 9 bits (division
by 512). Appropriate weights (−128 ≤ 57 ≤ 127) were
applied.

Another example can be a rotation-invariant 3 × 3
Laplacian:

1
6

⎡
⎢⎣

1 4 1
4 −20 4
1 4 1

⎤
⎥⎦ ≈ 1

25

⎡
⎢⎣

5 22 5
22 −108 22
5 22 5

⎤
⎥⎦ .

The post-processor contains a programmable LUT,
which offers a possibility to implement linear and non-
linear point-based operations (e.g., negation, gamma cor-
rection).

6. Cumulative image parameters

Calculating global image characteristics (histograms, mo-
ments of inertia, etc.) requires pixel-by-pixel image read-
ing and the accumulation of the calculated parameter.
With no special effort this can be done during the input
data stream reception. For example, histogramming re-
quires a one-dimensional array of counters, addressable
with the input pixel value. A two-dimensional histogram
(neighborhood matrix) will require a pipelined arrange-
ment and a two-dimensional addressable counter array. In
some cases (mean value, standard deviation, etc.) a kind
of post-processing may be required, which is performed
once, at the end of the image frame.

110 M. Wnuk

A good example of cumulative parameters can be
moments of inertia. In a standard application, these pa-
rameters provide a description of both the shape and the
location/orientation of a silhouette represented by a given
value (e.g., 1) on the segmented and labeled image. On the
basis of moments up to the second order, it is easy to find
the location (centroid) and orientation (principal axis di-
rection) as well as several parameters, which are position-,
scale- and orientation-invariant (Dudani et al., 1977).

Standard moments of order p + q are defined as fol-
lows:

mp,q =
∑

f(x, y)xpyq.

Substituting xpyq with rp,q
x,y , we obtain

mp,q =
∑

f(x, y)rp,q
x,y.

Such a representation leads to the calculation of pipelined
moments. For the moments of the second order, we get

r2,0
x+1,y = (x + 1)2 = x2 + 2x + 1 = r2,0

x,y + 2x + 1,

r1,1
x+1,y = (x + 1)y = xy + y = r1,1

x,y + y,

r0,2
x,y+1 = (y + 1)2 = y2 + 2y + 1 = r0,2

x,y + 2y + 1,

and we can iteratively calculate consecutive values of rp,q
x,y

with no multipliers.
The structure of the second-order moment calcula-

tor is shown in Fig. 7. Auxiliary elements r2,0, r1,1, r0,2

CK CK

LD LD LD

LD LD LD

R R

R R R

R R R

mod M mod N

1 1

SP SH SV

f(x,y)

m 2,0 m 1,1 m 0,2

r 2,0 r 1,1 r 0,2

x y

Fig. 7. Calculation of second-order moments.

are accumulated in three iterative adders using x and y
coordinates available in modM and modN counters. SP

is the pixel synchronization clock, SH denotes the line
(horizontal) synchronization, and SV means the frame
(vertical) synchronization. The second row of itera-
tive adders is gated by the (current pixel value) input
f(x, y) and thus accumulates the second-order moments
(m2,0,m1,1,m0,2). In the case of a labeled image, several
copies of the second row of adders are used, each gated
by a selected label value. The results are valid at the end
of a frame and should be stored before the edge SV (not
shown for clarity).

Moments of the zeroth (histogram of the labeled im-
age) and first (gated accumulation of the x and y coordi-
nates for desired label values) orders are trivial.

7. Conclusions

The pipelined architecture implemented in hardware, es-
pecially in programmable logic devices, provides a con-
stant, strictly defined latency of the image processing path,
which fulfills the main condition of real-time systems.

The cost of the image processing hardware is rela-
tively low, and will decrease with FPGA chips enhance-
ment. Implementing the procedures is well supported
by widespread design tools (VHDL compilers, libraries,
etc.).

Low power consumption and small size of the de-
vices encourage constructors to put the preprocessor into
the image sensing unit. In the case of remote vision sys-
tems, this can lead to reducing the bandwidth between the
vision-based sensor and the host (e.g., a robot controller).

Moreover, the possibility to implement selected mi-
croprocessor and DSP cores in FPGA provides means of
implementing the required low level post-processing and
additional, high level procedures (image analysis, pattern
recognition, etc.).

References
Drzazga A., Hajdul J., Malec J. and Wnuk M. (1983). Hardware

image preprocessor, Technical Report, Wrocław University
of Technology (in Polish).

Dudani S., Breeding K. and McGhee R. (1977). Aircraft identifi-
cation by moment invariants, IEEE Transactions on Com-
puters, 26(1): 39–46.

SGS-THOMSON Microelectronics (1994). IMSA110 Image and
Signal Processing Sub-system,
http://www.datasheetcatalog.com.

Texas Instruments Europe (1997). Implementation of an Im-
age Processing Library for the TMS320C8x, BPRA059,
http://www.datasheetcatalog.com.

Xilinx, Inc. (2007). Spartan-3A DSP FPGA Family: Complete
Data Sheet, DS610,
http://www.datasheetcatalog.com.

	Introduction
	Idea of pipelined image processing
	Separable operators
	Median filter: A special case
	General convolution filters
	Cumulative image parameters
	Conclusions

