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LOCAL CORRELATION AND ENTROPY MAPS AS TOOLS FOR DETECTING
DEFECTS IN INDUSTRIAL IMAGES
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The aim of this paper is to propose two methods of detecting defects in industrial products by an analysis of gray level
images with low contrast between the defects and their background. An additional difficulty is the high nonuniformity of
the background in different parts of the same image. The first method is based on correlating subimages with a nondefective
reference subimage and searching for pixels with low correlation. To speed up calculations, correlations are replaced by
a map of locally computed inner products. The second approach does not require a reference subimage and is based on
estimating local entropies and searching for areas with maximum entropy. A nonparametric estimator of local entropy
is also proposed, together with its realization as a bank of RBF neural networks. The performance of both methods is
illustrated with an industrial image.
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1. Introduction

Let I be an Ix × Iy array of gray levels of an image. Al-
though the content and meaning of I can be arbitrary, we
confine ourselves to a class of images which have more
or less uniform gray levels with possible areas of nonuni-
form intensities. These regions should be detected and
their areas or boundaries should be marked. Industrial
images provide many examples and they are mainly con-
sidered in this paper. The second class of images with
these properties is provided by some classes of medical
images, when abnormalities (e.g., cancer cells) of other-
wise uniform background should be detected. Major dif-
ficulties, common for industrial and medical images, arise
from a low contrast between proper areas and nonuniform
areas, which are further interpreted as defects. Further-
more, in industrial images we are frequently faced with
defects, which have different intensity levels in different
parts of the same image, e.g., as a result of different tem-
peratures. This feature precludes or at least highly re-
duces the possibility of applying simple thresholding for
defect detection, as illustrated in the next section. In ad-
dition, more advanced thresholding with hysteresis is not
applicable, since the result in its first stage strongly de-
pends on a selected threshold. The well-established tech-

niques of edge detection frequently fail for the same rea-
sons as pointed out above. We refer the reader, e.g.,
to (Faugeras, 1993; Forsyth and Ponce, 2003; Kittler
et al., 1985; Otsu, 1979; Pratt, 2001; Ritter and Wil-
son, 2001), for a detailed description of thresholding and
edge detection algorithms.

The aim of this paper is to propose two related tech-
niques of detecting defects, which are based on local
correlations and the small area Shannon entropy. Cor-
relation and entropy based techniques are well estab-
lished in the image processing field see, e.g., (Altmann
and Reitbock, 1984; Brink and Pendock, 1996; Gosh-
tasby et al., 1984; Pal, 1996; Pratt, 2001; Sezgin and
Sankur, 2004; Tsai et al., 2003) as global or semi-global
techniques, which are applied to the whole image or to
its relatively large parts. Here these techniques are used
locally in a moving window. Furthermore, it is proposed
to use the correlation technique in a way which is quite
opposite to common usage. Namely, we look for areas
which have a low correlation with a suitably chosen ref-
erence sub-image. Additionally, we propose the struc-
ture of a neural network for estimating the Shannon en-
tropy which allows fast FPGA/FPAA hardware implemen-
tations (Dong et al., 2006; Maher et al., 2006).
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2. Further motivations

To further motivate the need for deriving algorithms in de-
tecting defects in industrial images, consider the image
shown in the top panel of Fig. 1. This image presents a
piece of hot metal with defects, which are partly visible to
an eye.

Trying to find these defects by a well-known thresh-
olding technique, we arrive at the image shown in the mid-
dle panel of this figure. This image was obtained using
the threshold level 0.315. The number of detected de-
fects is equal to 310, and it is in fact much larger than
the true number of defects, which is about one hundred.
The reason for the large number of false detections lies
in a nonuniform temperature distribution—the boundaries
are several degrees colder than the interior. As a result,
the upper left and the lower left corners are erroneously
marked as defects.

An additional difficulty comes from the oversensitiv-
ity of low contrast images to small changes of the thresh-
old. This is illustrated in the bottom image of Fig. 1. This
image was obtained by rising the threshold by 0.015. One
can observe that false detections occurred not only at the
left-hand end of the image but also on its right-hand side.
The number of “detected” defects increased to 617.

Summarizing, we need methods which amplify the
contrast between defects and their background, indepen-
dently of its nonuniformity. Let us note that high changes
in the background gray levels in different parts of the im-
age preclude the usage of a simple technique based on the
extraction of the estimated background from the original
image.

An additional requirement is that such methods
should not be oversensitive to the choice of a threshold
which is used for binarization.

3. Detecting defects using local
correlation

Select an M ×N reference subimage which does not con-
tain defects. Denote it by W and its element by wmn,
m = 1, 2, . . . , M , n = 1, 2, . . . , N .

Denote by Cij an M × N , 1 < M � Ix, 1 < N �
Iy subimage of image I with its upper left corner at pixel
(i, j). Gray levels of Cij are denoted by ci+m,j+n, m =
1, 2, . . . , M , n = 1, 2, . . . , N .

The main idea of detecting defects is to calculate the
empirical correlation coefficient, denoted as ρ(W, Cij),
between gray levels in W and in the moving window Cij ,
i.e.,

ρ(W, Cij) =

M∑
m=1

N∑
n=1

Δwmn Δcmn

(M N) σ̂w σ̂ij
, (1)

where i = 1, 2, . . . , Ix − M, j = 1, 2, . . . , Iy − N,

Δwmn
def=

(
wmn − W̄

)
,

Δcmn
def=

(
ci+m,j+n − C̄ij

)
,

while W̄ and C̄ij denote respectively the means of gray
levels in the reference window W and in the current win-
dow Cij , while σ̂w and σ̂ij are the corresponding empiri-
cal dispersions:

σ̂2
w = (M N)−1

M∑
m=1

N∑
n=1

(
wmn − W̄

)2
, (2)

σ̂2
ij = (M N)−1

M∑
m=1

N∑
n=1

(
ci+m,j+n − C̄ij

)2
. (3)

One can expect that |ρ(W, Cij)| is close to 1 if Cij

does not contain defects. Conversely, if a defect is present
in the area covered by Cij , then |ρ(W, Cij)| is expected
to be closer to zero, since W was chosen to represent a
nondefective subimage.

Remark 1. In the field of image processing, the formula
(1) is usually simplified to speed up calculations. As far as
low contrast industrial images are concerned, there is one
more reason to simplify this formula. Namely, if W does
not contain defects, then σ̂w is close to zero. If, addition-
ally, the current window Cij contains approximately the
same gray levels, i.e., it is a nondefective part, then also
σ̂ij is close to zero and arithmetic overflows are frequently
met. For these reasons, we use the inner product between
gray levels in W and Cij (see (4)) instead of ρ(W, Cij).

Summarizing, the proposed local correlation method
runs as follows:

Step 1. Select an M×N reference subimage W = [wmn]
which does not contain defects.

Step 2. For i = 1, 2, . . . , Ix −M , j = 1, 2, . . . , Iy −N
calculate the inner product, denoted as qij , between
the gray levels in the current window at (i, j) and
those in the reference subimage W , i.e.,

qij =
M∑

m=1

N∑
n=1

wmn ci+m,j+n. (4)

Step 3. Select a threshold � > 0. For each pixel decide
whether

|qij | < �, (5)

and mark pixel (i, j) as defective. Otherwise, mark
pixel (i , j) as nondefective.

One can make the selection of � easier by applying
the following normalization: Replace each qij by

q∗ij
def=

|min qij | + qij

|min qij | + max |qij | , (6)
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Fig. 1. Hot piece of metal (top panel) binarized with a threshold of 0.315 (middle panel) and using a threshold of 0.33
(bottom panel).

where the max and min operations are taken over all pix-
els (i , j) in the image. The reason for applying the nor-
malization as in (9) instead of the one which is commonly
used in the correlation coefficient is the same as explained
in Remark 1.

The performance of the above algorithm when ap-
plied to the same industrial image as described in the pre-
vious section is shown in Fig. 2. As can be noticed, al-
most all major defects are detected (see the bottom panel
of this figure). Simultaneously, in the middle panel one
can observe that the contrast between the background and
defects was essentially increased, leading to an easier and
more reliable choice of the threshold which serves for de-
tecting defects.

An analysis of (4) and (5) immediately reveals that
Steps 2 and 3 of the above algorithm can easily be im-
plemented as a classical feedforward neural network with
hard thresholding. Equation (4) can be flattened to one
neuron with M N inputs ci+m,j+n and wmn as weights.
Alternatively, one can implement (4) as a structure which
consists of M neurons with inputs ci+m,j+n and weights
wmn, n = 1, 2, . . . , N . In both cases, level � is a tun-
able parameter. Weights wmn have clear interpretation as
the gray levels in the reference window, which represents
a typical nondefective subimage. Such a subimage can
be prepared by selecting and averageing typical examples.

Alternatively, one can apply the well-known techniques of
training perceptrons, using examples of nondefective and
defective subimages as training samples. In the example
described above the former approach was used.

4. Detecting defects by estimating
local entropy

The aim of this section is to propose an approach to de-
tect defects by estimating the Shannon entropy of subim-
ages Cij of an M × N image I , 1 < M � Ix, 1 <
N � Iy with its upper left corner at pixel (i, j). De-
note by fij(c) ≥ 0 the one-dimensional probability den-
sity function (p.d.f.) of gray levels of the pixels contained
in Cij . Gray levels c are usually scaled to intervals [0, 1]
or [0, 255]. Later on, we shall use the former convention.
In this case the Shannon entropy of subimages Cij is de-
fined as

Hij = −
∫ 1

0

ln(fij(c)) fij(c) dc. (7)

In the discrete case, where c takes discrete values ck with
probability pij(ck), it is given by

Hij = −
∑

k

ln(pij(ck)) pij(ck). (8)
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Fig. 2. Performance of the local correlation method: original image (top), normalized inner product map q∗ij (middle),
same map binarized below the threshold 0.6 (bottom).

The rationale behind using Hij as indicators of de-
fects is as follows: Hij is large if a variety1of gray lev-
els in Cij is present. This case corresponds to defec-
tive subimages, since they usually contain almost black
gray levels of defects and the brighter part of a nondefec-
tive background. Conversely, if only an almost constant
background is present, then entropy is relatively small,
attaining its minimum if only one gray level is present
in Cij . Thus, areas with large entropy are suspected to
contain defects. Although entropy is frequently used in
image processing, e.g., in texture classification (see (Zhu
et al., 1998; Zhu et al., 1997) and the bibliography cited
therein), the above usage of entropy as an indicator of de-
fects seems to be new.

Below, it will be more convenient to normalize en-
tropies Hij , i = 1, 2, . . . , Ix −M , j = 1, 2, . . . , Iy −N
to the interval [0, 1] as follows:

H∗
ij

def=
|min Hij | + Hij

|min Hij | + max |Hij | , (9)

and to treat low values of 1−H∗
ij as indicators of defects.

Functions fij(c) are usually unknown and they have
to be estimated from observations (gray levels). Below we
propose a nonparametric estimator of the Shannon entropy
(Berlant et al., 1997; Hero and Michel, 1999; Mokka-
dem, 1989). The estimator proposed here estimates the

1Hij attains its maximum if fij is the uniform distribution in [0, 1].

Shannon entropy directly and it is well suited for a neural
network implementation.

Our starting point is to rewrite (7) as follows:

Hij = −E [ln fij(Γij)] , (10)

where Γij is a random variable with the p.d.f. fij , E de-
notes the expectation with respect to this random vari-
able. Also note that we have observations ci+m,j+n,
m = 1, 2, . . . , M , and n = 1, 2, . . . , N of Γij at our
disposal. The first step toward constructing an estimator
Ĥij of Hij is to replace the expectation in (10) by the em-
pirical mean, which leads to

− 1
M N

N∑
n=1

M∑
m=1

ln fij(ci+m,j+n). (11)

Note, however, that fij in (11) is still unknown. Our idea
is to approximate ln fij(c) by a function sij(c), which is
defined as follows:

sij(c) =
N∑

n=1

M∑
m=1

ω
(mn)
ij K

(
c − ci+m,j+n

hij

)
, (12)

where K(t) ≥ 0 is a kernel function which should be
selected so as to fulfill the following requirements:∫ ∞

−∞
K(t) dt = 1,

∫ ∞

−∞
t K(t) dt = 0. (13)
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Frequently also the condition
∫ ∞
−∞ t2 K(t) dt < ∞ is im-

posed on K, especially when the asymptotic behavior is
investigated, but this is outside the scope of our paper.
Concerning the smoothing parameter hij > 0, its choice
is crucial for proper approximation in (12). It should be
selected so as hij → 0 as M N → ∞, but in our case of a
relatively small M and N , hij is selected experimentally.

In (12), ω
(mn)
ij denote tunable weights, which should be

selected in a learning process. We shall comment more on
this later.

Summarizing, the proposed estimator of entropy has
the form

Ĥij = − 1
M N

N∑
n′=1

M∑
m′=1

sij(ci+m′,j+n′), (14)

where sij is defined by (12).
Let us note that (12) can be realized as a radial basis

function (RBF) neural net. For each (i, j) we have to cal-
culate sij(c) for all ci+m′,j+n′ , m′ = 1, 2, . . . , M , and
n′ = 1, 2, . . . , N . This task can be accomplished using
the same RBF net serially. Alternatively, one constructs
a bank of RBF nets, each of them calculating one value
sij(ci+m′,j+n′) in parallel (see Fig. 3). Taking into ac-
count that we have to repeat these calculations for each
pixel (i, j), the parallel realization is more appropriate.

It remains to discuss the choice of the weights ω
(mn)
ij

in (12). Interpreting (12) and (14) as a neural net, we can
form the learning sequence of subimages and properly cal-
culated entropies, and select the weights by a learning pro-
cedure. The second approach, which we briefly present
below, is to find a statistical interpretation of ω

(mn)
ij s and

to estimate them directly. To this end, let us rewrite (12)
and (14) as follows:

Ĥij = −h2
ij

N∑
n=1

M∑
m=1

ω
(mn)
ij f̂(ci+m,j+n), (15)

where f̂ is defined as

f̂ij(c) =
1

M N h2
ij

N∑
n′=1

M∑
m′=1

K

(
c − ci+m′,j+n′

hij

)
.

(16)
In f̂ij(c) one can easily recognize the well-known Parzen-
Rosenblatt kernel estimator of the p.d.f. fij . Bearing this
fact in mind, one can guess a proper way of interpreting
ω

(mn)
ij s. Namely, Ĥij in (15) will be directly interpretable

as estimator of the entropy if ω
(mn)
ij is proportional to

ln(f̂ij(ci+m,j+n)). More precisely,

ω
(mn)
ij =

1
M N h2

ij

ln(f̂ij(ci+m,j+n)). (17)

Substituting this equality into (15), we obtain

Ĥij = − 1
M N

N∑
n=1

M∑
m=1

ln(f̂(ci+m,j+n))

× f̂(ci+m,j+n). (18)

Clearly, it is possible to obtain the same estimator directly,
just by substituting the Parzen-Rosenblatt kernel density
estimator into (7), but then the above interpretation of es-
timating entropy by RBF nets would not be possible.

Selecting K as the uniform kernel in the above for-
mulas, we obtain the well-known histogram estimator of
entropy, which is also used in the simulations presented
below. Note, however, that if we have high resolution im-
ages, then we can choose larger subimages for estimating
entropy. In such a case one can obtain more precise esti-
mates of entropy selecting K(·) as the Gaussian or other
kernel, which estimates f better than the histogram esti-
mator.

It remains to discuss the choice of the smoothing pa-
rameter hij in (12) and (16). In the simulations reported
below, hij = 1 was used for the gray scale [0, 255]. In
general, the choice of the smoothing parameter seems to
be less critical than in nonparametric density estimation,
due to the averaging operation in (18). Cross-validation
techniques of selecting hij are not recommended here,
since they are too time-consuming in image processing.
As a rule of thumb, we propose to select hij sufficiently
large so as to avoid intervals in which f̂(c) is so close to
zero that numerical difficulties in calculating the logarith-
mic function could arise.

In Fig. 3 the local entropy map (middle panel) of the
industrial image (top panel) is shown. The map was ob-
tained using the estimator (18) with the rectangular kernel
and the window size 3 × 3. As one can notice, the ar-
eas containing defects are strongly contrasted with clean
areas, making the choice of the threshold for binarization
easier and more reliable. The binarized image is shown
in the bottom panel of this figure. Comparing this im-
age with the lower panel in Fig. 2, we conclude that the
binarized entropy map reveals almost the same defects,
but there is an important difference between these two
approaches. Namely, the binarized entropy map reveals
boundaries of defected ares, while the binarized correla-
tion map marks all the areas containing defects. Which
approach of the two is better depends on the application at
hand. At the expense of an additional computational ef-
fort, e.g., by using morphological operators, one can force
the binarized entropy map to cover all the areas of defects.

5. Concluding remarks

The local maps of inner products and entropy were inves-
tigated as tools for detecting defects of products from in-
dustrial images. Both techniques provide comparable de-
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Fig. 3. Original image (top), local entropy map (middle), binarized entropy map (bottom, threshold at 0.15).

tection abilities and provide approximately the same num-
ber of detected defects (about one hundred in our exam-
ple). The choice between them should take into account
the following factors:

1. The technique based on inner products is computa-
tionally less demanding. It is about four times faster
than the technique based on estimating local entropy.
Also its neural network realization is extremely sim-
ple. On the other hand, the inner product technique
requires that we have a good example of a pure (non-
defective) subimage or a sequence of such images
when different parts of a nondefective image have
different gray levels, e.g., as a result of different tem-
peratures.

2. The technique based on estimating local entropy is
computationally more demanding and its neural net-
work realization is more complicated. Its advantage
is the fact that a reference subimage is not necessary.
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