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In spread spectrum based watermarking schemes, it is a challenging task to embed multiple bits of information into the
host signal. M -ary modulation has been proposed as an effective approach to multibit watermarking. It has been proved
that an M -ary modulation based watermarking system outperforms significantly a binary modulation based watermarking
system. However, in the existing M -ary modulation based algorithms, the value of M is restricted to be less than 256,
because as M increases, the computation workload for data extraction advances exponentially. In this paper, we propose
an efficient M -ary modulation scheme, i.e., M -ary phase modulation, which reduces the computation in data extraction to
a very low level. With this scheme, it is practical to implement an M -ary modulation based algorithm with a high value of
M , e.g., M = 220. This is significant for a watermarking system, because it can either greatly increase the data capacity
of a watermark given the necessary watermark robustness, or considerably improve the watermark robustness given the
amount of information of the watermark. The superiority of the proposed scheme is verified by simulation results.
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1. Introduction

Watermarking systems based on the spread spectrum tech-
nique (Cox et al., 1997; Cox et al., 2001) have been
prevalent due to their distinguishing characteristics such
as good security and robustness performance. However,
some fundamental issues on spread spectrum based wa-
termarking methods are still open to investigation. For
instance, a challenging task in the design of a spread spec-
trum based watermarking system is to increase the amount
of hidden data, given a fixed level of signal fidelity and
watermark robustness. This is our concern in this paper.

Let us first look at how a 1-bit watermarking
system works. Assume that X = (X[1], . . . ,X[L]) is
a vector of signal features selected for watermarking,
which can be original signal samples, or coefficients of
some transform, such as DCT, DFT, and DWT, and the
message to embed is a binary digit m ∈ {0, 1}. For the
embedding of the message bit m, we first generate two
independent i.i.d. pseudonoise sequences (PNSs) W0 =
(W0[1], . . . , W0[L]) and W1 = (W1[1], . . . , W1[L])1

1 One can set W1 = −W0 to obtain a bi-orthogonal PNS set,
which gives slightly better performance. For simplicity of presen-
tation, bi-orthogonal PNSs are not discussed in this paper.

with a key K, where Wj [i] ∼ N (0, 1), j = 0, 1 and i =
1, . . . , L. The basic idea is that we use W0 and W1 to
represent ‘0’ and ‘1’, respectively. Wm, the PNS used to
modify the host signal, is either W0 or W1, depending on
the bit value to be embedded:

Wm =

{
W0 if m = 0,

W1 if m = 1.
(1)

Then the watermarked signal is obtained as an additive
mixture of X and Wm,

X̃ = X + aWm, (2)

where a is a constant watermark strength factor.

For watermark extraction from X̃, W0 and W1 are
re-generated with the same key K. Afterwards a certain
detector S(·) is invoked for the calculation of detection
statistics between X̃ and both W0 and W1, respectively.
The embedded bit is estimated based on the following de-
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cision rule:

m̂ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if S(X̃,W0) > S(X̃,W1)
and S(X̃,W0) > Ts,

1 if S(X̃,W1) > S(X̃,W0)
and S(X̃,W1) > Ts,

none if max{S(X̃,W0),S(X̃,W1)} < Ts,

(3)

where Ts is a pre-determined threshold for a required false
alarm rate. If X follows Gaussian distribution, the wa-
termark detector S(·) can be implemented with a linear
correlator,

C(X̃,W) =
1
L

L∑
i=1

X̃[i]W [i], (4)

where L is the number of elements in the vector W. If
X is not Gaussian distributed, one can employ a cer-
tain optimal method (Zeng and Liu, 1999; Hernandez
et al., 2000; Cheng and Huang, 2001; Nikolaidis and
Pitas, 2003).

In this paper, we focus on the problem of multibit
watermarking based on the spread spectrum technique.
We consider the situation of blind watermark extrac-
tion/decoding, in which the host signal serves as noise. As
pointed out in (Cox et al., 2001), based on a 1-bit water-
mark, one can design a multibit watermark by employing
signal multiplexing techniques originating from commu-
nication theories (Wilson, 1996; Proakis, 2000). The most
straightforward methods are based on feature space divi-
sion, such as time/space/frequency division multiple ac-
cess (TDMA/SDMA/FDMA). These intuitive approaches
have the advantage of easy implementation, but the water-
mark embedded in this way is vulnerable to signal crop-
ping and/or signal filtering. Another disadvantage is that
different feature groups may have different sensitivities
to distortions, thus leading to uneven watermark robust-
ness. To overcome the limitations of feature division
based techniques, code division multiple access (CDMA)
can be considered for N -bit watermarking. The idea is
to use the same feature vector many times; each time
a separate message symbol is embedded as a layer of
noise (from the perspective of the host signal). Based on
TDMA/SDMA/FDMA/CDMA, one can embed a multi-
bit watermark with multiple PNSs. Multibit watermarking
systems based on these techniques have one disadvantage
in common: achieving payload amount at the cost of ei-
ther watermark robustness or signal fidelity.

M -ary modulation, on the other hand, can take ad-
vantage of only one PNS to communicate a multibit mes-
sage. M -ary modulation has been utilized in commu-
nication theory (Wilson, 1996; Proakis, 2000) for some

time, and recently was applied to digital watermarking
by several authors (O’Ruanaidh and Pun, 1998; Kut-
ter, 1999; Cox et al., 2001; Trappe et al., 2003). It
was shown that the performance of a watermarking sys-
tem can be considerably improved by M -ary modulation
(Kutter, 1999). However, in practice, this advantage is
limited by the computational cost in message decoding. In
this paper, we show that with a proper choice of reference
patterns, this limitation can be considerably mitigated.

This paper is organized as follows: In Section 2, we
briefly introduce the concept of M -ary modulation based
multibit watermarking and the limitation imposed by the
existing decoding methods. In Section 3, we focus on an
efficient implementation of M -ary modulation, i.e., M -
ary phase modulation by means of circular versions of a
PNS. The error performance of M -ary modulation based
watermarks is derived in Section 4. In Section 5, a prac-
tical design of a multibit watermarking system based on
M -ary phase modulation and its empirical performance
under some common attacks are presented. Finally we
conclude the paper in Section 6.

2. Conventional M-ary modulation based
multibit watermarking

Suppose we have a feature vector X = (X[1], . . . ,X[L]),
which can be DCT, DWT or other transform domain co-
efficients of a host signal. Our objective is to mod-
ify X slightly with a same length watermark sequence
W = (W [1], . . . ,W [L]) to produce a watermarked fea-
ture vector X̃ = (X̃[1], . . . , X̃[L]), through an embed-
ding function E , such that N message bits are hidden in
X̃, and later can be extracted from X̃ without access to X.
An effective method is to use an M -ary modulation tech-
nique based on PNSs. A group of M = 2N pseudonoise
patterns {W0, . . . ,WM−1} are generated independently
with a secret key K, each of which is an L-element i.i.d.
sequence, following Gaussian distribution N (0, 1). One
of the prominent properties of PNSs generated in this way
is their quasi-orthogonality, i.e.,

C(Wm,Wn) ≈ δ(m − n), (5)

where C(·) denotes the operation of linear correlation,
which is defined in (4), and δ(·) is the Delta-function, i.e.,
δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.

If each pseudonoise pattern Wm in the group is used
to represent an M -ary message symbol m ∈ {0, . . . ,M −
1}, it contains log2 M = N bits of information once cho-
sen for data embedding. In other words, the pseudonoise
pattern Wm is modulated by the N bits of data to be em-
bedded. This is the concept of M -ary modulation, also
referred to as direct message coding (Cox et al., 2001)
and orthogonal modulation (Proakis, 2000) by different
authors.
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With an additive2 embedding function, the message
m can be embedded into the feature vector X,

X̃ = E(X,m) = X + aWm, (6)

where X̃ is the watermarked feature vector, and a is the
amplitude factor, controlling the tradeoff between water-
mark visibility and watermark robustness, which is deter-
mined by the requirement of the application.

Now the important issue is how to extract the embed-
ded data from X̃. If the feature vector X can be modelled
by an i.i.d. sequence with Gaussian distribution, a bank of
linear correlators (matched filters) can be applied for op-
timal extraction of the embedded information, as shown
in Fig. 1, where W0, . . . ,WM−1 are re-generated PNSs
with the same key K as in the embedding process, and
C(X̃,Wi), the linear correlation between each reference
pattern and the test signal is computed. With a maximum
likelihood (ML) estimator, the embedded message is de-
coded as the index number of the reference pattern which
has the maximum correlation with the test signal,

m̂ = arg max
i∈{0,...,M−1}

C(X̃,Wi). (7)
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Fig. 1. Structure of the conventional decoder for the ex-
traction of an M -ary watermark.

M -ary message coding can significantly improve the
performance of a watermarking system (Kutter, 1999). In
general, the greater the value of M , the better the sys-
tem performance in terms of data error rates or data ro-
bustness. However, one issue concerning this decoding
method is computation complexity. Because 2N corre-
lators are needed with an N -bit watermark, the decoder
could be computationally prohibitive when N is large.
For instance, to extract a 16-bit watermark, 65536 cor-
relations have to be calculated, which could be difficult
to implement in practice. Due to this difficulty, a value

2 Another common way to cast a watermark is multiplicative em-
bedding.

of M ≥ 256 appears to be impractical with the decoding
structure shown in Fig. 1.

Another M -ary watermark decoding algorithm using
a tree-structure was proposed in (Trappe et al., 2003) to re-
duce the amount of computation. To detect the embedded
reference pattern Wm, all the relevant reference patterns
are first divided into two 1/2 size groups

{W0, . . . ,WM−1}
= {W0, . . . ,WM

2 −1} ∪ {WM
2

, . . . ,WM−1}. (8)

Then the test vector X̃ is correlated with the sum of all the
patterns in each group:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
c1 = C(X̃,

M/2−1∑
i=0

Wi)

c2 = C(X̃,
M−1∑

i=M/2

Wi).
(9)

If c1 > c2, the embedded pattern Wm must be in the
first group, and otherwise in the second group. The group
with Wm is then divided again into two 1/4 size groups
to decide on the location of Wm. This process continues
until the exact position of Wm is located, whose index
number is the estimate of the embedded message.

This algorithm reduces the number of correlators to
2 log2 M . It should be clear that the actual reduction of
computation is less than that, because it introduces some
other additional operations, such as summations. An issue
related to this approach is that it results in a higher rate
of decoding errors than the direct correlation algorithm,
especially for blind watermark extraction.

3. M-ary phase modulation for multibit
watermarking

As mentioned in the previous section, M correlations for
the extraction of an M -ary symbol can be prohibitively
expensive when M is large. Another problem inherent in
the conventional decoding structure is the time-consuming
task of re-generating M independent pseudonoise se-
quences, W0, . . . ,WM−1, which are necessary for data
extraction. However, if we drop the requirement on the
independence of M pseudonoise sequences, we can solve
the problem elegantly with the use of the fast Fourier
transform (FFT) and the inverse fast Fourier transform
(IFFT), as shown below.

3.1. Multibit watermark via M-ary phase modu-
lation. To overcome the computational bottleneck of
the conventional M -ary modulation based watermark-
ing system, we form the set of M reference patterns
{W0, . . . ,WM−1} with only one reference PNS in the
following way:
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• A reference PNS Wr is generated as an i.i.d., Gaus-
sian distributed sequence: Wr[i] ∼ N (0, 1), i =
1, . . . , L, where L is the length of the feature vec-
tor X.

• Based on Wr, a set of M PNSs are generated to be
circular-shift versions of Wr, satisfying

Wm[i] =

{
Wr[i + m] if i < L − m,

Wr[i + m − L] otherwise,
(10)

for m = 0, . . . , M − 1 and i = 1, . . . , L.

Wr[L] Wr[1]

Wr[m
]

Wr[m+1]

Wr = W0

Wm

Fig. 2. Formation of a set of circular shift PNSs based
on Wr.

This process is illustrated in Fig. 2. It can be seen that
the same PNS can be used to represent M different mes-
sages with its M phases, respectively. In other words, a
PNS whose phase is modulated by the message m can rep-
resent m uniquely. Drawing on the fact that Wr is an i.i.d.
Gaussian PNS, we can show that the set of PNSs formed
in this way satisfy the requirement of quasi-orthogonality
expressed by (5), although they are not independent. This
property is illustrated by Fig. 3, where, as an example,
Wr is an i.i.d. normally distributed PNS with 1000 ele-
ments, and the correlations of W200 with all the circular-
shift versions of Wr as a function of the number of shifts
are shown.

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

Number of cyclic shifts of the PN sequence

Li
ne

ar
 c

or
re

la
tio

n 
va

lu
e

Fig. 3. Linear correlation between a pseudonoise sequence and
its circular shift versions.

Now that the set of PNSs {W0, . . . ,WM−1} is con-
structed, we can use its elements for M -ary data hiding
according to (6). An interesting part of this proposed al-
gorithm is the extraction of the embedded data. With the
circular versions of a PNS as the reference set, we no
longer have to perform M correlations separately for data
decoding, as is performed conventionally. We can com-
pute, with a very simple method, all the correlations be-
tween the watermarked feature vector X̃ and the M PNSs
derived from Wr. This computation can be implemented
conveniently and efficiently by two forward FFT opera-
tions and one IFFT operation as follows:

c =
1
L
F−1

(
F(X̃)F∗(Wr)

)
, (11)

where c = (c[0], c[1], . . . , c[L − 1]), c[i] is the correlation
between X̃ and Wi, F(·) and F−1(·) denote FFT and
IFFT operations, respectively.

The proof of (11) can be found in Appendix. With
c[0], . . . , c[M − 1] calculated according to (11), one can
immediately get the estimate of the embedded message
through (7).

3.2. Multibit watermark via extended M-ary phase
modulation. It is easy to see that the total number of
PNSs derived from a given PNS Wr of length L through
circular shifting is L. If the desired value of M for M -
ary data hiding satisfies M ≤ L, the efficient method
introduced above can be applied. However, if M > L,
the above scheme does not apply. It appears that at most
log2 L bits of data can be embedded into the feature vector
X with length L by a pseudonoise sequence. Fortunately
this is not true. Next we show that this limitation can be
easily circumvented.

Now the set of M reference patterns
{W0, . . . ,WM−1} are formed in the following way:

• A reference PNS Wr is generated as an i.i.d., Gaus-
sian distributed sequence: Wr[i] ∼ N (0, 1), i =
1, . . . ,M .

• Based on Wr, a set of M PNSs are generated to be
windowed circular-shift versions of Wr, satisfying

Wm[i] =

{
Wr[i + m] if i < M − m,

Wr[i + m − M ] otherwise,
(12)

for m = 0, . . . ,M − 1 and i = 1, . . . , L.

This process is illustrated in Fig. 4. It is distinct from the
process (10) in two ways. First, the length of Wr is M ,
rather than L. Second, the length of Wi, i ∈ {0, . . . , M−
1} is less than that of the reference PNS Wr. In other
words, {W0, . . . ,WM−1} are derived to be windowed
circular shifts of Wr.
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Fig. 4. Formation of a set of windowed circular shift PNSs
based on Wr.

Now let us look at how a multibit watermark is em-
bedded and extracted with the set of PNSs derived by (10).
In order to embed an M -ary symbol m, the corresponding
Wm is selected from the set of PNSs, and it is embedded
additively into X according to (6). For watermark extrac-
tion, we have to use a slightly different strategy. Since
now the watermarked feature vector X̃ and the reference
PNS Wr have different lengths, (11) cannot be applied di-
rectly. The solution is to first append zeros to X̃ so that it
has the same length as Wr:

X̃ ′[i] =

{
X̃[i] for 1 ≤ i ≤ L,

0 for L + 1 ≤ i ≤ M.
(13)

Then the correlations between X̃ and the set of PNSs
{Wi, i = 0, . . . ,M − 1} can be computed by

c =
1
L
F−1

(
F(X̃′)F∗(Wr)

)
. (14)

Summarizing the solutions to M -ary based data hid-
ing stated above, we give the block diagram of our pro-
posed algorithm for M -ary watermark decoding, which
is shown in Fig. 5, where the dashed block means that
if M < L, the zero-padding process is not necessary, ⊗
indicates element-wise product, conj(·) denotes the conju-
gation operation, and argmax(·) is the function of getting
the index number of the largest correlation value.

zero
padding

FFT

FFT IFFTconj(•)PNS
generation

argmax(•)

X
~

K m̂

Fig. 5. Structure of the proposed algorithm for efficient M -
ary watermark extraction.

3.3. Computational advantage of M-ary phase mod-
ulation. As noted before, the reason for the adoption of

M -ary phase modulation in the design of a watermark-
ing system is that it requires dramatically less computa-
tion than a conventional M -ary modulation based system.
This computational advantage lies dominantly in the stage
of watermark extraction, i.e., data decoding. Now let us
compare quantitatively the computational complexity of
the proposed method and that of the conventional method.
In the case of a conventional M -ary decoder illustrated
in Fig. 1, the total number of operations required for the
decoding of an M -ary symbol is approximately

T0 = LM, (15)

where L is the length of the feature vector. One operation
is defined as one real multiplication plus one real addition.
Apparently, T0 is a linear function of M . However, in the
case of the proposed M -ary decoder illustrated in Fig. 5,
the decoding of an M -ary symbol just involves 2 FFT and
1 IFFT operations. Because the complexity of one FFT
or IFFT is O(M log2 M) (Jain, 1989), the total number of
operations required is approximately

T1 = 3M log2 M. (16)

To see more clearly the advantage of the proposed
M -ary phase modulation over the conventional M -ary
modulation, in Fig. 6 we plot T0 and T1 as functions of
M in the range of our interest, for L = 1024.
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Fig. 6. Algorithm complexity of the conventional M -ary de-
coder and the proposed M -ary decoder.

One can see from Fig. 6 that algorithm complexity of
the conventional M -ary decoder is one or two orders of
magnitude higher than that of the proposed M -ary phase
decoder when L = 1024. On the other hand, T0 is a lin-
ear function of L, but T1 is independent of L. This means
that as L increases, the advantage of the proposed M -ary
phase modulation over the conventional M -ary modula-
tion is getting bigger linearly.

If one takes into account the computation involved in
the re-generation of PNSs in the conventional M -ary mod-
ulation decoder, which is considerable when M is large,
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the superiority of the proposed approach of M -ary phase
modulation is even more convincing.

4. Performance analysis of M-ary
watermarks

The algorithm proposed above makes M -ary modulation
fully feasible in the design of spread spectrum based wa-
termarking, even if M is very large. Our concern is
whether the performance of M -ary data decoding would
deteriorate as M increases. We now look into the rela-
tionship between the value of M and the error rate of data
extraction.

Let X̃ = X + aWm, where X is a vector with L
i.i.d. elements of N (0, σ2

X), Wm is a vector with L i.i.d.
elements of N (0, 1), and a is a positive constant. If Wk

is the k-th circular shift of Wm, then it can be shown that

C(X̃,Wk) ∼

⎧⎪⎪⎨
⎪⎪⎩
N (0,

1
L

(σ2
X + a2) if k 	= m,

N (a,
1
L

(σ2
X + 2a2) if k = m,

(17)

where C(·) is the correlation function defined in (4).
The proof of (17) can be found in Appendix. Based

on this result, we can draw a conclusion about error prob-
ability of data extraction.

Let an M -ary message m be embedded into a feature
vector X according to X̃ = X + aWm, where X has L
i.i.d. elements of N (0, σ2

X), Wm is a vector with L i.i.d.
elements of N (0, 1), and the constant a > 0. If σX 
 a, 3

then the error probability of an ML estimator (7) is

Pe ≈ 1 −
∫ ∞

−∞
φ(x)

[
1 − Q(

x

σc
)
]M−1

dx, (18)

where

φ(x) =
1√

2πσc

e
− (x−1)2

2σ2
c ,

Q(x) =
1√
2π

∫ ∞

x

e−
x2
2 dx,

σc =
σX

a
√

L
.

The proof of (18) can be found in Appendix. Accord-
ing to (18), we plot the error rate Pe as a function of σ2

c for
various values of M . In particular, M = 24, 28, 212, 216,
as shown in Fig. 7. From Eqn. (18) and Fig. 7, we can
draw some important conclusions. Firstly, with M and
L fixed, Pe is a function of σ2

X/a2, which can be viewed
as the signal-to-noise ratio from the perspective of the host
signal. It is an intuitive fact that the larger the ratio σ2

X/a2,
the weaker the embedded watermark signal, and therefore

3This assumption is usually valid due to the requirement of water-
mark transparency.

the more likely the error occurs. Secondly, with M and
the ratio σ2

X/a2 fixed, Pe is a function of L. As L in-
creases, the error rate goes down. This is also intuitive,
because larger L always reduces the variance of detection
statistics, and hence the chance of decoding error. An in-
teresting fact is that L and σ2

X/a2 can be traded with each
other. As long as σ2

c = σ2
X/a2L remains unchanged, Pe

does not change. Finally, Pe is a function of M . As M
increases, the error rate becomes higher. This is a price to
pay for the increase in the amount of data embedded.
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Fig. 7. Error rates of an M -ary ML decoder.

Now we are concerned with the real performance
improvement brought by M -ary modulation in our con-
text of watermarking. To have a fair comparison of dif-
ferent cases of M values, we have to fix some param-
eters, including the number of bits to be embedded N ,
the power ratio of the feature vector and the watermark
r = σ2

X/a2. Under these conditions, there are sev-
eral schemes to design the watermark, such as FDMA
and CDMA approaches, as mentioned in the introduction.
Here we focus on the FDMA based M -ary phase modu-
lation approach for the purpose of comparison. The gen-
eral idea is as follows: An M -ary PNS represents log2 M
bits of data, and thus for the embedding of N bits into
the L-element host vector X, we need to divide X into
N/ log2(M) subvectors. Each subvector has a length of
L log2 M/N . Different M results in a different number
of subvectors, and hence a different length of subvectors.
Our goal is to look into the error performance as a func-
tion of M . Based on (18), we plot a set of Pe–M curves,
fixing L = 4096, N = 16, r = {80, 60, 40, 20}, as shown
in Fig. 8. From this figure, we can see clearly that as
M increases, the error rate drops monotonically. This is
particularly obvious when r is small, i.e., when the water-
mark signal is strong.

5. Simulation results

In this section, we apply the proposed M -ary phase mod-
ulation technique in the design of a practical watermark-
ing system, from which some experimental results are ob-
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Fig. 8. Error performance of an M -ary watermark
vs. the M value.

tained and presented with details. These results verify the
effectiveness of the proposed algorithm.

5.1. M-ary phase modulation based watermarking
system. In order to see the advantage of watermarks
based on M -ary phase modulation, we design a multibit
watermarking system via a combination of M -ary phase
modulation and a CDMA technique. The structure of the
watermark embedder is shown in Fig. 9.
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Fig. 9. Embedder structure of the multibit watermarking system
based on M -ary phase modulation plus CDMA.

First, an image x undergoes an 8 × 8 block DCT
transform. In each 8×8 matrix of DCT coefficients, some
mid-frequency coefficients are selected for watermarking,
as illustrated by Fig. 10. The selected coefficients are
subsequently reorganized to be a 1-D feature vector X.
A bit sequence b = (b1, . . . , bn) to be embedded into
X has to be mapped into a sequence of M -ary symbols
m = (m[1], . . . , m[n′]), where n′ = n/ log2 M . For
each M -ary symbol m[i], a different reference PNS Wri

is needed, and therefore n′ reference PNSs are generated
with a key K. The i-th PNS Wri is modulated by the M -
ary symbol m[i] in the i-th M -ary modulator, in the way
described in Section 3, which results in Wmi. Due to the
property of quasi-orthogonality, the n′ modulated PNSs
can be added up based on CDMA. The composite signal

Fig. 10. Coefficients in an 8×8 DCT block selected
for data hiding.

∑n′

i=1 Wmi is subsequently scaled by a factor a to control
the tradeoff between watermark robustness and watermark
obtrusiveness, before it is combined with the feature vec-
tor X. Each element in the resulting watermarked vector
X̃ is substituted for its original counterpart in the DCT
coefficient matrix, and finally the watermarked image x̃ is
obtained through inverse DCT.

The mechanism shown in Fig. 11 is utilized for wa-
termark extraction. A feature vector X′ is first extracted
from a possibly distorted watermarked signal x′ through
an 8 × 8 block DCT transform, and then fed into each of
the n′ M -ary demodulators. Based on the same key K,
the n′ reference PNSs are re-generated, and they are used
in the n′ M -ary demodulators respectively for the estima-
tion of the embedded symbols. The details of each M -ary
demodulator are shown in Fig. 5, and explained in Sec-
tion 3. The estimated M -ary symbols m̂[i], i = 1, . . . , n′,
are subsequently mapped into the estimated bit sequence
b̂ = (b̂1, . . . , b̂n).

5.2. Experimental results. With the watermark em-
bedder in Fig. 9 and the watermark extractor in Fig. 11,
we performed some experiments, focusing on watermark
robustness to some common manipulations and the rela-
tionship between watermark robustness and the value of
M . The test images are a set of 256 × 256 images with
256 gray levels, shown in Fig. 12. For each experiment
in this section, the watermark strength factor a is adjusted
such that the quality of the watermarked image remains
the same, PSNR = 40dB. The watermark robustness is
measured by the bit error rate (BER).

5.2.1. Watermark robustness to lossy compression.
Lossy compression of images, dominantly represented by
the JPEG standard, is a common and easy way to process
images, and therefore watermark robustness against JPEG
compression is necessary. An example of JPEG compres-
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Original test images: (a) Lena, (b) baboon, (c) F-16, (d) fishing boat, (e) peppers, (f) watch.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Attack examples: (a) JPEG lossy compression, QF=30, (b) cropping, 50%, (c) Gaussian fil-
tering, 5 × 5, σg = 1, (d) Gaussian noise, σ = 10, (e) salt and pepper noise, D = 0.05, (f)
histogram equalization.
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Fig. 11. Decoder structure of the multibit watermarking system
based on M -ary phase modulation plus CDMA.

sion is illustrated in Fig. 13(b). To look into the robustness
of the designed watermark against JPEG compression, we
first watermark images with the data to be embedded, and
then compress the watermarked images with a number of
different quality factors. The embedded data are estimated
by the watermark extraction algorithm possibly with er-
rors from the compressed watermarked images. Another
objective of this experiment is to see the relationship be-
tween watermark robustness and the value of M . For this
purpose, we take M ∈ {2, 4, 16, 256, 65536}.

Shown in Fig. 14 are a family of curves of the error
performance as a function of JPEG quality factors. Each
point on the curves is obtained as the average value of
100 independent experiments, each of which has a differ-
ent random sequence of 64 bits as its data input. From
Fig. 14 one can see that with the increase in quality fac-
tor, the BER drops monotonically. An important trend is
that the value of M influences the BER significantly. In
particular, larger M gives a lower BER. This result evi-
dently shows that M -ary modulation is preferable in the
design of a multibit spread spectrum-based watermarking
system.

30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

JPEG quality factor

B
it 

er
ro

r 
ra

te

M=21

M=22

M=24

M=28

M=216

Fig. 14. Error performance of the multibit watermarking system
based on M -ary modulation plus CDMA, under JPEG
lossy compression. The number of bits embedded is
64, and the quality of watermarked images is PSNR =
40dB.

5.2.2. Watermark robustness to image cropping.
Image cropping refers to the loss of some parts of an

image, especially along the borders. An example of im-
age cropping is illustrated in Fig. 13(b). Image cropping
brings about a partial loss of watermark information. The
objective of this experiment is to look at the system’s abil-
ity to recover the embedded data from incomplete water-
marked images. Preferably the embedded data can be ex-
tracted at a low error rate under mild image cropping. In
our experiments, we crop the watermarked images evenly
along the four borders to different degrees, and record the
errors in data extraction from the cropped images. The
amount of data embedded is 128 bits. Shown in Fig. 15
are a family of BER curves, with M ∈ {24, 28, 216}, as
a function of the remaining factor, which is the ratio of
the number of remaining pixels to that of original pixels.
From the figure, one can see that the watermark has out-
standing robustness to image cropping, especially when
M = 216. Even if 75% of the image pixels are cropped,
the embedded data can still be extracted with a very low
BER at the magnitude of O(10−3).
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Fig. 15. Error performance of the watermark under image crop-
ping. The number of bits embedded is 128, and the
quality of watermarked images is PSNR = 40dB.

5.2.3. Watermark robustness to lowpass filtering.
Lowpass filtering is another common form of image pro-
cessing, which can be performed conveniently either in a
transform domain or directly in a space domain (Gonzalez
and Woods, 2002). Here we use a Gaussian filter to test
watermark robustness to this kind of attack against water-
marked images. One such attack example is illustrated in
Fig. 13(c). We apply 216-ary phase modulation, set the
length of data to be 128 bits and PSNR=40dB in all the
experiments. Figure 16(a) shows the test results in the
cases of 3 × 3 and 4 × 4 filter sizes, while the results for
5×5 Gaussian filters are given in Fig. 16(b). The standard
deviation of the Gaussian filter is chosen to cover a wide
range: 0.5 < σg < 2. The results are the average of 1000
repetitions. In all our experiments, BER=0 in the case of
3 × 3 filters regardless of σg, and BER=0 if σg ≤ 1.5 in
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the cases of 4 × 4 and 5 × 5 filters. These results indicate
that the designed watermark has outstanding robustness
against the attack of lowpass filtering.
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Fig. 16. Error rate as a function of the standard deviation of the

Gaussian filter: (a) σg = 3 and 4, (b) σg = 5.

5.2.4. Watermark robustness to other attacks. Be-
sides the attacks considered above, we are concerned
about watermark robustness to some other kinds of attacks
as well. A set of common image manipulations, including
noise addition and image enhancement operations illus-
trated in Fig. 13, are applied to the watermarked images
in order to test watermark robustness. Table 1 lists the
error rates under these attacks. Throughout all the tests,
we use 216-ary phase modulation, embed 128 bits of data
and make PSNR=40dB. The table shows the embedded
data are robust enough against most commonly used im-
age processing operations.

6. Conclusions

In this paper, we proposed to design a multibit water-
marking system based on M -ary phase modulation. The

Table 1. Watermark robustness to other common attacks.

Type of attack Parameter
of attack

BER

σ = 5 0

White Gaussian noise σ = 10 0

σ = 15 0

D = 0.01 0

Salt & pepper noise D = 0.03 0

D = 0.05 3.33 × 10−2

Histogram
equalization

N/A 0

f. size = 2 × 2 0

Median filtering f. size = 3 × 3 0

f. size = 4 × 4 5.89 × 10−2

f. size = 2 × 2 0

Wiener filtering f. size = 3 × 3 0

f. size = 4 × 4 7.19 × 10−4

Sharpening Moderate 0

(in Paintshop Pro) High 0

conventional use of M -ary modulation has been limited
by small M values, e.g., M ≤ 256, due to heavy com-
putations associated with correlation based signal detec-
tion. However, with the proposed M -ary phase modula-
tion, which is based on circular shifts of a reference PNS,
the amount of computation in watermark detection is dras-
tically reduced. Furthermore, we also provided the de-
sign of an extended M -ary phase modulated watermark
based on a set of windowed circular shifts of a PNS of
length M , which breaks the restriction on the value of M
due to the length of the feature vector. A practical de-
sign of a multibit watermark based on M -ary phase mod-
ulation plus CDMA was presented. The simulation re-
sults showed that the proposed M -ary phase modulation
greatly improved the tradeoff among a watermark’s trans-
parency, robustness and information capacity while keep-
ing a low cost of implementation.
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Appendix

A.1 Derivation of Eqn. (11) The linear correlation be-
tween X and Wk is

c[k] =
1
L

L−1∑
i=0

X[i]Wk[i] =
1
L

L−1∑
i=0

X[i]W0[i − k],

k = 0, . . . , L − 1. (19)

Its DFT is

C[u] =
1
L

L−1∑
k=0

[
L−1∑
i=0

X[i]W0[i − k]

]
e−j 2π

L uk

=
1
L

L−1∑
i=0

X[i]
L−1∑
k=0

W0[i − k]e−j 2π
L uk

=
1
L

L−1∑
i=0

X[i]e−j 2π
L ui

L−1∑
k=0

W0[i − k]ej 2π
L u[i−k]

=
1
L
F(X)F∗(W0), u = 0, . . . , L − 1, (20)

which leads to

c[k] =
1
L
F−1 (F(X)F∗(W0)) , k = 0, . . . , L − 1.

(21)

In the above equations, F(·) and F−1(·) denote DFT
and IDFT operations, respectively.

A.2 Derivation of Eqn. (17) The correlation between X̃
and Wk is

C(X̃,Wk) = C(X,Wk) + a C(Wm,Wk). (22)

Let us look at the first term on the right-hand side. Ac-
cording to the Central Limit Theorem, C(X,Wk) follows
a Gaussian distribution when L is sufficiently large. Based
on the fact that X and Wr are independent, the mean and
variance of C(X,Wk) can be obtained:

E{C(X,Wk)}

=E
{ 1

L

L−1∑
i=0

X[k]Wk[i]
}

(23)

=
1
L

L−1∑
i=0

E
{

X[i]}E{Wk[i]
}

= 0. (24)

V
{
C(X,Wk)

}

=E

{(
1
L

L−1∑
i=0

X[i]Wk[i]

)2}
(25)

=
1
L2

L−1∑
i=0

E{(X[i])2(Wk[i])2}

+
1
L2

∑
{(i,j),i �=j}

E{(X[i]Wk[i])(X[j]Wk[j])}︸ ︷︷ ︸
=0

(26)

=
1
L2

L−1∑
i=0

E{(X[i])2}︸ ︷︷ ︸
=σ2

X

E{(Wk[i])2}︸ ︷︷ ︸
=1

=
σ2
X

L
. (27)

We can analyze the second term on the right-hand side of
(22) in a similar way. When k 	= m, we have

E{C(Wm,Wk)} = 0, (28)

V {C(Wm,Wk)} =
1
L

. (29)

When k = m, we get

E{C(Wm,Wk)} =
1
L

L−1∑
i=0

E{(Wm[i])2} = 1, (30)

V {C(Wm,Wk)}

= E

⎧⎨
⎩ 1

L2

(
L−1∑
i=0

(Wm[i])2
)2
⎫⎬
⎭− 1 (31)

=
1
L2

L−1∑
i=0

E{(Wm[i])4}

+
2
L2

∑
{(i,j),i �=j}

E{(Wm[i])2}E{(Wm[j])2}︸ ︷︷ ︸
=1

−1

(32)

=
1
L2

3 +
2
L2

L(L − 1)
2

− 1 =
2
L

. (33)



104 Y. Xin and M. Pawlak

Note that in (32),

E{(Wm[i])4} =
1
2π

∫ ∞

−∞
x4e−x2/2 dx = 3,

and there are
(
L
2

)
products in total involved in the second

summation.
Combining (22), (24), (27)–(30) and (33), we obtain

C(X̃,Wk) ∼

⎧⎪⎨
⎪⎩
N
(
0,

1
L

(σ2
X + a2L)

)
if k 	= m,

N
(
a,

1
L

(σ2
X + 2a2)

)
if k = m.

(34)

A.3 Derivation of Eqn. (18) Let c = (c[0], . . . , c[M −
1]) where c[k] = C(X̃,Wk). According to Theorem 17,
we have

c[m]
a

∼ N (1, σ2
1),

c[i]
a

∼ N (0, σ2
0), i ∈ {0, . . . , M − 1} but i 	= m,

where

σ2
1 =

r + 2
L

, σ2
0 =

r + 1
L

, r =
σ2
X

a2
.

When σ2
X 
 a2, we have σ2

1 ≈ σ2
0 ≈ r/L.

Let
cmax = max

{i,i �=m}
{c[i]}.

Fmax(x) and Fi(x) denote the distribution functions of
cmax/a and c[i]/a, respectively. Then

Fmax(x) =
∏

{i,i �=m}
Fi(x).

Thus

P
(cmax

a
< x

)
=

M−1∏
i=0, �=m

P
(c[i]

a
< x

)

=
[
1 − Q(

x

σc
)
]M−1

,

where

Q(x) =
1√
2π

∫ ∞

x

e−
x2
2 dx, σc =

√
r

L
=

σX

a
√

L
.

Following the ML principle in (7), the embedded
symbol m is correctly decoded only when c[m] > cmax,
and therefore the probability of correct estimation is

Pc =
∫ ∞

−∞
φ(x)P

(cmax

a
< x

)
dx,

where

φ(x) =
1√

2πσc

e
− (x−1)2

2σ2
c

is the probability density function of c[m]/a. Finally, we
have

Pe = 1 −
∫ ∞

−∞
φ(x)

[
1 − Q(

x

σc
)
]M−1

dx.
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