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This paper describes three cytological image segmentation methods. The analysis includes the watershed algorithm, active
contouring and a cellular automata GrowCut method. One can also find here a description of image pre-processing, Hough
transform based pre-segmentation and an automatic nuclei localization mechanism used in our approach. Preliminary
experimental results collected on a benchmark database present the quality of the methods in the analyzed issue. The
discussion of common errors and possible future problems summarizes the work and points out regions that need further
research.
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1. Introduction

In the last decade we have been observing a dynamic
growth in the number of research works conducted in the
area of breast cancer diagnosis. Many university centers
and commercial institutions (Kimmel et al., 2003) are fo-
cused on this issue because of the fact that breast cancer is
becoming the most common form of cancer disease of to-
day’s female population. The attention covers not only
curing the external effects of the disease (Boldrini and
Costa, 1999; Świerniak et al., 2003) but also its fast de-
tection in an early phase. Thus, the construction of a fully
automatic cancer diagnosis system supporting a human
expert has become a challenging task.

Nowadays many camera-based automatic breast can-
cer diagnosis systems have to face the problem of cells
and their nuclei separation from the rest of the image con-
tent (Lee and Street, 2000; Pena-Reyes and Sipper, 1998;
Setiono, 1996; Wolberg et al., 1993). This process is
very important because the nucleus of the cell is the place
where breast cancer malignancy can be observed. Thus,
much attention in the construction of the expert support-
ing diagnosis system has to be paid to the segmentation
stage.

The main difficulty of the segmentation process is
due to the incompleteness and uncertainty of the informa-

tion contained in the image. The imperfection of the data
acquisition process in the form of noise, chromatic distor-
tion and deformity of cytological material caused by its
preparation additionally increases the problem complex-
ity. The nature of image acquisition (3D to 2D transfor-
mation) and the method of scene illumination also affect
the image luminance and sharpness. In many cases one
must also deal with a low-cost CCD sensor whose quality
and resolution capabilities are rather low.

Until now many segmentation methods have been
proposed (Carlotto, 1987; Chen et al., 1998; Kass et
al., 1987; Otsu, 1979; Su and Chou, 2001; Vincent and
Soille, 1991) but, unfortunately, each of them introduces
numerous additional problems and usually works in prac-
tice under given assumptions and/or needs the end-user’s
interaction/co-operation (Lee and Street, 2000; Street,
2000; Wolberg et al., 1993; Zhou and Pycock, 1997).
Since nowadays many cytological projects assume full au-
tomation and real-time operation with a high degree of ef-
ficiency, a method free of drawbacks of the already known
approaches has to be constructed.

In this paper a group of modified versions of cy-
tological image segmentation methods adopted for fine
needle biopsy images are presented, that is, the water-
shed algorithm, active contours and the cellular automata
GrowCut technique. One can also find here a descrip-
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(a) (b)

Fig. 1. Exemplary fragments: (a) cytological image,
(b) appropriate segmentation mask.

tion of denoising and contrast enhancement techniques,
pre-segmentation and a fully automatic nuclei localization
mechanism used in our approach.

2. Problem formulation

The mathematical formulation of the segmentation pro-
cess is very difficult because it is a poorly conditioned
problem, and in many situations the segmentation process
is domain specific. Thus, we give here only an informal
definition of the problem we have to face.

What we have on input is cytological material ob-
tained using the Fine Needle Biopsy (FNB) technique and
imagined with a Sony CCD Iris camera mounted on top of
an Axiophot microscope. The material comes from female
patients of the Onkomed medical center in Zielona Góra
(Marciniak et al., 2005). The image itself is coded using
the RGB colorspace and is not subject to any kind of lossy
compression (a raw color bitmap format). The size of the
image equals 704 × 576 pixels.

What we expect on output is a binary segmentation
mask with one pixel separation rule which will permit
more robust morphometric parameters estimation in our
future work. Additionally, the proposed segmentation al-
gorithm should be insensitive to colors of contrasting pig-
ments used for the preparation of the cytological material
(see the example in Fig. 1).

3. Image filtering and preparation

3.1. Preprocessing. The color components of an im-
age do not carry as important information as the lu-
minosity does, so they can be removed to reduce pro-
cessing complexity in stages that require only, e.g., gra-
dient estimation. An RGB color image can be con-
verted to greyscale by removing blue and red chrominance
components from the image defined in the YCbCr col-
orspace. The luminosity component can be determined
using (Pratt, 2001):

Y = 0.299R + 0.587G + 0.114B. (1)

Since the majority of images we deal with have low
contrast, an enhancement technique is needed to improve
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Fig. 2. Typical histogram and a cumulated sum P (dashed line)
before contrast enhancement.

their quality. In our approach we use simple histogram
processing with a linear transform of the image levels of
intensities. The range of cutoff is defined by (tlow, thigh)
points (Fig. 2):

tlow = arg(1)
i

(
P (i) ≥ θlow

)
,

thigh = arg(n)
i

(
P (i) ≤ θhigh

)
,

(2)

where P is a cumulated sum of all image pixels described
by its histogram H (Russ, 1999):

P (i) =

i∑
j=0

H(j)

N−1∑
j=0

H(j)
, i = 0, . . . , 255, (3)

and arg(1), arg(n) denote the first and the last argument,
respectively. θlow and θhigh define a plateau in the his-
togram and in our approach they are equal to 0.01 and
0.99, respectively, which means that 1% of pixels are sat-
urated at low and 1% at high intensities of the input image.

The contrast correction is conducted for each color
channel separately resulting in an image being better de-
fined for later stages of the presented hybrid segmentation
methods (see the example in Fig. 3).

3.2. Presegmentation.

3.2.1. Background. If we look closely at the nuclei we
have to segment, we notice that they all have an elliptical
shape (Fig. 4). Most of them resemble an ellipse but, un-
fortunately, the detection of the ellipse which is described
by two parameters a and b (x = a cos(α), y = b sin(α))
and which can be additionally rotated is computationally
expensive. The shape of the ellipse can be approximated
by a given number of circles (as shown in Fig. 4(b)). The
detection of circles is much simpler in the sense of the
required computations because we have only one parame-
ter, which is the radius R. These observations and sim-
plifications form a basis for a nucleus presegmentation
algorithm—in our approach we try to find such circles
with different radii in a given feature space.
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(a) (b)

(c) (d)

Fig. 3. Exemplary fragments of cytological images (a), (c) and
their contrast enhanced equivalents (b), (d).

(a) (b)

Fig. 4. Exemplary fragment of a cytological image with circular
nuclei.

3.2.2. Circle detection. The Hough transform
(Ballard, 1981; Duda and Hart, 1972; Żorski, 2000) can
be easily adopted for the purpose of circle detection. The
transform in the continuous space is defined by

HTcont(R, x0, y0)

=
∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ

(
(x − x0)2

+ (y − y0)2 − R2
)

dxdy, (4)

where f is any continuous function defining the space
in which the circles will be looked for and δ is Dirac’s
delta (an infinite impulse at zero), which defines integra-
tion only over the circle.

The transform in a discrete space (with similar mean-
ing) can be rewritten as
HTdiscr(R, i0, j0)

=
i0+R∑

i=i0−R

j0+R∑
j=j0−R

g(i, j)δ
(
(i− i0)2 +(j−j0)2−R2

)
,

(5)

where g is a two-dimensional feature image and δ is Kro-
necker’s delta (equal to unity at zero). HTdiscr plays the
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Fig. 5. Gradient masks used in our experiments.

role of an accumulator which accumulates the similarity
levels of g to the circle placed at (i0, j0) and defined by
the radius R.

The feature space g can be created in many different
ways. In our approach we use a gradient image as the fea-
ture indicating the occurrence or absence of the nucleus in
a given fragment of the cytological image. The gradient
image is a saturated sum of gradients estimated in eight
directions on the greyscale image prepared in the prepro-
cessing stage. The base gradients can be calculated us-
ing, e.g., Prewitt’s, Sobel’s mask methods (Gonzalez and
Woods, 2002; Tadeusiewicz, 1992) or their heavy or light
versions (Fig. 5).

3.2.3. Final actions. Thresholding the values in the ac-
cumulator by a given θ value we can obtain a very good
presegmentation mechanism with a lower threshold strat-
egy (see, e.g., Fig. 7). Since the threshold value strongly
depends on the database and the feature image g (Fig. 6),
the method can only be used as a presegmentation stage.
A smaller value of the threshold causes fast removal of
unimportant information from the background, and what
we achieve is a mask which approximately defines the
places where the objects we have to segment (nuclei in
this case) are located and where the background is. Such
a mask can constitute a basis for more sophisticated and
detail-oriented algorithms.

Fig. 6. Influence of the threshold θ on objects’ cover, and the
lack of differences (left) and overcovering (right) for
Prewitt (×), Sobel (∗), heavy (•) and light (+) base gra-
dient masks (experiments performed on a randomly se-
lected 346 element Zielona Góra Onkomed cytological
benchmark database for radii in the range 4–21).

3.3. Nuclei localization.

3.3.1. Terrain modeling. The results obtained at the
presegmentation stage can lead to the estimation of an av-
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(a) (b)

Fig. 7. Exemplary results of the presegmentation stage for two
different θ threshold strategies: (a) high and (b) low.

erage background color. Such information can be used
to model the nuclei as a color distance between the back-
ground and the objects, which fulfills the requirements of
the lack of any color dependency in the imaged material
(the color of contrasting pigments may change in the fu-
ture). In our research we tried several distance metrics:
Manhattan’s, Chebyshev’s, the absolute Hue value from
the HSV colorspace, but the Euclidean one gives us visu-
ally the best results (Fig. 8(a) and (b)):

Deuclid =
√

(IR − BR)2 + (IG − BG)2 + (IB − BB)2,
(6)

where B is the average background color estimated for the
input image I .

(a) (b) (c)

Fig. 8. Exemplary fragments: (a) cytological image, (b) Eu-
clidean distance to the mean background color,
(c) smoothed version of (b).

Since the modeling distance can vary in the local
neighborhood (see Fig. 8(b)), mostly because of camera
sensor simplifications, a smoothing technique is needed
to reconstruct the nuclei shape. The smoothing opera-
tion in our approach relies on the fact that this sort of 2D
signal can be modeled as a sum of sinusoids (Madisetti
and Williams, 1997) with defined amplitudes, phase shifts
and frequencies. Cutting off all low amplitude frequencies
(leaving only a few significant ones with the highest am-
plitude) will result in a signal deprived of our problematic
local noise effect (Figs. 8(c), and 9). The frequency spec-
trum is determined using the discrete Fourier transform

F (m) =
N−1∑
n=0

x(n)e−j2πnm/M , (7)

(a) (b)

Fig. 9. One-dimensional representation of the images from
Figs. 8(b) and (c), respectively.

where x is a one-dimensional signal created by grouping
pixels column by column from the square window which
is moved through the image. After the frequency cutoff,
the signal is reconstructed using the inverse of the discrete
Fourier transform. And what we finally achieve is a three-
dimensional modeled terrain where hills correspond to
nuclei.

3.3.2. Nuclei search. The localization of objects on
a modeled map of nuclei can be performed locally us-
ing various methods. In our approach we have cho-
sen an evolutionary (1+1) search strategy (Arabas, 2004;
Michalewicz, 1996) mostly because it is simple and quite
fast, can be easily parallelized due to its nature and settles
very well in local extrema, which is very important in our
case.

The search in our approach can be conducted in two
versions: single-point and multi-point. In the single-point
version it is allowed to have only one marker pointing a
nucleus while in the multi-point one it is allowed to have
more than one marker pointing the same nucleus.

Single-point version with the background. As a fi-
nal segmentation method, the watershed algorithm used
forced us to create two populations of individuals. The
first population localizes the background. Specimens are
moved with a constant movement step (R = 1) preferably
to places with a smaller density of population to maxi-
mize the background coverage. The second population
localizes the nuclei. Specimens are moved with a decreas-
ing movement step (rt) to group very fast the population
near local extrema in the first few epochs and to finally
work on details in the ultimate ones. The movement of
individuals is preferred to be directed towards places with
a higher population density to create the effect of nuclei
localization.

The fitness function φ calculates the average height
of the terrain in a given position including the nearest
neighborhood defined by the smallest radius detected by
the Hough transform in the presegmentation stage. Such
a definition of the fitness function avoids a possible split
of the population, localized near a nucleus with a multi-
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(a) (b)

Fig. 10. Exemplary single-point localization: (a) screenshot af-
ter 8 epochs, (b) final result (localization points are
marked with asterisks).

Algorithm 1. The (1+1) search strategy for nuclei
localization.

t = 0
initialize Xt

while t < tmax

Y t = mutate Xt

if φ(Xt) < φ(Y t)
Xt = Y t

end

t = t + 1
end

modal character of its shape, giving only one marker for a
nucleus (Fig. 10(b)).

Finally, the nucleus is localized in the place where
the density of the population searching for hill tops in the
modeled terrain is locally maximal. As has been men-
tioned, the method is quite fast and just a few epochs are
needed to observe a visible progress in nuclei localization
and background coverage (Fig. 10(a)).

The presented algorithm for nuclei localization is
given as Algorithm 1, where

Y t
i = Xt

i + rtNi(0, 1) (8)

defines the mutation and

rt = Rmax

(
1

Rmax

) t
tmax

(9)

defines the decreasing movement step. The algorithm for
the population which is covering the background is simi-
lar, except R = 1 during mutation.

(a) (b)

Fig. 11. Exemplary multi-point localization: (a) screenshot af-
ter several epochs, (b) final result.

Multi-point version. The algorithms that do not have
such tight requirements concerning only one single
marker per nucleus (that is, they allow multiple markers
pointing the same one, not optimal or even false local-
ization point and can take information about the back-
ground location from the presegmentation mask (Hrebień
and Steć, 2006)) can use a very simplified version of the
above (1 + 1) search strategy. In such cases we can use
only one population, i.e., the one searching for nuclei, and
the fitness function is simply the terrain height in an indi-
vidual position. The number of iterations of the algorithm
can also be reduced, because we need only an approximate
localization of nuclei (Fig. 11). Thus, the algorithm is the
same as the one given in Algorithm 1, and the only differ-
ence with the one described above is the fitness function
φ and a reduced number of epochs.

4. Image segmentation

4.1. Watersheds. The watershed segmentation algo-
rithm is inspired by natural observations, such as a rainy
day in the mountains (Gonzalez and Woods, 2002; Pratt,
2001; Russ, 1999). A given image can be defined as
a terrain on which nuclei correspond to valleys (upside
down the terrain modeled in previous steps). The terrain
is flooded by rainwater and arising puddles start to turn
into basins. When the water from one basin begins to pour
away to another, a separating watershed is created.

The flooding operation has to be stopped when the
water level reaches a given threshold θ. The threshold
should preferably be placed somewhere in the middle be-
tween the background and a nucleus localization point. In
our approach the nuclei are flooded to the half of the al-
titude between the nucleus localization point and the av-
erage height of the background in the local neighborhood.
Since the images we have to deal with are spot illuminated
during the imaging operation (which results in a modeled
terrain higher in the center of the image and much lower
in the corners), this mechanism protects basins from be-
ing overflooded and, in consequence, nuclei from being
undersegmented (Hrebień et al., 2007).
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Algorithm 2. A simplified version of the wathershed
algorithm.

// For each basin

∀p ∈ P assign a label (i + 1)

for θ ∈ 0 : Δ : 1
for ∀p ∈ P

color p to the level � θΨ(p)/2
end

end

A simplified version of the watershed algorithm is
given in Algorithm 2. The coloring to the level of θ imple-
ments the flooding operation. It also considers a possible
situation of watershed building when there is a neighbor
with another label. Δ defines the water level increase in
each iteration of the algorithm and Ψ defines the differ-
ence between the p valley’s depth and the background’s
height in its local neighborhood.

4.2. Active contours. The active contouring tech-
nique (Blake and Isard, 1998; Kass et al., 1987) can
be considered as a more advanced region growing
method (Tadeusiewicz, 1992). The algorithm groups
neighboring pixels when a given homogeneity and sim-
ilarity criteria are met. All joined pixels create a seg-
ment whose boundary spreads in all directions until an-
other segment is met or new candidates for joining intro-
duce unacceptable errors. The algorithm is stopped when
all pixels get labels, i.e., the object in the image is sepa-
rated from the background.

The images we deal with may contain more than a
single object per image. Additionally, the assumption
of the project is that the segmentation process has to be
fully automatic (there is no human operator which man-
ually initializes the method). These two factors force us
to modify the algorithm to meet the stated requirements.
Thus, the algorithm, which in our case is based on the
fast marching method (FMM) (Sethian, 1999), must have
a multilabel extension (Steć and Domański, 2005) and the
seeding process has to be done without the end-user’s in-
teraction.

In the proposed approach the multilabel FMM is ini-
tialized with a presegmentation mask and the results ob-
tained at the multipoint nuclei localization stage. The
background-object boundary from the presegmentation
mask is the initial seed for the background segment. On
the other hand, the nuclei localization points are initial
seeds for the object segments. The most important issue
in this method is that the initialization mask and the nuclei
localization points do not have to be perfect—all fake ini-
tial markers are fully acceptable and they do not have any
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Fig. 12. Illustration of the contour merging operation.

influence on the final segmentation result and its quality.
The contour expansion speed of the multilabel FMM

is governed globally by the function (Hrebień and Steć,
2006):

F =
1

|g(x, y) − ḡ(i)|3 + 1
, (10)

where g(x, y) is the color under the contour and ḡ(i) is
the mean color under the i-th segment. Such a definition
of the expansion speed slows down the contour near the
object (nucleus) boundary. Two very close spreading seg-
ments can meet during the algorithm execution. The two
meeting segments can be merged (the smaller one into
the bigger one) when their mean color difference is be-
low a threshold (Fig. 12). The segments not classified
to be merged can bush back the segment with the lower
difference between the analyzed pixel and mean color of
each segment (Fig. 13). The pushing operation can be per-
formed only once to reduce contour oscillations known
from the classical approach and the segment pushed back
cannot move further here.

4.3. Cellular automata. The next technique inspired
by natural observations is the GrowCut cellular au-
tomata segmentation algorithm (Vezhnevets and Konou-
chine, 2005). It imitates the growth and struggle for dom-
ination of rivalry bacteria colonies. Each type of bacte-
ria represents a single type of objects used in segmenta-
tion. The GrowCut algorithm was originally developed
for multi-label intelligent scissor tasks for photo-editing
tools. It requires manual initialization of the seed pixels
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Fig. 13. Illustration of the contour pushing operation.

but, concatenated with a proper presegmentation method,
gives a fully automated hybrid segmentation technique.

The GrowCut algorithm defines a cellular space P as
a k × m array, where k and m are the image dimensions.
Each of the array cells is an automaton described by the
state triplet (lp, θp, �Cp), where lp is the label of the cell,
θp is the strength of the cell and �Cp is the feature vec-
tor of the cell defined by the associated image pixel. An
unlabeled image may be then considered as a particular
configuration state of the cellular automaton, where the
initial states for each p ∈ P are set to

lp = 0, θp = 0, �Cp = RGBp, (11)

where RGBp is the three-dimensional vector of pixel p
color in the RGB space. The final goal of the segmentation
is to assign each pixel to one of K possible labels. As
stated before, we use two labels in the segmentation of
cytological images—the nuclei and the background.

In a single evolution step, each cell (the bacteria) tries
to attack all its neighbours. The evolution goal is to oc-
cupy the whole image area starting from a group of previ-
ously initialized pixels. Cell neighbours are defined by a
neighbourhood system. In our approach the Moore neigh-
bourhood system was used:

N(p) =
{

q ∈ Z
n : ‖ p − q ‖∞:= max

i=1,...,n
|pi − qi| = 1

}
.

(12)
The attack power is defined as a function of the strengths
of attacker q and defender p and the distance between their
feature vectors, �Cq and �Cp. The basic rule of the automa-
ton state change at time t + 1 is shown in Algorithm 3.

Algorithm 3. GrowCut algorithm.

// For each cell

for ∀p ∈ P

// copy previous state

lt+1
p = ltp
θt+1

p = θt
p

// neighbors try to attack

// current cell

for ∀q ∈ N(p)
if g(‖ �Cp − �Cq ‖2) · θt

q > θt
p

lt+1
p = ltq
θt+1

p = g(‖ �Cp − �Cq ‖2)θt
q

end

end

end

The function g is monotonous, decreasing and bounded
to [0, 1]. For the purpose of this work, a simple func-
tion g was used, as proposed in (Vezhnevets and Konou-
chine, 2005):

g(x) = 1 − x

max ‖ �C ‖2

, (13)

where max ‖ �C ‖2 is calculated as a feature vector length
for white pixels (RGB = [255, 255, 255]). As the strength
of each cell is increasing and bounded, the method is guar-
anteed to converge. Thus for any seed configuration of the
image, after a finite number of evolution steps, all cells are
labelled and their states change. Figure 14 shows subse-
quent steps of the GrowCut segmentation for a manually
initialized cytological image.

The GrowCut algorithm requires the initialization of
a number of cells with proper labels for each separate,
consistent group of pixels (segment seed). To permit the
application of the algorithm to the automated diagnostic
system, we employ the information from the presegmen-
tation and the nuclei localization stage to initialize the
seed pixels. At this point almost any rough segmentation

(a) (b) (c) (d) (e)

Fig. 14. Exemplary segmentation of an FNB image with the
GrowCut algorithm. White points denote nucleus la-
belled cells, black points represent background labelled
cells: (a) the seed, (b) Step 2, (c) Step 4, (d) Step 6, (e)
Step 19 (end).
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(a) (b) (c)

Fig. 15. Exemplary segmentation with the GrowCut algorithm
initialized with the thresholding result: (a) exemplary
image, (b) thresholding result, (c) GrowCut result.

technique (e.g., thresholding) can be also applied as pre-
segmentation (Fig. 15): however, our research shows that
initialization which leaves unclassified pixels at object
boundaries performs better (Hrebień et al., 2006). One of
the techniques whose results can be utilized at the Grow-
Cut algorithm initialization stage is the presegmentation
mask obtained using the Hough transform. The transform
result is a set of circles covering the regions of the im-
age where nuclei are located. Pixels enclosed inside these
regions are initially labeled as the nucleus ones. The re-
maining pixels of the image are labeled as the background.
For this type of initialization, all the image pixels are clas-
sified before the first GrowCut evolution step. The goal
of the algorithm application is only to adjust the segment
edges to real boundaries of objects. Therefore, to enforce
a proper direction and a range of label changes within suc-
cessive evolution steps, associating suitable values of the
initial strength for both of the pixel classes is necessary.

The appropriate direction of label changes depends
on the threshold value θ used at the presegmentation stage.
For lower threshold values, the Hough transform results
in a number of background pixels located at boundaries
of regions labeled as nucleus. These pixels should change
their labels to background in the process of actual seg-
mentation. Thus, the initial strength value of the nucleus
labeled pixels has to be less than the strength of the back-
ground pixels. For higher values of the threshold θ, a
number of the nucleus pixels are incorrectly labeled as
background. In this case the labels of the boundary pix-
els should be changed to nucleus. Therefore, the initial
strength of the nucleus pixels has to be greater than the
background pixels.

The GrowCut algorithm can be also initialized with
the result obtained at the multi-point nuclei localization
stage described above. Due to few initialized pixels of
each segment, cell strengths can be set to equal values for
both classes. It permits the automation of the segmenta-
tion process. However, more uninitialized pixels result in
more evolution steps and so a greater computational cost.

5. Experimental results

5.1. Watersheds. Exemplary results of the presented
watershed segmentation method and common errors ob-

served in our hand-prepared benchmark database can be
divided into four classes:

• Class 1: good quality images with only small irreg-
ularities and rarely generated subbasins (a basin in
another basin) (Figs. 16(a) and (b)),

• Class 2: errors caused by fake circles created by
spots of fat (Figs. 16(c) and (d)),

• Class 3: mixed nucleus types: red and purple in this
case, and those of the red which are more purple than
yellow (background) are also segmented, which is er-
roneous (Figs. 16(e) and (f)),

• Class 4: poor quality image with a bunch of nuclei
glued together, which causes basin overflooding and,
in consequence, undersegmentation (Figs. 16(g) and
(h)).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 16. Exemplary results of the watershed
segmentation.
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(a) (b)

(c) (d)

Fig. 17. Exemplary results of active contouring
segmentation.

The conducted experiments show that, on average,
the watershed algorithm gives a 68.74% agreement with
the hand-prepared templates using a simple XOR metric.
Most errors are located at boundaries (see, e.g., Fig. 18(a))
of nuclei where the average distance between the edges of
segmented and reference objects is about 3.28 pixels. The
XOR metric is underestimated as a consequence of a mod-
erate level of water flooding the modeled terrain, but the
shape of the nuclei seems to be preserved, which is impor-
tant in our future work—the estimation of morphometric
parameters of segmented nuclei.

5.2. Active contours. The conducted experiments
show that the modified multilabel FMM algorithm is very
stable and robust to initialization errors. Visually, seg-
mentation quality is promising and yields a good detec-
tion of even small objects (Fig. 17). Unfortunately, the
algorithm has problems with connected nuclei and detects
them as a single object, which is erroneous. The aver-
age XOR metric score with the hand-prepared templates is
only 22.32%, and the average distance between the edges
of segmented and reference objects is about 4.1 pixels.

Despite the above-mentioned problems, the shape of
segmented nuclei seems to be represented accurately, and
most errors are located at the boundaries of the segmented
objects (see, e.g., Fig. 18(b)). This illustrates that a proper
selection of the merging threshold and the detection of
overlapping nuclei is still a challenge and has to be im-
proved in future works.

5.3. Cellular automata. The conducted experiments
show that the influence of the threshold θ and the initial

strength value of the seed pixels on the final segmentation
quality can be observed. Figure 19 presents the results
for an exemplary image—a number of incorrectly labelled
pixels, relative to the initial strength value of the nucleus
class for a range of the threshold θ. The initial strength of
the background class had a fixed value equal to 1.0.

It can be observed that for lower values of the thresh-
old θ the optimum initial value of the nucleus seed pixels
needs to be lower than that of the background seeds. It al-
lows changing labels of the boundary pixels from nucleus
to background, so nuclei shapes are adjusted outside-
in. The best segmentation results were obtained for the
θ threshold θ = 0.99 and the initial nucleus strength
Sn = 1.1.

The percentage of incorrectly labeled pixels (Zhang,
1996) relative to the overall area of another exemplary im-
age is shown in Fig. 20. The best obtained result was
10.4%. The segmentation result is visualised in Fig. 21.

Even better results were obtained for segmentation
with the GrowCut cellular automata, initialized with the
result obtained at the multi-point nuclei localization stage.
Figure 22 presents the initialization mask and the results
of segmentation. For the exemplary image the proportion
of incorrectly labelled pixels was about 6%. However, the
shape of the identified nuclei segments is too ragged, so an
additional smoothing post-segmentation stage is needed
for this combination of techniques.

The problem with the Hough transform and the
GrowCut cellular automata hybrid is that the optimum
proportion of the initial nucleus pixel strength should be
estimated to achieve good segmentation quality. The pro-
portion strongly depends on the analysed image contrast
and the pigment used, so a potential automated diagnos-
tic system should be taught beforehand. The second hy-
brid (the GrowCut cellular automaton), initialized with
a multi-point nuclei searching algorithm, can be applied
with fixed initial strength values for the nucleus and the
background seed pixels. However, it is much more com-
putationally expensive due to more cellular automata iter-
ations required.

(a) (b)

Fig. 18. Exemplary XOR results with a fragment of the hand-
prepared segmentation mask for: (a) watershed algo-
rithm, (b) active contouring technique.
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Fig. 19. Number of incorrectly labelled pixels for a range of
the initial strength Sn of nucleus pixels and the thresh-
old θ: 0.95 (+), 0.96 (◦), 0.97 (∗), 0.98 (•), 0.99 (×).
Solid lines—final segmentation results, dashed lines—
presegmentation result.

Fig. 20. Percentage of incorrectly labeled pixels relative to the
overall area of the image for a range of the θ threshold
values.

6. Conclusions

The conducted preliminary experiments show that the
Hough transform adopted for circle detection at the pre-
segmentation stage, the (1+1) search strategy used for
automatic nuclei localization and the watershed, active
contours and cellular automata GrowCut algorithms em-
ployed for the final segmentation stage can be effectively
used for the segmentation of cytological images. Unfor-
tunately, there are still some problems requiring further
research.

The problem regarding fake circles created by spots
of fat and unwanted effects it gives as the final output
should be considered and eliminated in future work. Im-
ages with a mixed nucleus type still constitute a challenge
because it seems to be impossible to detect only one type
without the end-user’s interaction and when there should
not be any dependencies and assumptions concerning the
color of contrasting pigments used to prepare cytological
material. The presented solutions should also be extended
to perform better on poor quality images, or a fast classi-
fier should be constructed to reject too poor (or even fake)

Fig. 21. Exemplary result of segmentation for the threshold θ =
0.99 and the initial strength of the nucleus labeled pix-
els Sn = 1.1 (dark color underlines fitness to reference
objects).

(a) (b)

Fig. 22. Exemplary result of segmentation (b) with the GrowCut
cellular automata, initialized with multi-point nuclei lo-
calization points (a).

inputs. All of the above-mentioned drawbacks of the de-
scribed algorithms should also be considered and faced in
the future.

The described segmentation methods needs about
4–5 minutes on today’s machines (Athlon 64 3500+
2.8 GHz, Pentium 4 2.2 GHz) for an image to give a fi-
nal response. All the simulations were performed in the
Matlab environment so the authors believe that the time
consumption can be significantly reduced. Computation-
ally expensive stages (like, e.g., terrain modeling) and the
nature of the algorithms used (e.g., the (1+1) search strat-
egy) force and allow us at the same time to implement
them using a high level of parallelism to perform more
effectively on today’s dual core machines and thread ori-
ented operating systems (preliminary lower level imple-
mentations show that the whole segmentation process can
be closed in several, about 20-30, seconds). One can
also consider a dedicated hardware which can perform
even more effectively then the appropriate software imple-
mentation (according to the authors’ estimations, e.g., the
above-mentioned terrain modeling stage can be done by
DSP hardware nearly 100 times faster on average, includ-
ing the clock frequency factor, than an efficient software
implementation running on today’s machines1).

1Compared with TMS TM-44 (0.13 µm CMOS Tech., 100 MHz,
8000 mW, 2001), which can perform 1024-point FFT at 11.04 µsec (ac-
cording to producer information)
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Summarizing, the presented solutions are promising
and give a good base for our further research in the area of
cytological image segmentation. Additionally, all prepa-
ration steps including pre-segmentation and the automatic
nuclei localization stage can be reused with other segmen-
tation algorithms which need such information.
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