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1. Introduction

Nowadays the concept of non-integer derivative and in-
tegral is used increasingly to model the behavior of real
systems in various fields of science and engineering. Ori-
ginally, fractional calculus was the field of mathematical
analysis aiming at the investigation of integrals and de-
rivatives of arbitrary orders. This topic is somewhat an-
cient, since it started from some speculations of G.W. Le-
ibnitz, L’Hopital (1695, 1697), and L. Euler (1730). In a
letter to L’Hopital in 1695, Leibnitz raised the following
question: Can the meaning of derivatives with integer or-
der dny(t)/dxn be generalized to derivatives with non-
integer order, so that in the general case n ∈ C?. Later,
up to the middle of the 20th century, a long list of mathe-
maticians provided important contributions to this topic,
among them Laplace, Fourier, Abel, Liouville, Riemann,
Grünwald, Letnikov, Hadamard, Lévy, Marchaud, Love,
and Riesz.

Further steps in the development of this discipline
were the organization of specialized conferences and the
publication of treatises only three decades ago. The first
of such conferences—it is a milestone—was organized by
B. Ross in 1974.

Recent books (Oldham and Spanier, 1974; Ousta-
loup, 1983; Samko et al., 1993; Miller and Ross, 1993;
Oustaloup, 1995; Gorenflo and Mainardi, 1997; Podlubny,
1999; Kilbas et al., 2006) provide a rich source of referen-
ces on fractional-order calculus.

In the particular domain of control theory, several au-
thors have been interested by this aspect since the 1960s.
The first contributions (Axtell and Bise, 1990; Manabe,
1960; Oustaloup, 1983) provided generalizations of clas-
sical analysis methods for fractional-order systems (trans-
fer function, frequency response, pole and zero analy-
sis, etc.).

Recently, this tool has come into current use for mo-
deling physical phenomena of real systems such as elec-
trochemistry (Ichise et al., 1971), electromagnetism and
electrical machines (Lin et al., 2000), thermal systems and
heat conduction (Battaglia et al., 2001; Cois et al., 2002),
transmission and acoustics (Matignon, 1994; Matignon et
al, 1994), viscoelastic materials (Hanyga, 2003), and ro-
botics (Valerio and Costa, 2004). These systems exhi-
bit hereditarily properties and long memory transients,
which can be represented more accurately by fractional-
order models.
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Consequently, numerous contributions are regularly
resorting to the fractional-order aspect in system mo-
deling, namely, with state space representation, in pa-
rameter estimation, identification, and controller design.
The CRONE approach (in French: Commande Robuste
d’Ordre Non Entier) was elaborated to offer new solutions
to control problems, such as vehicle suspension. Two no-
ticeable conferences (the 41st IEEE CDC conference in
2002 and the IFAC FDA’04 workshop in 2004) treated the
application of fractional-order calculus to automatic con-
trol theory.

The state-space representation of fractional-order
systems was introduced in (Raynaud and Zergainoh,
2000; Hotzel and Fliess, 1998; Dorc̆ák et al., 2000; Sa-
batier et al., 2002; Vinagre et al., 2002). It emerged that
for fractional-order systems, two different interesting ty-
pes can be considered: the commensurate-order and the
non-commensurate-order systems. The system is of a
commensurate-order if all the orders of derivatives are
multiple integers of a base α, where α denotes the dif-
ferentiation order. The state-space representation was
exploited in the analysis of system performances. In fact,
the solution of the state-space equation was derived by
using the Mittag-Lefller function (Mittag-Leffler, 1904).
The stability of the fractional-order system was investiga-
ted (Matignon and d’Andrèa Novel, 1996). A condition
based on the principle of the argument was established to
guarantee the asymptotic stability of the fractional-order
system. Further, controllability and observability proper-
ties were defined, and some algebraic criteria of these two
properties were derived (Matignon and d’Andrèa Novel,
1996).

A contribution to the analysis of the controllabi-
lity and observability of commensurate continuous-time
fractional-order systems modeled by fractional state space
equations was recently made in (Bettayeb and Djennoune,
2006).

Linear discrete-time fractional-order systems mode-
led by a state space representation were introduced in
(Dzieliński and Sierociuk, 2005; Dzieliński and Siero-
ciuk, 2006; Dzieliński and Sierociuk, 2007). These con-
tributions are devoted to controllability and observabi-
lity analysis, the design of a Kalman filter and observers,
plus adaptive feedback control for discrete fractional-
order systems.

Our objective in the present paper is to contribute to
the analysis of the controllability and observability of li-
near discrete-time fractional-order systems. To the best
of our knowledge, controllability as well as some aspects
of the observability of such systems have not been tre-
ated yet. Two reviewers brought to our attention the paper
(Dzieliński and Sierociuk, 2007), which appeared several
months after we submitted the present paper. This work is
complementary to ours. We propose new concepts that are
inherent to fractional-order systems, and we establish te-

stable sufficient conditions for guaranteeing the existence
of these structural properties.

The remainder of this paper is organized as follows:
In Section 2, we recall some fundamental definitions of
fractional derivatives and fractional-order systems, mode-
led by continuous models. Then we expose a discrete-time
model, as defined in (Dzieliński and Sierociuk, 2005), and
we introduce some extra notation that reveals a new form,
making it possible to take into account the past behavior
of the system and to analyze the structural properties. Sec-
tion 3 addresses the controllability property. The specifi-
city of linear discrete-time fractional-order systems mo-
deled by a state-space representation leads to interesting
features that are not shown by integer-order systems.

In Section 4, similar deliberations are yielded by the
study of the observability property. In Section 5, we con-
sider the case of commensurate-order systems. Finally, in
Section 6, we present some numerical results correspon-
ding to different cases of checking the controllability and
observability conditions.

2. Linear discrete-time fractional-order
systems

The discrete fractional-order difference operator Δ was
defined in (Dzieliński and Sierociuk, 2005) with the zero
initial time as follows:

Δαx(k) =
1
hα

k∑
j=0

(−1)j

(
α

j

)
x(k − j), (1)

where the fractional order α ∈ R
�+, i.e., the set of strictly

positive real numbers, h ∈ R
�+ is a sampling period taken

equal to unity in all what follows, and k ∈ N represents
the discrete time. We define

(
α

j

)
=

⎧⎨
⎩

1 for j = 0,
α(α − 1) . . . (α − j + 1)

j!
for j > 0.

(2)

Let us consider now the traditional discrete-time state-
space model of integer order, i.e., when α is equal to
unity:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0, (3a)

y(k) = Cx(k), (3b)

where u(k) ∈ R
m is the input vector, y(k) ∈ R

q is the
output vector, and x(k) ∈ R

n is the state vector:

x(k) = [x1(k) x2(k) . . . xn(k)]T .

Its initial value is denoted by x0 = x(0).
The first-order difference for x(k + 1) is defined as

Δ1x(k + 1) = x(k + 1) − x(k).
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Therefore, using Eqn. (3a) we deduce that

Δ1x(k + 1) = Ax(k) + Bu(k) − x(k)
= Adx(k) + Bu(k), (4)

where Ad = A − In and In is the identity matrix.
A generalization of this integer-order difference to a

non-integer-order (or fractional-order) difference was ad-
dressed in (Dzieliński and Sierociuk, 2005; Lakshmikan-
tham, 1988). This research was conducted to construct
a linear discrete-time fractional-order state-space model,
using the equations

Δαx(k + 1) = Adx(k) + Bu(k), x(0) = x0. (5)

In this model the differentiation order α is taken the
same for all the state variables xi(k), i = 1, . . . , n. This
is referred to as a commensurate order. Besides, from
Eqn. (1) we have

Δαx(k+1) = x(k+1)+
k+1∑
j=1

(−1)j

(
α

j

)
x(k−j+1). (6)

Substituting (6) into (5) yields

x(k + 1)

= Adx(k)−
k+1∑
j=1

(−1)j

(
α

j

)
x(k−j+1)+Bu(k). (7)

Set cj = (−1)j
(
α
j

)
. Equation (7) can be rewritten as

x(k + 1) = (Ad − c1In)x(k)

−
k+1∑
j=2

cjx(k − j + 1) + Bu(k). (8)

Let us now write

A0 = Ad − c1In,

A1 = −c2In,

A2 = −c3In,

and further, for all j > 0,

Aj = −cj+1In. (9)

This leads to

x(k + 1) = A0x(k) + A1x(k − 1) + A2x(k − 2)
+ · · · + Akx(0) + Bu(k). (10)

This description can be extended to the case of non-
commensurate fractional-order systems modeled in (Dzie-
liński and Sierociuk, 2006):

ΔΥx(k + 1) = Adx(k) + Bu(k),

x(k + 1) = ΔΥx(k + 1) +
k+1∑
j=1

Ajx(k − j + 1),

where

ΔΥx(k + 1) =

⎡
⎢⎢⎣

Δα1x1(k + 1)
...

Δαnxn(k + 1)

⎤
⎥⎥⎦ ,

in which αi ∈ R
�+, i = 1, 2, . . . denote any fractional

orders, and for each j = 1, 2, . . . we let

Aj = diag
{
− (−1)j+1

(
αi

j + 1

)
, i = 1, . . . , n

}
. (11)

Using (10) and (11), we obtain the state equation

x(k+1) =
k∑

j=0

Ajx(k−j)+Bu(k), x(0) = x0. (12)

In this model, Aj is given by (9) in the case of a com-
mensurate fractional-order and by (11) in the case of a
non-commensurate fractional-order.

Remark 1. The model described by (12) can be classified
as a discrete-time system with a time-delay in the state,
whereas the models addressed in (Boukas, 2006; Debelj-
ković et al, 2002; Peng Yang et al, 2003) assume a finite
constant number of steps of time-delays. Instead, the sys-
tem (12) has a varying number of steps of time-delays,
equal to k, i.e., increasing with time.

Define

Gk =

⎧⎪⎨
⎪⎩

In for k = 0,

k−1∑
j=0

AjGk−1−j for k ≥ 1.
(13)

In an explicit way, we have

G0 = In,

G1 =
0∑

j=0

AjG1−1−j = A0G0 = A0,

G2 =
1∑

j=0

AjG1−j = A0G1 + A1G0 = A2
0 + A1.

We thus conclude that any Gk can be expressed
equivalently either by a recurrent sum made of products
AjGk−1−j or by a recurrent sum made of products of the
Aj exclusively.

Theorem 1. The solution to (12) is given by

x(k) = Gkx(0) +
k−1∑
j=0

Gk−1−jBu(j). (14)
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Proof. In Step 1, by virtue of (12) and (13), the value of
the state is

x(1) =
0∑

j=0

Ajx(0 − j) + Bu(0)

= A0x(0) + Bu(0) = G1x(0) + G0Bu(0).

In Step 2 we have

x(2) =
1∑

j=0

Ajx(1 − j) + Bu(1)

= (A2
0 + A1)x(0) + A0Bu(0) + Bu(1)

= G2x(0) + G1Bu(0) + G0Bu(1).

The property is thus satisfied in Step 2. Assume that it
is true in Step k, i.e., that (14) is satisfied. In order to
complete the demonstration of this property by induction,
we have to prove that it is true in Step k + 1.

From (12) we obtain

x(k + 1) =
k∑

j=0

Ajx(k − j) + Bu(k)

=
k−1∑
j=0

Ajx(k − j) + Akx(0) + Bu(k). (15)

In the last equation, x(k−j) can be expressed similarly to
x(k) since the property considered is assumed to be true
up to Step k. Therefore, we have (introducing an extra
index l):

x(k − j) = Gk−jx(0) +
k−j−1∑

l=0

Gk−j−1−lBu(l). (16)

Thereafter, coming back to the expression of x(k+1)
in (15) and substituting x(k − j), we obtain

x(k + 1)

=
k−1∑
j=0

Aj

(
Gk−jx(0) +

k−j−1∑
l=0

Gk−j−1−lBu(l)
)

+ Akx(0) + Bu(k). (17)

This expression can be rewritten as follows:

x(k + 1) =
k−1∑
j=0

AjGk−jx(0) + Akx(0)

+
k−1∑
j=0

Aj

k−j−1∑
l=0

Gk−j−1−lBu(l)

+ Bu(k). (18)

Further, we get

x(k + 1) =
k∑

j=0

AjGk−jx(0)

+
k−1∑
j=0

Aj

k−j−1∑
l=0

Gk−j−1−lBu(l)

+ Bu(k). (19)

The first sum becomes Gk+1x(0), knowing that
G0 = In. Besides, in the product of the last two sums,
a permutation of indexes j and l yields an equivalent sum-
mation. Hence we obtain

x(k + 1) = Gk+1x(0) +
k−1∑
l=0

k−l−1∑
j=0

AjGk−j−1−lBu(l)

+ G0Bu(k). (20)

Next, this becomes

x(k + 1) = Gk+1x(0) +
k−1∑
l=0

Gk−lBu(l) + G0Bu(k).

(21)
Finally, we obtain that the property under study is

satisfied in Step k +1 and we can state that it holds in any
step:

x(k + 1) = Gk+1x(0) +
k∑

l=0

Gk−lBu(l). (22)

This completes the proof.

The first part of the solution of (14) represents the
free system response and the last part takes the role of the
convolution sum corresponding to the forced response.

The corresponding transition matrix is defined as

Φ(k, 0) = Gk, Φ(0, 0) = G0 = In. (23)

Remark 2. Φ(k, 0) exhibits the particularity of being
time-varying in the sense that it is composed of a num-
ber of terms Aj which grows with k. This is due to the
fractional-order feature of the model, which takes into ac-
count all the past values of the states.

Theorem 2. The state transition matrix Φ(k, 0) has the
following properties:

1. Φ(k, 0) is a solution of the homogeneous state equ-
ation

Φ(k + 1, 0) =
k∑

j=0

AjΦ(k − j, 0), Φ(0, 0) = In.



Controllability and observability of linear discrete-time fractional-order systems 217

2. The semi-group property is not satisfied:

Φ(k2, 0) �= Φ(k2, k1)Φ(k1, 0), ∀k2 > k1 > 0.

Proof. (Part 1) From (23) we deduce

Φ(k, 0) =
k−1∑
j=0

AjΦ(k − 1 − j, 0).

Then we directly have

Φ(k + 1, 0) =
k∑

j=0

AjΦ(k − j, 0).

(Part 2) Since, by definition, we have

Φ(k1, 0) =
k1−1∑
j=0

AjΦ(k1 − 1 − j, 0),

Φ(k2, 0) =
k2−1∑
j=0

AjΦ(k2 − 1 − j, 0),

Φ(k2, k1) =
k2−1∑
j=k1

AjΦ(k2 − 1 − j, 0),

it is can be easily checked that

Φ(k2, k1)Φ(k1, 0) �= Φ(k2, 0).

3. Reachability and controllability

In this section we discuss a fundamental question for dy-
namic systems modeled by (12) in the case of a non-
commensurate fractional order. This question is to de-
termine whether it is possible to transfer the state of the
system from a given initial value to any other state. We
attempt below to extend two concepts of state reachability
(or controllability-from-the-origin) and controllability (or
controllability-to-the-origin) to the present case. We are
interested in completely state reachable and controllable
systems.

Definition 1. The linear discrete-time fractional-order
system modeled by (12) is reachable if it is possible to
find a control sequence such that an arbitrary state can be
reached from the origin in a finite time.

Definition 2. The linear discrete-time fractional-order
system modeled by (12) is controllable if it is possible to
find a control sequence such that the origin can be reached
from any initial state in a finite time.

Definition 3. For the linear discrete-time fractional-order
system modeled by (12) we define the following:

1. The controllability matrix:

Ck =
[
G0B G1B G2B · · · Gk−1B

]
. (24)

2. The reachability Gramian:

Wr(0, k) =
k−1∑
j=0

GjBBT GT
j , k ≥ 1. (25)

It is easy to show that Wr(0, k) = CkCT
k .

3. The controllability Gramian, provided that A0 is
non-singular:

Wc(0, k) = G−1
k Wr(0, k)G−T

k , k ≥ 1. (26)

Note that G1 = A0, and the existence of Wr(0, 1) impo-
ses A0 to be nonsingular. However, this is not that restric-
tive a condition because a discrete model is often obtained
by sampling a continuous one. Thus, in the remainder of
this paper we assume that A0 is non-singular.

Theorem 3. The linear discrete-time fractional-order
system modeled by (12) is reachable if and only if there
exists a finite time K such that rank(CK) = n or, equ-
ivalently, rank(Wr(0,K)) = n. Furthermore, the input
sequence

UK =
[
uT (K − 1) uT (K − 2) . . . uT (0)

]T

that transfers x0 = 0 at k = 0 to xf �= 0 at k = K is
given by

UK = CT
KW−1

r (0,K)xf . (27)

Proof. (Sufficiency) Let xf be the final state to be re-
ached. From (14) we have

xf (k) = Gkx0 +
k−1∑
j=0

Gk−1−jBu(j).

With x0 = 0, this gives

xf (k) = CkUk, (28)

where Uk = [uT (k − 1) uT (k − 2) . . . uT (0)]T .
Equation (28) has a unique solution Uk at Step k = K if
rank(CK) = n. Besides, we have Wr(0,K) = CKCT

K .
Hence, if rank(CK) = n, then rank(Wr(0,K)) = n. It
follows that Wr(0,K) is a positive definite non-singular
matrix. At Step k = K we have

xf (K) = CKUK . (29)

Substituting (27) into (29), we get

xf (K) = CKCT
KW−1

r (0,K)xf = xf .
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We conclude that the system (12) is reachable.

(Necessity) This part is by contradiction. Assume that the
system (19) is reachable but rank(Ck) = n for any k > 0,
which implies that the rows of Ck are linearly dependent
for any k > 0. It results that there exists a non-zero con-
stant 1 × n row vector v such that

vCk = 0.

From (28) we have

vxf (k) = vCkUk = 0,

which implies that xf (k) = 0 for any k > 0, i.e., the
system is not reachable. This is a contradiction, which
completes the proof.

Remark 3. In the case of an integer order, it is well
known that the rank of Ck cannot increase for any k ≥
n. This results from the Cayley-Hamilton theorem. On
the contrary, in the case of the linear discrete-time non-
commensurate fractional-order system (12), the rank of
Ck can increase for values of k ≥ n. In other words,
it is possible to reach the final state xf in a number of
steps greater than n. This is due to the nature of the ele-
ments Gk which build up the controllability matrix Ck and
which exhibit the particularity of being time-varying, in
the sense that they are composed of a number of terms Aj

that grows with k, as has already mentioned in Remark 2.
The full rank of (Ck) can be reached at some Step k = K
equal to or greater than n.

Theorem 4. The linear discrete-time fractional-order
system modeled by (12) is controllable if and only if
there exists a finite time K such that rank(Wc(0,K)) =
n. Furthermore, an input sequence UK = [uT (K −
1) uT (K − 2) . . . uT (0)]T that transfers x0 �= 0
at k = 0 to xf = 0 at k = K is given by

UK = −CT
KG−T

K W−1
c (0,K)x0. (30)

Proof. (Sufficiency) Let xf = 0 be the final state to be
reached at some finite time K from an initial state x0 �= 0.
From (14) we have

xf = GKx0 + CKUK = 0,

which gives
x0 = −G−1

K CKUK . (31)

If we get rank(Wc(0,K)) = n for some K, then
W−1

c (0,K) exists. Substituting (30) into (31) yields

x0 = G−1
K CKCT

KG−T
K W−1

c (0,K)x0

= Wc(0,K)W−1
c (0,K)x0 = x0.

(Necessity) The proof is by contradiction. Assume that
(12) is controllable but rank(Wc(0, k)) < n for any
k > 0. Since Gk is full rank for k ≥ 0, we have
rank(Wc(0, k)) = rank(Wr(0, k)) = rank(Ck). It fol-
lows that there exists a non-zero constant 1×n row vector
w such that

wCk = 0.

Since xf = 0, from (14) we have

wxf = wGkx0 + wCkUk = 0.

This implies that wGkx0 = 0, i.e., x0 = 0. This is a
contradiction, which completes the proof.

4. Observability

In this section we aim at extending the concept of observa-
bility to the system of equations (12) and (3b), in the case
of a non-commensurate fractional order. We are interested
in completely state observable systems.

Definition 4. The linear discrete-time fractional-order
system modeled by (12) and (3b) is observable at time
k = 0 if and only if there exits some K > 0 such that the
state x0 at time k = 0 can be uniquely determined from
the knowledge of uk, yk, k ∈ [0,K].

Definition 5. For the linear discrete-time fractional-order
system modeled by (12) and (3b) we define the following:

1. The observability matrix:

Ok =

⎡
⎢⎢⎢⎢⎢⎢⎣

CG0

CG1

CG2

...

CGk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (32)

2. The observability Gramian:

Wo(0, k) =
k−1∑
j=0

GT
j CT CGj . (33)

It is easy to show that Wo(0, k) = OT
k Ok.

Theorem 5. The linear discrete-time fractional-order
system modeled by (12) and (3b) is observable if and only
if there exists a finite time K such that rank(OK) = n
or, equivalently, rank(Wo(0,K)) = n. Furthermore, the
initial state x0 at k = 0 is given by

x0 = W−1
o (0,K)OT

K

[ỸK −MK ŨK

]
(34)
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with

ŨK = [uT (0) uT (1) . . . uT (K − 1)]T ,

ỸK = [yT (0) yT (1) . . . yT (K − 1)]T ,

and

MK

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
CG0B 0 . . . 0 0
CG1B CG0B . . . 0 0
CG2B CG1B . . . 0 0

...
...

...
...

...

CGK−2B CGK−3B . . . CG0B 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

Proof. (Sufficiency) From the output equation (3b) and
Eqn. (14) we have

y(0) = Cx(0) = CG0x(0),
y(1) = Cx(1) = CG1x(0) + CG0Bu(0),
y(2) = Cx(2) = CG2x(0) + CG1Bu(0) + CG0Bu(1),

and, at last,

y(k − 1) = Cx(k − 1)
= CGk−1x(0) + CGk−2Bu(0)

+ CGk−3Bu(1) + . . .

+ CG0Bu(k − 2).

(36)

The above relations can be written in the following con-
densed form:

Ỹk = Okx(0) + MkŨk,

where

Ũk = [uT (0) uT (1) . . . uT (k − 1)]T ,

Ỹk = [yT (0) yT (1) . . . yT (k − 1)]T .

At time k = K, we can write

ỸK = OKx(0) + MK ŨK .

It follows that

OKx(0) = ỸK −MK ŨK .

Then

OT
KOKx(0) = OT

K(ỸK −MK ŨK),

which becomes

Wo(0,K)x(0) = OT
K(ỸK −MK ŨK).

If rank(OK) = n or, equivalently, if rank(Wo(0,K)) =
n, then Wo(0,K) is positive definite. Consequently, we
obtain

x(0) = W−1
o (0,K)OT

K(ỸK −MK ŨK).

(Necessity) The proof is by contradiction. Assume that
the system of equations (12) and (3b) is observable but
rank(Ok) < n for any k > 0. Then the columns of Ok

are linearly dependent for any k > 0, i.e., there exists a
non-zero constant column n × 1 vector z such that

Okz = 0.

Let us choose x(0) = z. From the relation

Ỹk = Okx(0) + MkŨk,

we deduce
Okz = Ỹk −MkŨk = 0.

Hence the initial state x(0) = z is not detected. This
is in contradiction with the assumption that the system of
equations (12) and (3b) is observable. This completes the
proof.

Remark 4. From the Cayley-Hamilton theorem, it is well
known that for integer-order systems the rank of the obse-
rvability matrix Ok cannot increase at Step k ≥ n. Here,
too, it is remarkable that this is not true in the case of the
discrete-time non-commensurate fractional-order system
of (12) and (3b). Indeed, rank(Ok) can increase for va-
lues k ≥ n. We can state that the observability of this
type of systems can possibly be obtained in a number of
steps greater than n. This is due to the same reasons as
those exposed above in Remark 3 for controllability. In
(Dzieliński and Sierociuk, 2006), the observability condi-
tion for the discrete-time fractional-order system as mo-
deled in (12), with a non-commensurate order, is that the
rank of Ok should be equal to n at most at Step k = n.
Our result shows that the full rank of (Ok) can be reached
at some step k = K greater than n. This can be consi-
dered as an extension of the previous result in (Dzieliński
and Sierociuk, 2006).

Remark 5. The property of reconstructibility (Antsaklis
and Michel, 1997) can also be studied in this case. Note
that if A0 is non-singular, then observability and recon-
structibility are equivalent.

5. Commensurate fractional-order case

In this section we address the particular case of commen-
surate fractional-order systems. The terms Aj are expres-
sed by (9). It is clear then that the matrices Gk defined
by (13) are polynomials in A0, i.e.,

Gk = Ak
0 + β1k

Ak−1
0 + β2k

Ak−2
0 + · · · + βkk

In,
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where the real coefficients βjk
are calculated from the co-

efficients cj . In particular, we have

Gn = An
0 + β1n

An−1
0 + β2n

An−2
0 + · · · + βnn

In.

From the Cayley-Hamilton theorem, An
0 is a linear combi-

nation of An−1
0 , An−2

0 , . . . , In. We deduce that Gk+n, for
all k ≥ 0 are linearly dependent on Gn−1, Gn−2, . . . , In.
This implies the following results:

Corollary 1. The linear discrete-time fractional-order
system modeled by (12) and (3b) in the commensurate
case is reachable if and only if rank(Cn) = n or, equ-
ivalently, rank(Wr(0, n)) = n. On the other hand, this
system is controllable if and only if rank(Wc(0, n)) = n.

Corollary 2. The linear discrete-time fractional-order
system modeled by (12) and (3b) in the commensurate
case is observable if and only if rank(On) = n or, equ-
ivalently, rank(Wo(0, n)) = n.

Remark 6. We therefore observe that the contollability
and observability criteria for the commensurate fractional-
order case are similar to those of the integer-order case, in
the sense that if a state cannot be reached in n steps, then
it is not reachable at all, and that if an initial state cannot
be deduced from n steps of input-output data, then it is
not observable at all. The result given in (Dzieliński and
Sierociuk, 2006) which states that a necessary and suffi-
cient condition for the discrete-time fractional-order sys-
tem as modeled in (12) and (3b) to be observable is that
the rank of Ok should be equal to n at most at Step k = n
is true only in the case of commensurate fractional-order
systems.

6. Numerical examples

6.1. Reachability. Consider the following discrete-
time non-commensurate fractional-order of dimension
n = 4, with

α1 = 0.2, α2 = 0.3, α3 = 0.6, α4 = 0.7,

Ad =

⎡
⎢⎢⎢⎣

−0.7 −1 4 −0.5
1 −1.6 1.5 0.8
2 −3 −0.1 2.5

−0.8 0.7 1.8 −0.4

⎤
⎥⎥⎥⎦ ,

B =
[

10 10 10 10
]T

.

We determined rank(Ck) over a set of N = 20 samples.
We found rank(Ck) = 4 at K = 5 and

CK =

⎡
⎢⎢⎢⎣

10.00 20.00 40.80 84.90 173.31
10.00 20.00 41.05 84.77 175.66
10.00 20.00 41.20 84.63 177.03
10.00 20.00 41.05 85.12 174.78

⎤
⎥⎥⎥⎦ .

We chose the final state

xf =
[

1 − 0.5 3 0.3
]T

.

The input sequence that permitted to transfer the state
from the origin to xf according to (27) is

UK =
[

30.31 60.61 210.91 − 64.38 − 26.85
]T

.

Table 1 gives the values of the state variables at each
step. We see that the final state has been reached within a
number of steps of the input data sequence greater than
the system dimension. This comes up to be a particu-

Table 1. Values of the state variables in the transfer steps.

k x1(k) x2(k) x3(k) x4(k)

0 0 0 0 0

1 -268.49 -268.49 -268.49 -268.49

2 -1180.76 -1180.76 -1180.76 -1180.76

3 -273.93 -280.65 -284.67 -280.65

4 -81.96 -94.43 -100.46 -103.96

5 1.00 -0.50 3.00 0.30

larity of discrete non-commensurate fractional-order sys-
tems. This is not satisfied in the case of discrete commen-
surate fractional-order systems for which the full rank, n,
if it can be reached, cannot be reached beyond the number
of steps K = n. The states show some values of large
magnitude. Nevertheless, the objective is reached.

6.2. Observability. We considered the system with
α1 = 0.2, α2 = 0.3, α3 = 0.6, α4 = 0.7,

Ad =

⎡
⎢⎢⎢⎣

−0.4 −1 4 −0.5
1 5 1.5 0.8
2 −3 −5.9 2.5

−0.8 0.7 1.8 −1.5

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎥⎦ ,

C =
[

1 1 1 1
]
.

We determined rank(Ok) over a set of N = 20 samples.
We found rank(Ok) = 4 at K = 5 and

OK =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.00 1.00 1.00 1.00
2.00 2.00 2.00 2.00
4.08 4.10 4.12 4.10
8.45 8.459 8.33 8.51
17.06 17.95 18.34 17.09

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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We chose the following input sequence over 5 steps:

ŨK =
[

1 − 0.2 5 10 − 0.6
]T

.

In this example, we see that the second row of OK is
the doubled first row. The output sequence must be chosen
so as to take into account this dependence. Let us denote
by Ỹ∗

K the zero-input response of the system

Ỹ∗
K = ỸK −Mk ∗ ŨK

= [y∗(0) y∗(1) y∗(2) y∗(3) y∗(4)]T .

The output sequence ỸK must be then chosen so as to get
y∗(1) = 2y∗(0).

A candidate output sequence is, e.g.,

ỸK =
[

1 6 − 2 7 3
]T

.

According to (34), the initial state

x0 =
[

1.22 − 3.27 1.63 0.41
]T

is detected. The corresponding determinant of the obse-
rvability gramian is

det[Wo(0,K)] = 4.97 × 10−5.

The singular value decomposition of Wo(0,K) gives

Σ = diag(1613.86, 0.38, 9.80 × 10−4, 8.34 × 10−5).

We observe that, except the first one, the singular va-
lues are quite small: the corresponding states are weakly
observable. The plot of the simulated output, starting from
the detected initial state x0, is illustrated in Fig. 1. The si-
mulated output sequence is identical to the chosen initial
output sequence. It is possible to consider other examples
with stronger observability. For this purpose, let us con-
sider the same example in which the output matrix C is
successively changed into

C =
[

5 5 5 5
]

and
C =

[
10 10 10 10

]
.

The determinant of the observability Gramian takes the
values det[Wo(0,K)] = 19.422 and det[Wo(0,K)] =
4972, respectively. This shows that the state variables may
become strongly observable.

7. Conclusion

In this paper we investigated the structural properties of
the controllability and observability of linear discrete-time
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Fig. 1. Computed values of the output sequence.

fractional-order systems. We established a new formu-
lation of the state-space equation and showed that this
new formulation makes it possible to analyze effectively
these properties. In addition, it reveals new controlla-
bility and observability conditions in both cases of non-
commensurate and commensurate fractional-orders. We
verified the theoretical results stated in this paper with su-
itable numerical examples.
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