
Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 3, 389–398
DOI: 10.2478/v10006-008-0035-6

IMMUNOTHERAPY WITH INTERLEUKIN-2: A STUDY BASED ON
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The role of interleukin-2 (IL-2) in tumor dynamics is illustrated through mathematical modeling, using delay differential
equations with a discrete time delay (a modified version of the Kirshner-Panetta model). Theoretical analysis gives an
expression for the discrete time delay and the length of the time delay to preserve stability. Numerical analysis shows that
interleukin-2 alone can cause the tumor cell population to regress.
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1. Introduction

The mechanism of the establishment and destruction of
cancer, one of the greatest killer of the world, is still
a puzzle. Modern treatments involve surgery, chemothe-
rapy and radiotherapy, but yet relapses occur. Hence, the
need for a more successful treatment is very obvious.
Developing schemes for immunotherapy or its combina-
tion with other therapy methods are the major attempts at
present, which aim at reducing the tumor mass, heighte-
ning tumor immunogenicity and removing the immuno-
suppression induced in an organism in the process of tu-
mor growth. Recent progress in this line has been achie-
ved through immunotherapy, which refers to the use of
cytokines (protein hormones that mediate both natural and
specific immunity) usually together with adoptive cellular
immunotherapy (ACI) (Rosenberg and Lotze, 1986;
Schwartzentruber, 1993; Rosenberg et al., 1994; Keilholz
et al., 1994; Gause et al., 1996; Hara et al., 1996; Ka-
empfer et al., 1996; Curti et al., 1996; Rabinowich et al.,
1996).

The main cytokine responsible for lymphocyte ac-
tivation, growth and differentiation is interleukin-2 (IL-
2), which is mainly produced by T-helper cells (CD4+
T-cells) and in relatively small quantities by cytotoxic T-
lymphocytes (CD8+ T-cells). CD4 lymphocytes differen-
tiate into T-Helper 1 and T-Helper 2 functional subjects
due to the immune response. IL-2 acts in an autocrine
manner on T-Helper 1 and also induces the growth of T-
Helper 2 and CD8 lymphocytes in a paracrine manner.

The T-lymphocytes themselves are stimulated by the tu-
mor to induce further growth. Thus, the complete bio-
logical assumption of adoptive cellular immunotherapy is
that the immune system is expanded in number artificially
(ex vivo) in cell cultures by means of human recombi-
nant interleukin-2. This can be done in two ways, either
by (i) a lymphokine-activated killer cell therapy (LAK-
therapy), where the cells are obtained from in vitro cultu-
ring of peripheral blood leukocytes removed from patients
with high concentration of IL-2, or (ii) a tumor infiltra-
ting lymphocyte therapy (TIL), where the cells are obta-
ined from lymphocytes recovered from the patient tumors,
which are then incubated with high concentrations of IL-2
in vitro and are comprised of activated natural killer (NK)
cells and cytotoxic T-lymphocyte CTL cells. The tumor
infiltrating lymphocytes (TIL) are then put back into the
bloodstream, along with IL-2, where they can bind to and
destroy the tumor cells. It has been established clinically
that immunotherapy with IL-2 has enhanced the cytotoxic
T-lymphocyte (CTL) activity at different stages of tumor
(Rosenberg and Lotze, 1986; Schwartzentruber, 1993; Ro-
senberg et al., 1994; Keilholz et al., 1994). Also, there is
evidence of the restoration of the defective natural killer
(NK) cell activity as well as the enhancement of polyc-
lonal expansion of CD4+ and CD8+ T-cells (Rosenstein
et al., 1986; Tartour et al., 1996). Figure 1 gives a
schematic diagram showing the key players in tumor-
immune interactions (http://www.rose-hulman.edu /math-
journal /archives/2005/vol6-n2/paper9/v6n2-9pd.pdf ).
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Interaction between tumor cells and an immune
system has been studied by numerous authors (Tartour
et al., 1996; Kuznetsov et al., 1994; Adam and N. Bel-
lomo, 1997; Kirschner and Panetta, 1998; Bodnar and Fo-
ryś, 2000b; Foryś, 2002; Galach, 2003; Kolev, 2003; Zhi-
vkovc and Waniewski, 2003; Szymańska, 2003; Matzavi-
nos et al., 2004; Sarkar and Banerjee, 2005; Banerjee and
Sarkar, 2008). Kuznetsov et al. (1994) present a mathe-
matical model of the cytotoxic T-lymphocyte response to
the growth of an immunogenic tumor. The model exhi-
bits a number of phenomena that are seen in vivo, inclu-
ding the immunostimulation of the tumor growth, “sne-
aking through” the tumor, and the formation of a tumor
“dormant state”. The delay version of Kuznetsov’s mo-
del was studied by Galach (2003), where the effect of the
time delay was taken into account in order to achieve a
better compatibility with reality. In (Foryś, 2002), Mar-
chuk’s model of a general immune reaction is presented.
Qualitative behavior of solutions to the model (and its sim-
plification), along with many illustrations of the recovery
process, oscillations or lethal outcomes of a disease, is
shown. The role of interleukins in the immune process
is taken into account to adapt Marchuk’s model to tumor
growth dynamics. Szymańska (2003) studied a basic ma-
thematical model of the immune response when cancer
cells are recognized. The model consists of six ordinary
differential equations and is extended by taking into acco-
unt two types of immunotherapy: an active immunothe-
rapy and an adoptive immunotherapy. An analysis of the
corresponding models is made to answer the question of
which of the presented methods of immunotherapy is bet-
ter. The analysis is completed by numerical simulations
which show that the method of adoptive immunotherapy
seems better for the patient at least in some cases. A ma-
thematical model describing the growth of a solid tumor
in the presence of an immune system response is presen-
ted by (Matzavinos et al., 2004). They focused upon the
attack of tumor cells by the so-called tumor-infiltrating
cytotoxic lymphocytes (TICLs), in a small, multicellular
tumor, without necrosis and at some stage prior to (tu-
mor induced) angiogenesis. Their study can explain the
complex heterogeneous spatio-temporal dynamics obse-
rved and lead to a deeper understanding of the phenome-
non of cancer dormancy in the model, which may be help-
ful in future development of more effective anti-cancer
vaccines.

In (Sarkar and Banerjee, 2005), the authors express
the spontaneous regression and progression of a malignant
tumor system as a prey-predator-like system. Their mo-
del is a three dimensional deterministic system, consisting
of tumor cells, hunting predator cells and resting preda-
tor cells, which is extended to a stochastic one, allowing
for random fluctuations around the positive interior equ-
ilibrium. The stochastic stability properties of the model
are investigated both analytically and numerically, and the

thresholds obtained from their study may be helpful to
control the malignant tumor growth. They also studied
the model by including a discrete time delay in the system
(Banerjee and Sarkar, 2008) and concluded that the mo-
del can provide an approximate estimate of timing (length
of delay) and a dosage of therapy that would best com-
plement the patient’s own defense mechanism versus the
tumor cells. More work on time delays in connection with
tumor growth can be found in (Byrne, 1997; Bodnar and
Foryś, 2000a; Bodnar and Foryś, 2003a; Bodnar and Fo-
ryś, 2003b).

Kirschner and Penetta studied the role of IL-2 in tu-
mor dynamics, particularly, long-term tumor recurrence
and short term oscillations in a mathematical perspec-
tive (Kirschner and Panetta, 1998). The model propo-
sed there deals with three populations, namely, the acti-
vated immune-system cells (commonly called the effector
cells), such as cytotoxic T-cells, macrophages and natural
killer cells that are cytotoxic to the tumor cells, the tumor
cells and the concentration of IL-2. The important para-
meters in their study are the antigenicity of tumor (c), the
treatment term that represents the external source of ef-
fector cells (s1) and the treatment term that represents an
external input of IL-2 into the system (s2). Their results
can be summarized as follows: (i) For a non-treatment
case (s1 = 0, s2 = 0), the immune system is not able to
clear the tumor for low antigenic tumors while for highly
antigenic tumors, reduction to a small dormant tumor is
the best case scenario. (ii) The effect of adoptive cellu-
lar immunotherapy (ACI) therapy (s1 > 0, s2 = 0) alone
can yield a tumor free state for tumors of almost any an-
tigenicity, provided the treatment concentration is above a
given critical level. But for tumors with small antigenicity,
an early treatment is needed, while the tumor is small, so
that the tumor can be controlled. (iii) The treatment with
IL-2 alone (s1 = 0, s2 > 0) states that if IL-2 admini-
stration is low, there is no tumor-free state. However, if
the IL-2 input is high, the tumor can be cleared but the
immune system grows without bounds causing problems
such as a capillary leak syndrome. (iv) Finally, it is the
combined treatment with ACI and IL-2 (s1 > 0, s2 > 0)
that gives the combined effects obtained from the mono-
therapy regime. For any antigenicity, there is a region of
tumor clearance. These results indicate that a treatment
with ACI may be a better option either as a monotherapy
or in conjunction with IL-2.

In this paper, a modification of the model studied by
Kirschner and Panetta is done, by adding a discrete time
delay which exists when activated T-cells produce IL-2.
The modified model is discussed in Section 2. Section 3
deals with the qualitative analysis of the model. In Sec-
tion 4, the numerical results are discussed, and Section 5
is the conclusion.
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2. Model

The idea of the model presented in this paper came from
the paper by Kirschner and Panetta (1998), where the equ-
ations representing the model are

dE
dt1

= cT +
p1EIL
g1 + IL

− μ2E + s1,

dT
dt1

= r2(1 − bT )T − aET

g2 + T
,

dIL
dt1

=
p2ET

g3 + T
− μ3IL + s2,

with initial conditions E(0) = E0, T (0) = T0, IL(0) =
IL0.

The model, which had been represented by ordinary
differential equations in (Kirschner and Panetta, 1998),
was extended to delay differential equations (in non-
dimensionalized form) with proper biological justifica-
tions. The equations representing the system are

dx
dt

= cy +
p1x(t − τ)z(t− τ)
g1 + z(t− τ)

− μ2x+ s1,

dy
dt

= r2(1 − by)y − axy

g2 + y
,

dz
dt

=
p2xy

g3 + y
− μ3z + s2,

(1)

subject to the following initial conditions:

x(θ) = ψ1(θ), y(θ) = ψ2(θ), z(θ) = ψ3(θ),
ψ1(θ) ≥ 0, ψ2(θ) ≥ 0, ψ3(θ) ≥ 0, θ ∈ [−τ, 0],
ψ1(0) > 0, ψ2(0) > 0, ψ3(0) > 0, (2)

where C+ = (ψ1(θ), ψ2(θ), ψ3(θ)) ∈ C([−τ, 0],R3
+0),

the Banach space of continuous functions mapping the in-
terval [−τ, 0] into R

3
+0, where R

3
+0 is defined as

R
3
+0 = ((x, y, z) : x, y, z ≥ 0)

and R
3
+, the interior of R

3
+0, as

R
3
+ = ((x, y, z) : x, y, z > 0) .

The system given by (1) is non-dimensionalized
using the following scaling (Kirschner and Panetta, 1998):

x = E/E0, y = T/T0, z = IL/IL0 ,

t = tst1, c̄ = cT0/tsE0, p̄1 = p1/ts,

ḡ1 = g1/IL0 , μ̄2 = μ2/ts, ḡ2 = g2/T0,

b̄ = bT0, ā = aE0/tsT0, r̄2 = r2/ts,

μ̄3 = μ3/ts, p̄2 = p2E0/tsIL0 , ḡ3 = g3/T0,

s̄1 = s1/tsE0, s̄2 = s2/tsIL0 .

For convenience, the over-bar notation is dropped
and the scaled model is given by (1). A proper scaling

is needed as the system is numerically stiff and nume-
rical routines used to solve these equations will fail wi-
thout scaling or with inappropriate scaling. (In this case,
a proper choice of scaling is E0 = T0 = IL0 = 1/b and
ts = r2 (Kirschner and Panetta, 1998)). The parameter
values were obtained from (Kirschner and Panetta, 1998),
which is put in tabular form (Table 1). The units of the
parameters are in day−1, except of g1, g2, g3 and b, which
are in volumes.

Fig. 1. Schematic diagram showing the key-players in
tumor-immune interactions.

In the system described by (1), x(t), y(t) and z(t)
respectively represent the effector cells, the tumor cells
and the concentration of IL-2 in a single site compartment.
The first equation of the system (1) describes the rate of
change in the effector cell population. The effector cells
grow due to the direct presence of the tumor, given by the
term cy, where c is the antigenicity of the tumor. It is also
stimulated by IL-2 that is produced by effector cells in
an autocrine and paracrine manner (the term p1xz/(g1 +
z), p1 is the rate at which the effector cells grows and
g1 is the half saturation constant). A clinical trial shows
that there are immune stimulation effects from treatment
with IL-2 (Keilholz et al., 1994; Gause et al., 1996; Hara
et al., 1996; Kaempfer et al., 1996; Curti et al., 1996), and
there is a time lag between the production of interleukin-2
by activated T-cells and the effector cell stimulation from
treatment with IL-2. Hence, a discrete time delay is being
added to the second term of the first equation of the system
(1), which modifies to p1x(t−τ)z(t−τ)/(g1 +z(t−τ)),
μ2x gives the natural decay of the effector cells and s1
is the treatment term that represents the external source of
the effector cells such as adoptive cellular immunotherapy
(ACI). A similar kind of term was introduced by Galach
(2003) in his model equation, where he assumed that the
source of the effector cells is the term x(t− τ)y(t− τ), as
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Table 1. Parameter values used for numerical analysis.

Parameters Values Scales Values

c (antigenicity of tumor) 0 ≤ c ≤ 0.05 0 ≤ c ≤ 0.278
p1 (growth rate of effector cells) 0.1245 0.69167

g1 (half saturation constant) 2 × 107 0.02

μ2 (natural decay rate of effector cells) 0.03 0.1667

r2 (growth rate of tumor cells) 0.18 1

b (1/carrying capacity of tumor cells) 1.0 × 10−9 1

a (decay rate of tumor) 1 5.5556

g2 (half saturation constant) 1 × 105 0.0001

μ3 (natural decay rate of IL-2) 10 55.556

p2 (growth rate of IL-2) 5 27.778

g3 (half saturation constant) 1 × 103 0.000001

the immune system needs some time to develop a suitable
response.

The second equation of the system (1) shows the
rate of change of the tumor cells which follows a logi-
stic growth (a type of limiting growth). Due to a tumor-
effector cell interaction, there is a loss in the tumor cells
at the rate a and it is modeled by Michaelis-Menten kine-
tics to indicate the limited immune response to the tumor
(the term axy/(g2 + y), g2 being a half saturation con-
stant). The third equation of the system (1) gives the rate
of change for the concentration of IL-2. Its source are
the effector cells, which are stimulated by interaction with
the tumor and also have Michaelis-Menten kinetics to ac-
count for the self-limiting production of IL-2 (the term
p2xy/(g3 + y), p2 being the rate of production of IL-2
and g3 a half saturation constant), μ3z is the natural decay
of the IL-2 concentration and s2 is a treatment term that
represents an external input of IL-2 into the system.

The aim of this paper is to study this modified model
and to explore any changes in the dynamics of the system
that may occur when a discrete time delay is added to the
system, and to compare the results with those obtained by
Kirschner and Panetta (1998).

3. Qualitative analysis of the model

3.1. Positivity of the solution. The system of equ-
ations is now put in vector form by setting

X = col(M,N,Z) ∈ R
3
+0,

F (X) =

⎛
⎜⎝F1(X)
F2(X)
F3(X)

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎝
cy +

p1x(t− τ)z(t− τ)
g1 + z(t− τ)

− μ2x+ s1

r2(1 − by)y − axy

g2 + y
p2xy

g3 + y
− μ3z + s2

⎞
⎟⎟⎟⎟⎠ , (3)

where F : C+ → R
3
+0 and F ∈ C∞(R3

+0). Then the
system (1) becomes

Ẋ = F (Xt), (4)

where · ≡ d/dt and with Xt(θ) = X(t+ θ), θ ∈ [−τ, 0]
(Hale and Lunel, 1993). It is easy to check in (4) that,
whenever we choose X(θ) ∈ C+ such that Xi = 0, then
we obtain Fi(X)|Xi(t)=0,Xt∈C+ ≥ 0, i = 1, 2, 3. Due
to the lemma in (Yang et al., 1996), any solution of (4)
with X(θ) ∈ C+, say, X(t) = X(t,X(0)), is such that
X(t) ∈ R

3
+0 for all t > 0.

3.2. Linear stability analysis with delay. The equili-
bria for the system (scaled) are as follows:

(i) The x-z planar equilibrium is(
s1(g1μ3 + s2)

μ2(g1μ3 + s2) − p1s2
, 0,

s2
μ3

)

and exists if
μ2 >

p1s2
g1μ3 + s2

.

(ii) The interior equilibrium is E∗(x∗, y∗, z∗), where

x∗ =
r2
a

(1 − by∗)(g2 + y∗),

z∗ =
p2r2(1 − by∗)(g2 + y∗)

aμ3(g3 + y∗)
+
s2
μ3
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and y∗ is given by

cy∗ − μ2x
∗ +

p1x
∗z∗

g1 + z∗
+ s1 = 0.

In the case of a positive delay, the characteristic
equation for the linearized equation around the point
(x∗, y∗, z∗) is

P (λ) +Q(λ)e−λτ = 0, (5)

where

P (λ) = λ3 + a1λ
2 + a2λ+ a3

Q(λ) = b1λ
2 + b2λ+ b3

a1 = μ2 + μ3 + br2y
∗ − ax∗y∗

(g2 + y∗)2

a2 = br2y
∗
(
μ3 − p1z

∗

g1 + z∗
)

+
ap1x

∗y∗z∗

(g2 + y∗)2(g1 + z∗)

− μ3p1z
∗

g1 + z∗
+

acy∗

(g2 + y∗)

+ μ2

{
μ3 + br2y

∗ − ax∗y∗

(g2 + y∗)2
}

a3 = bμ2μ3r2y
∗ − aμ2μ3x

∗y∗

(g2 + y∗)2

+
acμ3y

∗

(g2 + y∗)

+
ag1g3p1p2(x∗)2y∗

(g2 + y∗)(g3 + y∗)2(g1 + z∗)2

− bg1p1p2r2x
∗(y∗)2

(g3 + y∗)(g1 + z∗)2

+
ag1p1p2(x∗)2(y∗)2

(g2 + y∗)2(g3 + y∗)(g1 + z∗)2

− bμ3p1r2y
∗z∗

g1 + z∗
+

aμ3p1x
∗y∗z∗

(g2 + y∗)2(g1 + z∗)
,

b1 = − p1z
∗

g1 + z∗
,

b2 = − g1p1x
∗y∗

(g3 + y∗)(g1 + z∗)2
< 0,

b3 =
ag1p1p2{g2g3 + 2g3y∗ + (y∗)2}x∗y∗

(g2 + y∗)2(g3 + y∗)2(g1 + z∗)2

− br2g1p1p2x
∗(y∗)2

(g3 + y∗)(g1 + z∗)2
.

The steady state is stable in the absence of the delay (τ =
0) if the roots of

P (λ) +Q(λ) = 0
⇒ λ3 + (a1+b1)λ2+(a2+b2)λ+a3+b3 = 0 (6)

have negative real parts. This occurs if and only if a1 +
b1 > 0, a3+b3 > 0 and (a1+b1)(a2+b2)−(a3+b3) > 0

(by Routh Hurwitz’s criteria). This implies

μ2 +μ3 + br2y
∗ − ax∗y∗

(g2 + y∗)2 − p1z
∗

g1 + z∗
> 0,

p1

{ g1p2x
∗y∗

μ3(g3 + y∗)(g1 + z∗)2
+

z∗

g1 + z∗
}
< μ2

< p1

{g1p2x
∗(g2g3 + 2g3y∗ + (y∗)2)

μ3(g3 + y∗)2(g1 + z∗)2
+

z∗

g1 + z∗
}
.

(The above criteria are satisfied with the set of parameters
shown in Table 1, provided that 0 ≤ c ≤ 0.278, s2 <
μ2μ3g1/(p1−μ2)). Now substituting λ = iω (where ω is
positive) in Eqn. (5) and separating the real and imaginary
parts, we obtain the system of transcendental equations

a1ω
2 − a3 = (b3 − b1ω

2) cos(ωτ) + b2ω sin(ωτ), (7)

ω3 − a2ω = b2ω cos(ωτ) − (b3 − b1ω
2) sin(ωτ). (8)

Squaring and adding (7) and (8), we get

(b3 − b1ω
2)2 + b22ω

2 = (a1ω
2 − a3)2 + (ω3 − a2ω)2

⇒ ρ3 +A1ρ
2 +A2ρ+A3 = 0, (9)

where ρ = ω2,

A1 = a2
1 − 2a2 − b21

= μ2
2 + μ2

3 + b2r22(y
∗)2 +

a2(x∗)2(y∗)2

(g2 + y∗)4

− 2ay∗{br2x∗y∗ + c(g2 + y∗)}
(g2 + y∗)2

+
p2
1(z

∗)2

(g1 + z∗)2

− 2μ2p1z
∗

g1 + z∗
,

A2 = a2
2 − b22 − 2a1a3 + 2b1b3

=
−g2

1p
2
1p

2
2(x

∗)2(y∗)2

(g3 + y∗)2(g1 + z∗)4
+

{
−aμ3x

∗y∗

(g2 + y∗)2 +
acy∗

g2 + y∗

+ μ2

(
μ3 + br2y

∗ − −ax∗y∗
(g2 + y∗)2

)
− μ3p1z

∗

g1 + z∗

+
ap1x

∗y∗z∗

(g2 + y∗)2(g1 + z∗)
+ br2y

∗
(
μ3 − p1z

∗

g1 + z

)}2

− 2μ3y
∗
[
μ2 + μ3 + br2y

∗ − ax∗y∗

(g2 + y∗)2 − p1z
∗

g1 + z∗

]

×
[
br2

(
μ2 − p1z

∗

g1 + z∗

+
a
{
− μ2x+ c(g2 + y) + μ3p1z∗

g1+z∗
}

(g2 + y∗)2

)]
,



394 S. Banerjee

A3 = a2
3 − b23 = (a3 + b3)(a3 − b3)

= y∗
[
br2

{
μ2μ3 − g1p1p2x

∗y∗

(g3 + y∗)(g1 + z∗)2
− μ3p1z

∗

g1 + z∗

}

+
a

(g2 + y∗)2

{
cμ3(g2 + y∗)

+ x∗
(

− μ2μ3 +
p1p2g1x

∗(g2g3 + 2g3y∗ + (y∗)2)
(g3 + y∗)2(g1 + z∗)2

+
μ3p1z

∗

g1 + z∗

) } ]
y∗
[
br2

{
μ2μ3

+
g1p1p2x

∗y∗

(g3 + y∗)(g1 + z∗)2
− μ3p1z

∗

g1 + z∗

}

+
a

(g2 + y∗)2

{
cμ3(g2 + y∗) + x∗

(
− μ2μ3

+
−p1p2g1x

∗
(
g2g3 + 2g3y∗ + (y∗)2

)
(g3 + y∗)2(g1 + z∗)2

+
μ3p1z

∗

g1 + z∗

) } ]
.

Assuming thatA1 is positive (this is satisfied with the
parameter values from Table 1), the simplest assumption
that (9) will have a positive root is A3 = a2

3 − b23 < 0.
Since a3 + b3 is positive (from the non-delay case), we
must have a3 − b3 < 0 and this gives

y∗
[
br2

{
μ2μ3 +

p1

(
g1p2x∗y∗

g3+y∗ − μ3z
∗(g1 + z∗)

)
(g1 + z∗)2

}
br2y

∗

− ax∗y∗

(g2 + y∗)2 − p1z
∗

g1 + z∗

]
> 0,

p1

{
g1p2x

∗y∗

μ3(g3 + y∗)(g1 + z∗)2
+

z∗

g1 + z∗

}

< μ2 < p1

{
g1p2x

∗(g2g3 + 2g3y∗ + (y∗)2)
μ3(g3 + y∗)2(g1 + z∗)2

+
z∗

g1 + z∗

}
.

Hence, we can say that there is a positive ω0 satisfy-
ing ( 9), that is, the characteristic equation ( 5) has a pair
of purely imaginary roots of the form ± iω0. Eliminating
sin(τω) from ( 7) and ( 8), we get

cos(ωτ) =
(a1ω

2 − a3)(b3) + (ω3 − a2ω)(b2ω)
(b3)2 + (b2ω)2

.

Then τ∗n corresponding to ω0 is given by

τ∗n

=
1
ω0

arccos

[
(a1ω

2
0 − a3)(b3) + (ω3

0 − a2ω0)(b2ω0)
(b3)2 + (b2ω0)2

]

+
2nπ
ω0

. (10)

For τ = 0, E∗ is stable. Hence, E∗ will remain stable
for τ < τ0 where τ0 = τ∗0 as n = 0 (Freedman and
Rao, 1983).

3.3. Estimation of the length of delay to preserve sta-
bility. The linearized form of the system (1) is

dx
dt

=
(

p1z
∗

g1 + z∗
− μ2

)
x+

p1z
∗

g1 + z∗
x(t− τ)

+ cy +
p1g1x

∗

(g1 + z∗)2
z(t− τ),

dy
dt

= − ay∗

g2 + y∗
x+

(
ax∗y∗

(g2 + y∗)2
− r2by

∗
)
y,

dz
dt

= − p2y
∗

g3 + y∗
x+

p2g3x
∗

(g3 + y∗)2
y − μ3z.

Taking the Laplace transform of the above linearized
system, we get(
s+ μ2 − p1z

∗

g1 + z∗

)
x̄(s)

=
p1z

∗

g1 + z∗
e−sτ x̄(s) +

p1z
∗

g1 + z∗
e−sτK1(s)

+ cȳ(s) +
p1g1x

∗

(g1 + z∗)2
e−sτ z̄(s)

+
p1g1x

∗

(g1 + z∗)2
e−sτK2(s) + x(0),(

s+ r2by
∗ − ax∗y∗

(g2 + y∗)2

)
ȳ(s) = − ay∗

g2 + y∗
x̄(s) + y(0),

(s+ μ3z) = − p2y
∗

g3 + y∗
x̄(s) +

p2g3x
∗

(g3 + y∗)2
ȳ(s) + z(0),

where

K1(s) =
∫ 0

−τ

e−stx(t) dt,

K2(s) =
∫ 0

−τ

e−stz(t) dt,

and x̄(s), ȳ(s) and z̄(s) are the Laplace transforms of
x(t), y(t) and z(t), respectively.

Following the lines of (Freedman et al., 1986) and
using the Nyquist criterion (see the Appendix), it can be
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Fig. 2. Effector cells, tumor cells and IL-2 vs. time. All the parameter values were scaled accordingly. (a) c = 0.0056, s1 = 0,
s2 = 0.05; (b): c = 0.0056, s1 = 0, s2 = 0.2; (c): c = 0.222, s1 = 0, s2 = 0.05; (d): c = 0.222, s1 = 0, s2 = 0.2;
τ = τ∗

0 = 0.723 days =17.346 hours for Cases (a) and (b); τ = τ∗
0 = 0.529 days =12.7 hours for Cases (c) and (d).

shown that the conditions for the local asymptotic stability
of E∗(x∗, y∗, z∗) are given by

ImH(iη0) > 0, (11)

ReH(iη0) = 0, (12)

whereH(s) = s3+a1s
2+a2s+a3+e−sτ (b1s2+b2s+b3)

and η0 is the smallest positive root of (12). In this case,
(11) and (12) give

a2η0 − η3
0 > −b2η0 cos(η0τ) + b3 sin(η0τ)

− b1η
2
0 sin(η0τ),

(13)

a3 − a1η
2
0 = b1η

2
0 cos(η0τ) − b3 cos(η0τ)

− b2η0 sin(η0τ).
(14)

Now, if Eqns. (13) and (14) are satisfied simultane-
ously, they are sufficient conditions to guarantee stability,
which are now used to get an estimate to the length of the
time delay. The aim is to find an upper bound η+ to η0, in-
dependent of τ, and then to estimate τ so that ( 13) holds
true for all values of η, 0 ≤ η ≤ η+ and hence, in
particular, at η = η0.

Equation (14) is rewritten as

a1η
2
0 = a3 + b3 cos(η0τ) − b1η

2
0 cos(η0τ)

+ b2η0 sin(η0τ).
(15)

Maximizing

a3 + b3 cos(η0τ) − b1η
2
0 cos(η0τ) + b2η0 sin(η0τ),

subject to

| sin(η0τ)| ≤ 1, | cos(η0τ)| ≤ 1,

we obtain

|a1|η2
0 ≤ |a3| + |b3| + |b1|η2

0 + |b2|η0. (16)

Hence, if

η+ =
1

2(|a1| − |b1|)

[
|b2|

+
√
b22 + 4(|a1| − |b1|)(|a3| + |b3|)

]
,

(17)

then clearly from (16) we have η0 ≤ η+.
From (13) we obtain

η2
0 < a2 + b2 cos(η0τ) + b1η0 sin(η0τ)

− b3 sin(η0τ)
η0

.
(18)

Since E∗(x∗, y∗, z∗) is locally asymptotically stable
for τ = 0, for sufficiently small τ > 0, the inequality
(18) will continue to hold. Substituting (15) in (18) and
rearranging the result we get

(b3 − b1η
2
0 − a1b2)

[
cos(η0τ) − 1

]

+

{
(b2 − a1b1)η0 +

a1b3
η0

}
sin(η0τ)

< a1a2 − a3 − b3 + b1η
2
0 + a1b2. (19)
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Fig. 3. Effector cells, tumor cells and IL-2 vs. time. All the parameter values were scaled accordingly. (a): c = 0.0056, s1 =
0.00000246446, s2 = 0.05; (b): c = 0.0056, s1 = 0.0000010144, s2 = 0.2; (c): c = 0.222, s1 = 0.00000246446,
s2 = 0.05; (d): c = 0.222, s1 = 0.0000010144, s2 = 0.2; τ = τ∗

0 = 0.7228 days =17.348 hours for Cases (a) and (b);
τ = τ∗

0 = 0.528 days =12.67 hours for Cases (c) and (d).

Using the bounds

(b3 − b1η
2
0 − a1b2)

[
cos(η0τ) − 1

]
= (b1η2

0 + a1b2 − b3)2 sin2
(η0τ

2

)
≤ 1

2
|(b1η2

+ + a1b2 − b3)|η2
+τ

2,

and{
(b2 − a1b1)η0 +

a1b3
η0

}
sin(η0τ)

≤ {|(b2 − a1b1)| η2
+ + |a1||b3|} τ,

from (19) we obtain

L1τ
2 + L2τ < L3, (20)

where

L1 =
1
2
|(b1η2

+ + a1b2 − b3)|η2
+,

L2 = |(b2 − a1b1)| η2
+ + |a1||b3|,

L3 = a1a2 − a3 − b3 + b21η+ + a1b2.

Hence, if

τ+ =
1

2L1
(−L2 +

√
L2

2 + 4L1L3), (21)

then for 0 ≤ τ < τ+ the Nyquist criterion holds true and
τ+ estimates the maximum length of the delay preserving
the stability.

4. Numerical results

The model is now studied numerically to see the effect of
the discrete time delay on the system. The scaled parame-
ter values have been used for numerical calculations using
Matlab.

Case 1 (s1 > 0, s2 = 0): In the model, the time delay
has no qualitative effect on the adaptive cellular immu-
notherapy (ACI). Therefore, the results will be the same
as those obtained in (Kirschner and Panetta, 1998). So is
the case s1 = 0, s2 = 0. Hence, these two cases are not
discussed thoroughly.

Case 2 (s1 = 0, s2 > 0): Figure 2 explores the input of the
concentration of IL-2 into the system, if the input of the
concentration of IL-2 is administered and the effector cells
are stimulated after 0.7227 days = 17.346 hours and 0.529
days = 12.7 hours, respectively (obtained by using (10)
and scaled parameter values). For a low antigenic tumor
and a low input of the concentration of IL-2 (c = 0.0056,
s2 = 0.05), the tumor cell regresses and the concentration
of IL-2 decreases alarmingly almost to zero (Fig. 2(a)).
For a higher concentration of IL-2 (c = 0.0056, s2 = 0.2),
the same scenario happens, and it is only in this case that
the concentration of IL-2 does not reduce to zero (Fig.
2(b)).

For tumors with a high antigenicity (c = 0.222,
s2 = 0.05), the tumor volume increases at the beginning
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and when there is an input of IL-2 concentration after 12.7
hours, the tumor volume reduces and ultimately is cleared
off (Fig. 2(c)). At the same time, the concentration of Il-
2 decreases alarmingly. But with a high input of IL-2 on
the tumor with a high antigenicity (c = 0.222,s2 = 0.2),
the tumor regresses as well, and the immune system and
the concentration of IL-2 stabilize (Fig. 2(d)). This is a
new interesting positive result. According to (Kirschner
and Panetta, 1998), large amounts of administrated IL-
2 together with any degree of antigenicity show that the
tumor is cleared but the immune system grows unboun-
ded as the IL-2 concentration reaches a steady-state value
(Fig. 4). This uncontrolled growth of the immune sys-
tem represents a situation that is detrimental to the host.
However, in our case, due to the time delay effect, the si-
tuation is under control. The tumor is cleared off and the
immune system also stabilizes.
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Fig. 4. Effector cells, tumor cells and IL-2 vs. time in
the case of non-delay (i.e., τ = τ∗

0 = 0. All
the parameter values were scaled accordingly. Here
c = 0.222, s1 = 0, s2 = 0.5.

Case 3 (s1 > 0, s2 > 0): Figure 3 shows the effect of im-
munotherapy with both ACI and IL-2, if the input of both
ACI and the concentration of IL-2 are administered and
the stimulation of the effector cells by IL-2 takes place
after 0.7228 days = 17.348 hours and 0.528 days = 12.67
hours, respectively. Irrespective of the antigenicity of the
tumor, the dynamics of Figs. 3(a)–3(d) are same, i.e., the
volume of the tumor decreases significantly when both
ACI and IL-2 are administered in various concentrations.

5. Conclusion

The aim of this paper was to see the effect of time delay
during immunotherapy with interleukin-2 (IL-2). The ef-
fect of immunotherapy with IL-2 on the modified model
was explored and circumstances under which the tumor
can be eliminated are described. The model represented
by a set of delay differential equations contains treatment

terms s1 and s2 that represent an external source of the ef-
fector cells by adoptive cellular immunotherapy (ACI) and
an external input of IL-2 into the system, respectively. Ho-
wever, the effects of IL-2 on the tumor-immune dynamics
with time delay are the main focus. It is shown that tre-
atment with IL-2 alone can offer a satisfactory outcome.
When there is an external input of the concentration of IL-
2 and the effector cells are stimulated after 96.38 hours,
during which the IL-2 production reaches its peak value to
generate more effector cells, a tumor with medium to high
antigenicity shows regression and the concentration of IL-
2 stabilizes. Unlike in (Kirschner and Panetta, 1998), the
immune system also stabilizes, indicating that side effects
like the capillary leak syndrome do not arise here. In other
words, a patient does not need to endure very many side
effects before the IL-2 therapy successfully clears the tu-
mor. In (Rosenberg et al., 1994), the effectiveness of the
high dose bolus treatment with interleukin-2 is studied,
where many patients are in complete remission for 7 to 91
months. Hence, this model predicts that it is indeed possi-
ble to treat a patient cancer free with immunotherapy with
IL-2 alone.

Finally, it can be said that the above finding sheds
some light on immunotherapy with IL-2 and can be help-
ful to medical practitioners, experimental scientists and
others to control this killer disease of cancer. An exten-
sion along this line of work will be to examine the effect
of other cytokines such as IL-10, IL-12, interferon −γ,
which are involved in the cellular dynamics of the im-
mune system response to tumor invasion and how these
cytokines affect the dynamics of the system.
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Appendix

Nyquist Criterion If L is the arc length of a curve encirc-
ling the right half plane, the curve p̄J (L) will encircle the
origin as many times number as the difference between
the number of poles and the number of zeroes of p̄J (L) in
the right half-plane.
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