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The paper deals with the problem of optimal path planning for a sensor network with mutliple mobile nodes, whose measu-
rements are supposed to be primarily used to estimate unknown parameters of a system modelled by a partial differential
equation. The adopted framework permits to consider two- or three-dimensional spatial domains and correlated observa-
tions. Since the aim is to maximize the accuracy of the estimates, a general functional defined on the relevant Fisher
information matrix is used as the design criterion. Central to the approach is the parameterization of the sensor trajectories
based on cubic B-splines. The resulting finite-dimensional global optimization problem is then solved using a parallel
version of the tunneling algorithm. A numerical example is included to clearly demonstrate the idea presented in the paper.
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1. Introduction

Since for distributed parameter systems (DPSs) it is most
often impossible to observe their states over the entire
spatial domain, a natural question arises of where to lo-
cate discrete sensors so as to accurately estimate the unk-
nown system parameters. Both researchers and practitio-
ners do not doubt that making use of sensors placed in
an ‘intelligent’ manner may lead to dramatic gains in the
achievable accuracy of the resulting parameter estimates,
so efficient sensor location strategies are highly desira-
ble. In turn, the complexity of the sensor location pro-
blem implies that there are very few sensor placement
methods which are readily applicable to practical situ-
ations. What is more, they are not well known among
researchers. This generates keen interest in the poten-
tial results, as the motivations to study the sensor loca-
tion problem stem from practical engineering issues. The
optimization of air quality monitoring networks is among
the most interesting ones. One of the tasks of environ-
mental protection systems is to provide expected levels
of pollutant concentrations. But to produce such a fore-
cast, a smog prediction model is necessary which is usu-
ally chosen in the form of an advection-diffusion partial-
differential equation. Its calibration requires parameter

estimation, e.g., the unknown spatially varying turbulent
diffusivity tensor should be identfied based on the me-
asurements from monitoring stations. Since measurement
transducers are usually rather costly and their number is
limited, we are faced with the problem of how to optimize
their locations in order to obtain the most precise mo-
del. Other stimulating applications include, among other
things, groundwater-resources management, the recovery
of valuable minerals and hydrocarbon, model calibration
in meteorology and oceanography, chemical engineering,
automated inspection in static and active hazardous envi-
ronments where trial-and-error sensor planning cannot be
used (e.g., in nuclear power plants), or emerging smart
material systems (Nehorai et al., 1995; Porat and Neho-
rai, 1996; Jeremić and Nehorai, 1998; Jeremić and Neho-
rai, 2000; Navon, 1997; Daescu and Navon, 2004; Chri-
stofides, 2001; Banks et al., 1996; Sun, 1994; Uciń-
ski, 2005). The operation and control of such systems usu-
ally requires precise information on the parameters which
condition the accuracy of the underlying mathematical
model, but such information is only available through a
limited number of possibly expensive sensors.

The sensor placement problem was attacked from
various angles, but the results communicated by most
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authors are limited to the selection of stationary sen-
sor positions (for reviews, see (Kubrusly and Malebran-
che, 1985; Uciński, 1999; Uciński, 2000; Uciński, 2005)).
An intuitively clear generalization is to apply sensors
which are capable of continuously tracking points provi-
ding at a given time moment the best information about
the parameters (such a strategy is alternatively called con-
tinuous scanning). However, communications in this field
are rather limited. Using mobile sensor network nodes,
we can expect the minimal value of an adopted design cri-
terion to be lower than the one with no mobility. In the
seminal article (Rafajłowicz, 1986), the D-optimality cri-
terion defined on the Fisher Information Matrix (FIM) as-
sociated with the estimated parameters is considered and
an optimal time-dependent measure is sought, rather than
the trajectories themselves. In (Porat and Nehorai, 1996),
a single moving concentration sensor is used to detect and
localize a vapour-emitting source for a diffusion equation.
The sensor is guided to minimize the A-optimality crite-
rion and parameter estimates are updated in subsequent
stages of the experiment, i.e., a sequential experiment is
conducted. However, no model of the sensor dynamics
is considered, nor are restrictions imposed on sensor mo-
tions encountered in practice.

On the other hand, Uciński (Uciński, 2005; Uciń-
ski, 2000; Uciński and Korbicz, 2001), apart from genera-
lizations, develops some computational algorithms based
on the FIM. He reduces the problem to a state-constrained
optimal control one for which solutions are obtained via
the methods of successive linearizations, which is capa-
ble of handling various constraints imposed on sensor mo-
tions. In turn, the work (Uciński and Chen, 2005) was in-
tended as an attempt to properly formulate and solve the
time-optimal problem for moving sensors which observe
the state of a DPS so as to estimate some of its parame-
ters. In (Uciński and Chen, 2006),a similar technique was
presented so as to make the Hessian of the parameter esti-
mation well conditioned subject to an additional constra-
int imposed on the achievable D-efficiency of the solu-
tions. In the vein of optimum experimental design, joint
optimization of trajectories and measurement accuracies
of heterogeneous mobile nodes in a sensor network was
considered in (Tricaud et al., 2008). Finally, in (Uciński
and Demetriou, 2008), a non-trivial generalization of the
same approach was proposed for the problem of estima-
ting the states of a stochastic DPS via the Kalman-Bucy
filter.

The limited interest in mobile observations for pa-
rameter estimation in DPSs is in conflict with recent
advances in hardware, sensor and networking technolo-
gies which enable large-scale deployment of superior data
acquisition systems with adjustable resolutions, called
sensor networks. Each sensor node has a sensing capa-
bility, as well as limited energy supply, computing power,
memory and communication ability. These inexpensive,

low-power communication devices can be deployed thro-
ughout the physical space, providing dense sensing close
to physical phenomena, processing and communicating
this information, and coordinating actions with other no-
des. In modern applications, sensors can be located on
various platforms and these platforms can be highly dy-
namic in motion. What is more, technological advances
in communication systems and the growing ease in ma-
king small, low power and inexpensive mobile systems
now render it feasible to deploy a group of networked
vehicles in a number of environments (Cassandras and
Li, 2005; Zhao and Guibas, 2004).

In a typical sensor network application, sensors are
supposed to be deployed so as to monitor a region and
collect the most valuable information from the observed
system. The quality of sensor deployment can be quan-
tified by the appropriate performance indices and opti-
mum sensor node configurations can thus be sought. The
resulting observation strategies concern optimally plan-
ning trajectories of mobile nodes. Up to now, approaches
aiming at guaranteeing a dense region coverage or satis-
factory network connectivity have dominated this line of
research and abstracted away from the mathematical de-
scription of the physical processes underlying the obse-
rved phenomena. In this way, much information is lost
which could potentially be used to make the operation
of the sensor network more efficient and yield substan-
tial gains in the functionality of the whole source localiza-
tion system. Recent works (Uciński and Patan, 2007; De-
metriou, 2006b; Demetriou, 2006a; Hussein and Deme-
triou, 2007; Demetriou, 2007) demonstrate that the inclu-
sion of a DPS model into the optimization setting can sub-
stantially improve the quality of the information collected
by the network.

To a certain extent, a barrier to widespread use of
model-based sensor trajectory design techniques is the
complexity and large scale of the attendant computations.
This issue becomes of paramount importance in case the
design is supposed to be performed on-line. This work is
intended as an attempt to demonstrate that these compu-
tations can be parallelized with relative ease and even for
fairly complex cases solutions can be obtained in reasona-
ble times on a cluster of low-cost PCs using the Message
Passing Interface (MPI). The approach adopted here can
be called ‘direct’ in the sense that sensor trajectories are
our design variables. This stands in contrast to the ap-
proach developed in (Uciński, 2005) and related works,
where algorithmic optimal control was extensively used.
Here we show that useful solutions can be efficiently ob-
tained without resorting to such sophisticated machinery.

Specifically, in Section 2 we give a brief exposition
of the sensor location problem in question. Section 3 pro-
vides an exposition of the tunneling algorithm. Its parallel
version is set forth in Section 4. Section 5 includes a nu-
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merical example to clearly demonstrate the ideas presen-
ted in the paper.

2. Experimental design problem in question

2.1. Optimal sensor routing for correlated observa-
tions. Consider a bounded spatial domain Ω ⊂ R

d with
a sufficiently smooth boundary Γ, a bounded time interval
T = (0, tf ], and a distributed parameter system (DPS)
whose scalar state at a spatial point x ∈ Ω̄ ⊂ R

d and a
time instant t ∈ T̄ is denoted by y(x, t). Mathematically,
the system state is governed by the partial differential equ-
ation (PDE)

∂y

∂t
= F

(
x, t, y, θ

)
in Ω × T , (1)

where F is a well-posed, possibly nonlinear, differential
operator which involves first- and second-order spatial de-
rivatives and may include terms accounting for forcing in-
puts specified a priori. The PDE (1) is accompanied by
the appropriate boundary and initial conditions

B(x, t, y, θ) = 0 on Γ × T, (2)

y = y0 in Ω × {t = 0}, (3)

respectively, B being an operator acting on the boundary
Γ and y0 = y0(x) a given function. Conditions (2) and
(3) complement (1) so that the existence of a sufficiently
smooth and unique solution is guaranteed. We assume
that the forms of F and B are given explicitly up to an
m-dimensional vector of unknown constant parameters θ
which must be estimated using observations of the system.
The implicit dependence of the state y on the parameter
vector θ will be be reflected by the notation y(x, t; θ).

In what follows, we consider the discrete-continuous
observations provided by n mobile sensors, namely,

z�
m(t) = y(x�(t), t; θ) + ε(x�(t), t), t ∈ T, (4)

where z�
m( · ) is the scalar output and x�( · ) ∈ X stands

for the trajectory of the �-th sensor (� = 1, . . . , n), X si-
gnifies the part of the spatial domain Ω where the measu-
rements can be made, and ε(x�, t) denotes the measure-
ment noise. The assumption that we are in a position to
observe directly the system state is made only for simpli-
city of presentation. The approach outlined in what fol-
lows can easily be generalized to indirect observation of
state variables.

Designers are often tempted to assume that the me-
asurement noise is zero-mean, Gaussian, spatial uncorre-
lated and white (Quereshi et al., 1980; Kubrusly and Ma-
lebranche, 1985; Sun, 1994). But one of the characteristic
properties of collecting spatial data is the presence of spa-
tial correlations between observations made at different si-
tes (Müller, 2007; Le and Zidek, 2006; Cressie, 1993; Fe-
dorov and Hackl, 1997). This topic is, however, neglected

in most works on sensor location for parameter estimation
in dynamic DPSs. On the one hand, such a simplifica-
tion is very convenient as it leads to elegant theoretical re-
sults, but on the other hand, it is rarely justified in a large
number of applications. Environmental monitoring, me-
teorology, surveillance, some industrial experiments and
seismology are the most typical areas where the necessity
for taking account of this factor may emerge. Consequen-
tly, in what follows we assume that ε(x, t) is a Gaussianly
distributed measurement disturbance satisfying

E
[
ε(x, t)

]
= 0, (5)

E
[
ε(x, t)ε(χ, τ)

]
= q(x, χ, t)δ(t − τ), (6)

q( · , · , t) being a known continuous spatial covariance
kernel and δ the Dirac delta function.

In this framework, the parameter identification pro-
blem is formulated in terms of minimizing the correspon-
ding weighted output least-squares fit-to-data functional,
see (Uciński, 2005) for details. Clearly, the resulting pa-
rameter estimate θ̂ depends on sensor trajectories x�( · ),
which suggests that we may attempt to select the trajecto-
ries which lead to best estimates of the system parameters.
To form a basis for the comparison of different trajecto-
ries, a quantitative measure of the ‘goodness’ of particular
trajectories is required. A logical approach is to choose a
measure related to the expected accuracy of the parameter
estimates to be obtained from the data collected. Such a
measure is usually based on the concept of the Fisher In-
formation Matrix (FIM), which is widely used in optimum
experimental design theory for lumped systems (Atkinson
et al., 2007; Fedorov and Hackl, 1997; Pázman, 1986; Pu-
kelsheim, 1993; Walter and Pronzato, 1997). In our set-
ting, the FIM is given by (Uciński, 2005)

M(x1, . . . , xn)

=
n∑

i=1

n∑
j=1

∫
T

wij(t)g(xi(t), t)gT(xj(t), t) dt, (7)

where

g(x(t), t)

=
[
∂y(x(t), t; ϑ)

∂ϑ1
, . . . ,

∂y(x(t), t; ϑ)
∂ϑm

]T

ϑ=θ0

(8)

stands for the so-called sensitivity vector, θ0 being a prior
estimate to the unknown parameter vector θ (Uciński,
2005; Sun, 1994; Rafajłowicz, 1981; Rafajłowicz, 1983).
Furthermore, we set

W (t) =
[
wij(t)

]
= C−1(t), (9)

C(t) =
[
cij(t)

]
, (10)

cij(t) = q(xi(t), xj(t), t). (11)
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Under some mild assumptions, the inverse of the FIM con-
stitutes an approximation of the covariance matrix for the
estimate of θ (Walter and Pronzato, 1997; Fedorov and
Hackl, 1997).

The selection of the best measurement trajectories
then rests on maximizing a scalar measure defined on the
FIM. As for a specific form of Ψ, various choices exist
(Atkinson et al., 2007; Walter and Pronzato, 1997; Fedo-
rov and Hackl, 1997), but the most popular criterion, cal-
led the D-optimality criterion, is the log-determinant of
the FIM:

Ψ(M) = log det(M). (12)

The resulting D-optimum sensor configuration leads to the
minimum volume of the uncertainty ellipsoid for the esti-
mates.

The introduction of an optimality criterion renders it
possible to formulate the sensor location problem as the
maximization of the performance measure

R(x1, . . . , xn) := Ψ
[
M(x1, . . . , xn)

]
(13)

with respect to x�( · ), � = 1, . . . , n belonging to the ad-
missible set X . This apparently simple formulation may
lead to the conclusion that the only question remaining is
that of selecting an appropriate solver from a library of
numerical optimization routines. Unfortunately, a careful
analysis reveals dark sides of this naive way of thinking.

A major problem to address when attempting to plan
optimal sensor paths regards the selection of their proper
discretization. But even when applying a parsimonious
approximation scheme, we must bear in mind that in sen-
sor network settings encountered in practice we may have
dozens of sensors and therefore the dimensionality of the
optimization problem may be high (more than 100 dimen-
sions is a rule). What is more, a desired global extremum
is usually hidden among many poorer local extrema. Con-
sequently, to directly find a numerical solution may be
extremely difficult. These impediments make the reco-
urse to large-scale global optimization techniques rather
necessary.

2.2. Parametrization of sensor trajectories. Without
loss of generality, from now on we make the assumption
that we have only d = 2 spatial dimensions. In order
to make our design problem finite-dimensional, we intro-
duce a parametrization of the trajectories. Such a discre-
tization becomes a necessity if we wish to make the de-
sign problem tractable (Sacks, 1998). Clearly, the selec-
tion of the appropriate finite-dimensional subspace affects
both the accuracy of numerical integration and the accu-
racy with which the solutions of the original problem are
approximated. But a thorough analysis of this choice falls
far beyond the scope of this paper. In our approach, given
a desired number of basis functions p > 3, we choose the
set of discretization points ti = ih, i = 0, . . . , p − 3 for

h = tf/(p− 3), and for each � = 1, . . . , n we expand ad-
missible trajectories as linear combinations of B-splines
of order three (Quarteroni et al., 2000):

x�(t) = (x�
1(t), x

�
2(t)), (14)

x�
1(t) =

p∑
i=1

ω�
1iφi(t), x�

2(t) =
p∑

i=1

ω�
2iφi(t), (15)

where for each i = 1, . . . , p we define

φi(t) = g

(
t

h
− i + 2

)
, (16)

g(τ) =

⎧⎪⎪⎨
⎪⎪⎩

2
3 − 1

2 |τ |2(2 − |τ |) if 0 ≤ |τ | < 1,
1
6 (2 − |τ |)3 if 1 ≤ |τ | < 2,

0 if 2 ≤ |τ |.
(17)

Our choice was dictated by the fact that cubic B-splines
offer C2-regularity and have excellent approximation pro-
perties.

In cosequence, the motions of all sensors are fully
described by the vector of 2np coefficients

w = (ω1
11, ω

1
21, . . . , ω

1
1p, ω

1
2p, . . .

ωn
11, ω

n
21, . . . , ω

n
1p, ω

n
2p),

(18)

which become our new decision variables. The ultimate
form of the performance index is

J (w) = Ψ[M(x( · ; w))], (19)

where the notation x(w) expresses the dependence of the
trajectories on w through (14), (15) and (18).

Remark 1. As has already been mentioned, all sensor
trajectories must remain within the admissible region X .
This constitutes a constraint on the allowable values of
the components of the vector w. If X is a square, i.e.,
X = [x1 min, x1 max] × [x2 min, x2 max], then the constra-
int set W =

{
w | x�(t; w) ∈ X, ∀t ∈ T

}
is a box

(i.e., W =
∏n

�=1

∏p
k=1[x1 min, x1 max]× [x2min, x2max])

which can be handled with relative ease. In more compli-
cated cases, in order to avoid resorting to constrained opti-
mization, we take account of them by adding to (19) an
appropriate quadratic loss penalty function (Papalambros
and Wilde, 2000). For example, if X =

{
x ∈ Ω̄ : bi(x) ≤

0, i = 1, . . . , I
}

, where bi( · ) are some given functions,
then the barrier function could be

P (x( · ; w)) = −c

n∑
�=1

I∑
i=1

∫
T

[
max(0, bi(x�(t; w)))

]2 dt

(20)
for some constant c > 0.
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3. Solution by the tunneling algorithm

3.1. Outline. As a global optimizer to produce solu-
tions to our trajectory design problem for which many lo-
cal maxima and many design variables are a general rule,
we selected the tunneling algorithm set forth in (Levy and
Montalvo, 1985). Basically, it consists of two phases: a
local maximization phase and a tunneling phase. These
phases are alternately used to approximate a global maxi-
mizer of J (w). In the maximization phase, given a star-
ting point w0, we can use any nonlinear programming al-
gorithm for local optimization to find a local maximum w�

of J ( · ). In the tunneling phase, we introduce an auxiliary
function T (w) which should be continuously differentia-
ble. Starting from some point in a neighbourhood of w�,
the role of this function is to help in producing a new point
w̄ such that J (w̄) ≥ J (w�). If used properly, these two
phases yield a sequence of local maximizers such that the
function value at each of these maximizers is no less than
any of the function values at the previously found maxi-
mizers.

3.2. Algorithm details. We formulate our problem as
a classical maximization problem, i.e., we wish to find a
global maximum w�

G of

max J (w) s.t. w ∈ W , (21)

where W =
{
w | x�(t; w) ∈ X, ∀t ∈ T

}
. At the global

solution, we have

J (w) ≤ J (w�
G), ∀w ∈ W . (22)

In order to find w�
G, a sequence of local maxima

is constructed with nondecreasing function values, i.e.,
J (w�(1)) ≤ J (w�(2)) ≤ · · · ≤ J (w�

G), while ignoring
all local maxima with objective function values lower than
the best one found so far (it is here that the tunneling phase
plays its key role).

Having found a local maximum w� in the maximi-
zation phase, the tunneling phase uses a starting point w̃,
which belongs to a vicinity of w�, to find a point wtun

satisfying
J (wtun) ≥ J (w�) (23)

and differing from the hitherto discovered local maxima.
The point wtun will be taken as the initial point w0 for the
next maximization phase.

3.2.1. Local maximization phase. In our work, in or-
der to solve the problem

w� = arg max
w∈W

J (w), (24)

we use the coordinate ascent method (Bertsekas, 1999,
p. 160). It is a nonderivative method for maximizing diffe-
rentiable functions. Here the criterion is maximized along

one coordinate direction at each iteration. The order in
which coordinates are chosen may vary in the course of
the algorithm. The method can also be used for the maxi-
mization of J subject to upper and lower bounds on the
components of w, which is useful when the admissible set
X is a rectangle. Note that the method generally has simi-
lar convergence properties to steepest ascent.

3.2.2. Tunneling phase. Principally, to solve the pro-
blem of finding a point wtun such that

J (wtun) ≥ J (w�) (25)

means solving the inequality

J (w) − J (w�) ≥ 0, w ∈ W , (26)

but on the condition of avoiding the hitherto found local
maxima. This is accomplished by introducing a tunneling
function T which desirably would help us to find a novel
maximum in another valley, and then solving the inequ-
ality

T (w) ≥ 0 (27)

instead. In the literature (Levy and Montalvo, 1985; Gó-
mez et al., 2003), the exponential tunneling function

Te(w) = (J (w) − J �) exp
(

λ�

‖w − w�‖

)
(28)

or the classical tunneling function

Tc(w) =
J (w) − J �

‖w − w�‖λ� (29)

were proposed as candidates for T , where ‖ · ‖ signifies
the Euclidean norm and λ� defines the strength of the pole
w�.

If a large value of λ� is adopted, the tunneling func-
tion will be smoother and the danger of encountering criti-
cal points (i.e., undesirable local maxima or saddle points)
during the search will be reduced. Note, however, that
a large value of λ� may lead to unnecessarily expensive
computations.

To solve the inequality (27), we can use the same
algorithm as in the minimization phase. For that purpose,
in this work we therefore adopted the coordinate ascent
method.

The function J may have many local maxima and,
what is more, convergence to maxima at the same le-
vel is possible, that is, J (w�(1)) = J (w�(2) = · · · =
J (w�(t)), as w�(i) would be acceptable solutions to the
problem (27). To avoid cycling and going back to these
maxima at the same level already found, it is important to
store the local maxima, until a maximum w�(k+1) with a
greater value of the objective function is found. To realize
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this goal, it is necessary to modify the definition of the
tunneling function. This can be achieved by defining

Te(w) = (J (w) − J �)
k∏

i=1

exp
(

λ�
i

‖w − w�
i ‖

)
(30)

and initializing k = 1 as soon as a point w�(k+1) is found
with a better value of the objective function than J (w�).

As soon as a local maximum of J (w) has been fo-
und, we have to generate an initial point wtun

0 to start the
tunneling search. We find this point in a neighbourhood of
the point w�. The distance between the points wtun

0 and
w� depends on the stage of the tunneling phase. In the
first stage of the tunneling phase this distance is relatively
small so we look for a new tunnel near the maximum that
we have just found. In the second stage, the distance be-
tween the points is larger and we can find a new tunnel
further than the nearest neighborhood. A new point wtun

0

is generated along a random direction. Parallelizing this
phase is described in Section 4. The numbers of iterations
in the first stage (iter1) and the second stage (iter2) are
defined at the start of the algorithm.

3.2.3. Stopping conditions for the tunneling phase.
The tunneling phase is terminated without finding a new
tunnel when the maximum number of function evaluations
allowed for this phase has been reached. It is also finished
when the boundary of the admissible region W has been
reached or the strength of the pole λ� is greater than a
given maximum value.

3.2.4. General stopping conditions. The algorithm
stops when in the tunneling phase a given maximum num-
ber of initial points to start the search for wtun has been
reached. Before we start the algorithm, we define a maxi-
mum number of initial points to start the search for wtun.
When the tunneling phase is unsuccessfull, we decrease
the counter of the remaining iterations. Once the tunne-
ling phase is successful, we set the counter to the initial
value so that the number of iterations is the same as at the
beginning.

Remark 2. In our implementation, we used a solution to
a system of partial differential equations given on a finite
grid of spatio-temporal points. In turn, the tunneling algo-
rithm is a continuous optimization one, so the appropriate
interpolation procedure for data between the grid nodes is
necessary. Some approach towards it is exposed in Ap-
pendix G.2 of (Uciński, 2005). Here we used linear inter-
polation in time and bilinear interpolation in space (Press
et al., 1992).

4. Parallel tunneling algorithm

Before parallelizing the tunneling algorithm, we have to
decide which scheme of parallelization will be implemen-

ted and which phase will be parallelized. In this work,
we assume that we have a master-slave scheme where one
of the cluster nodes perform a supervisory role while the
other nodes are slaves and perform all computations. Thus
our approach is very similar to that proposed in (Gómez
et al., 2003).

We decide to parallelize the tunneling phase because
the parallelization of this part of the algorithm is very na-
tural and will produce the biggest decrease in the com-
putation time. If we parallelized the minimization phase,
cluster nodes would exchange a lot of information, and
therefore the overall speedup would be lower because of
data transmission delay.

In the tunneling phase we seek a point wtun in ano-
ther valley such that

J (wtun) ≥ J (w�). (31)

To this end, we maximize the tunneling function along
random directions formed as (Gómez et al., 2003)

w = w� + e(ς), (32)

where e( · ) is a function guaranteeing w ∈ W and ς con-
stitutes a random vector.

Each slave node is supposed to maximize the tunne-
ling function along a different random direction. To make
this possible before the tunneling algorithm starts, the ma-
ster node sets at random the initial seeds for random num-
ber generators at individual nodes.

To implement a parallel version of the tunneling al-
gorithm, we use an MPI (Message Passing Interface) envi-
ronment (Scott et al., 2005). MPI is a defining feature of
the message passing model in which data transfer from
the local memory of one process to the local memory of
another requires operations to be performed by both pro-
cesses (cf. Fig. 1(a)). There are many specific communi-
cation networks, e.g., Fast/GigaBit Ethernet, Infiniband or
Myrinet, with different connection topologies. In practice,
MPI is a communication library for both parallel compu-
ters and workstation networks, especially for Unix/Linux
clusters.

4.1. Idea of master and slaves. In our work we de-
fined two types of cluster nodes. The master is a node
which stores the current approximation to the global ma-
ximum and other data. It also sends information to slave
nodes. The master works in a loop and waits for requests
from slaves. The loop ends when the tunneling algorithm
has to be finished.

The slaves are nodes which run the tunneling algori-
thm using data from the master node. The slaves imple-
ment the tunneling phase and, after finding a tunnel, the
minimization phase starts. After determining a maximum
they send these data to the master and wait for data for the
next iteration.
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(a)

(b)

Fig. 1. Parallel environment: MPI model (a) and master-slave
tasks (b).

The master exchanges data with slaves using
operation codes. The corresponding operational co-
des describe what kind of operation is requested,
as, e.g., OPER_SEND_GLOBAL_MIN_TO_MASTER,
OPER_LET_NEXT_COUNTING, etc. When a slave node
demands the current approximation to the global mini-
mum, it sends a request with the appropriate operation
code to the master, and the master acts on it. When the
maximum number of iterations of the tunneling algorithm
has been reached, the master sends a ‘finish computations’
command to slaves and announces the global maximum
found as a result of computing.

4.2. Modifications. When a node finds a new maxi-
mum and sends it to the master, the latter sends this infor-
mation to all nodes. All nodes check information from the
master node in the tunneling phase. If the time of evalu-
atingJ (w) is short, so are the times of evaluating (28) and
(29). Consequently, a slave node may check information
from the master quite often. This means that the parallel
tunneling algorithm is very flexible and can react very fast
to an updated approximation to the global maximum.

As far as the problem of searching for optimal trajec-
tories of mobile sensors for correlated observations is con-
cerned, we must realize that the time of evaluating J (w)
may sometimes reach several seconds (depending on the
discretization and the number is sensors). To efficiently
evaluate the determinant of an FIM whose entries depend
on very time-consuming functions may be hard. When the
optimization method calls this function very often (hun-

dreds or thousands of times), the reaction time of the al-
gorithm to an update in the approximation to the global
maximum is very long. To avoid this situation, in the co-
ordinate ascent method we implement a check for a new
piece of information from the master. This modification
makes it possible to avoid very long latency times on a
slave node when another node finds a new approxmation
to the global maximum.

4.3. Information exchange scheme. The paralleliza-
tion of the tunneling algorithm is based on the idea of two
types of nodes: a master and slaves. Each slave node runs
the tunneling algorithm independently of other nodes and
exchanges information with the master. The role of the
master node is to store global data and share information
about control parameters with slaves. A general scheme
of the master node is reflected by Algorithm 1, and a deta-
iled scheme of the actions by slave nodes is embodied by
Algorithm 2.

At the beginning, the master node sets at random ini-
tial seeds for the random generators in slaves. Afterwards,
the master initiates a loop in which it waits for actions
from slaves and, as an answer, passes desired information.
Upon receiving an initial seed from the master, each slave
node starts a maximization algorithm for a random initial
point. The maximum found is sent to the master node
and the slave is waiting for an approximation to the global
maximum. At this time, the master node waits for every
slave node to receive an initial local maximum. After re-
ceiving all local maxima, the master determines an initial
global optimum and sends this initial global maximum to
each slave node. Simultaneously, slaves receive vectors ς
which determine a neighbourhood where to start the tun-
neling phase. The size of the neighbourhood depends on
the stage of the tunneling algorithm. In the first stage
the vector ς is relatively small and the tunneling algori-
thm explores the neighbourhood of w. In the second stage
we wish to explore the whole admissible region, which is
attained by appropriately generating e(ς).

The master node stores an array which contains ite-
ration counters per node and maximum numbers of ite-
rations per part for every node. If the current number of
iterations for one node is greater than the defined maxi-
mum number of iterations, then this node will be given
another vector ς . An important assumption is that the ite-
ration counter for a node is set to zero if this node finds a
new global maximum. Summarizing, the parallel method
implements the following rules:

• There is a master node (processor) that controls the
process and broadcasts necessary information to all
slave nodes.

• Each slave node will carry out both phases, tunneli-
zation and maximization, and will have different se-
eds for the random number generator.
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Algorithm 1 Master node scheme.
1: procedure MASTER

2: INITIALIZE RANDOM SEEDS FOR SLAVE NODES

3: SEND SEEDS TO SLAVE NODES

4: repeat
5: WAITFOROPERATION(operation,whichNode)
6: PERFORMOPERATION(operation,whichNode)
7: until (iter > max_iter)
8: end procedure

• The tunnelization phase will start from different ini-
tial points (along different random directions) at each
processor.

• At the start each slave node runs the maximization
phase to find an initial approximation to the local ma-
ximum.

• When a slave node finds a point in another valley (a
successful tunnelization), it proceeds to find a local
maximum.

• When a slave node finds a local maximum, it sends
the result immediately to the master node.

• The master node checks if the new maximum is the
best one found so far in which case it proceeds to
sending a message with this information to all pro-
cessors. Additionally, the master node resets itera-
tion counters for each slave node.

• Each slave node checks if there is a message from
the master node only during the tunneling phase. If it
is already in a maximization phase, it continues this
phase until it finds a local maximum, without chec-
king messages from the master node.

• Each slave node checks if there is a message from the
master node during the coordinate ascent method in
the tunneling phase, cf. Section 4.2.

• When a slave node checks for a message at the tun-
neling phase, if it gets a new maximum, it re-starts
the tunneling search from this new maximum.

• The master node checks the iteration counter for each
slave node and sends the corresponding vectors ς .

• The master node checks the general stopping condi-
tions and sends information to a slave to stop compu-
ting.

5. Computational results

The following example demonstrates advantages of ap-
plying the tunneling algorithm. Consider the diffusion
process with two mobile sources over a spatial domain

Ω = (0, 1)2. The trajectories of the mobile sources are
described by two functions:

s1(x, t) = q1 + v1t, (33)

s2(x, t) = q2 + v2t, (34)

where

q1 = (0.095, 0.523), v1 = (0.00999, 0.0047), (35)

q2 = (0.523, 0.095), v2 = (0.0047, 0.00999). (36)

The mobile sources generate an air pollutant in the follo-
wing manner:

f1(x, t) = 0.45 exp(−10.0‖x− s1(x, t)‖), (37)

f2(x, t) = 0.45 exp(−10.0‖x− s2(x, t)‖). (38)

The evolution of the pollutant concentration y = y(x, t)
over the normalized observation interval T = (0, 1) and
the spatial domain Ω = (0, 1)2 is described by the diffu-
sion equation

∂y(x, t)
∂t

=
∂

∂x1

(
κ(x)

∂y(x, t)
∂x1

)

+
∂

∂x2

(
κ(x)

∂y(x, t)
∂x2

)
+ f(x, t),

(39)

subject to the boundary and initial conditions:

∂y(x, t)
∂n

= 0 on Γ × T, (40)

y(x, 0) = 0 in Ω, (41)

where f(x, t) = f1(x, t) + f2(x, t), and ∂y/∂n stands
for the partial derivative of y with respect to the outward
normal to the boundary Γ. The assumed functional form
of the spatial-varying diffusion coefficient is

κ(x) = θ1 + θ2x1 + θ3x2, (42)

so that the constant parameters θ1, θ2 and θ3 need estima-
tion based on measurement data from two mobile sensors.
The observations from the sensors are assumed to be cor-
related so that

cij = σ2 exp
(
−β‖xi − xj‖

)
, (43)
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Algorithm 2 Slave node scheme.
1: procedure SLAVE

2: RECEIVE RANDOM SEED FROM MASTER

3: w = MINIMIZING ALGORITHM()
4: SEND LOCAL MINIMUM TO MASTER(w)
5: loop
6: w = RECEIVE ACTUAL GLOBAL MINIMUM FROM MASTER

7: RECEIVE ς FROM MASTER

8: loop
9: wtun = TUNNEL MINIMIZATION()

10: if (J (wtun) < J (w)) then
11: w0 = MINIMIZATION ALGORITHM()
12: SEND LOCAL MINIMUM TO MASTER(w0)
13: EXIT LOOP

14: else
15: w0 = RECEIVE ACTUAL GLOBAL MINIMUM FROM MASTER()
16: if ( J (w0) < J (w) ) then
17: EXIT LOOP

18: else
19: operation = SEND REQUEST FOR CONTINUING COUNTING()
20: if (operation == stopCounting) then
21: order = WAITING FOR ADDITIONAL ORDER()
22: if (order == endCounting) then
23: EXIT PROCEDURE SLAVE

24: end if
25: if (order == continueCounting) then
26: EXIT LOOP

27: end if
28: end if
29: if (operation == continueCounting) then
30: RECEIVE ς FROM MASTER

31: end if
32: end if
33: end if
34: end loop
35: end loop
36: end procedure

where β = 0.2.
Since we use local designs (Uciński, 2005), we have

to set nominal values for the vector θ. Thus we assumed
θ0
1 = 0.01, θ0

2 = θ0
3 = 0.005. The solution to (33)–(42) is

displayed in Fig. 2, where the two mobile sources can be
observed.

We solved the PDE (39) using a separate program.
This application solves PDEs using the finite-element me-
thod and uses a parallel MPI environment to speed up a
computing. We divided the spatial domain to 441 (21×21)
blocks. Numerical integration required to evaluate the
FIM was performed employing the trapezoidal rule for the
time step equal to 1/80, based on the sensitivity vector g
interpolated at the nodes representing admissible locations
xi.

The program used for parallel solution of the discus-

sed problem was written completely in Fortran 95 using
ifort (Intel�Fortran Compiler v.8.1 for Linux 64-bit plat-
forms) and the mpich-1.2.6 implementation of MPI for
message passing (Pacheco, 1997). The program uses In-
tel Math Kernel Library for matrix and vector operations.
Computations were performed on a Linux cluster at the
University of Zielona Góra, being part of the national
Clusterix project (Wyrzykowski et al., 2004). This ho-
mogenous cluster is equipped with four SMP nodes with
two 64-bit Intel Itanium2 1.4GHz processors each, run-
ning under the control of GNU/Linux Debian for ia64.
The connection between the nodes is realized via Gigabit
Ethernet.

The D-optimal sensors trajectories are shown in
Fig. 3. As was expected, the sensors follow the mobile
pollutant sources. Each computational node started with
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(a) t = 0.1

(b) t = 0.4

(c) t = 0.7

(d) t = 1.0

Fig. 2. Concentration of the pollutant at consecutive time in-
stants.

Fig. 3. D-optimal trajectories.

Fig. 4. Computation speedup.

randomly generated initial trajectories of moving sensors.
The maximum number of iterations for the coordinate
ascent method was set to 100.

The time of computations depends on the number of
processors and iterations in the tunneling phase as shown
in Table 1. Figure 4 displays the speedup of computing. A
slowdown can be observed if computations involve more
than three computational nodes. This bottleneck is likely
to result from the architecture of the computational cluster.
The computations were performed on four machines with
two Intel Itanium2 processors. There may be a conflict
in access to resources by each processor on each node.
The resources of each node are shared between processors
and this situation may cause a latency in access to data. If
computations are performed on one, two or three nodes,
the cluster splits the application such that one processor
performs computations on each node. In this situation the
speedup is almost linear. Latency is caused by a slight
delay in transmission.

6. Conclusions

The problem of optimal observations for distributed para-
meter systems has been attacked from various angles since
the mid-1970s. In this paper we formulated the problem of
optimum trajectory design for mobile sensors as a multidi-



Mobile sensor routing for parameter estimation of distributed systems using the parallel tunneling method 317

Table 1. Computation times for the proposed example [hh : mm : ss].

Number of computational processors

iter 1 iter 2 1 2 3 4 5 6 7

50 50 00:01:23 00:00:42 00:00:33 00:01:23 00:00:42 00:00:33 00:00:33

210 210 02:30:42 01:20:14 00:55:55 00:43:31 00:38:38 00:37:41 00:32:45

420 420 04:59:20 02:33:20 01:47:45 01:23:12 01:07:45 01:06:38 00:59:18

mensional optimization one. Apart from the fact that mul-
tidimensional optimization involves complications per se,
the problem of optimal observation selection imposes ad-
ditional high computational requirements. The objective
function may have very complicated forms and determi-
ning their values may be very time consuming. Owing to
the rapidly emerging computational environments, not le-
ast clusters and grids, in this paper we made an attempt to
solve the problem of optimal observation design for mo-
bile sensor networks by converting it to a multidimensio-
nal nonlinear programming problem to be solved using
a parallel version of the tunneling algorithm. Simulation
results demonstrate that the optimal observation problem
has thus become much more affordable.

Note that no physical models of the vehicles conve-
ing sensors were assumed. This implies that the designed
trajectories of sensors do not depend on weight, size, acce-
leration or maximum speed of the vehicles. In the future,
we are going to extend this approach to a formulation ta-
king account of vehicle dynamics and kinematics.
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