
Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 3, 319–328
DOI: 10.2478/v10006-008-0029-4

NEW SELF-CHECKING BOOTH MULTIPLIERS

MARC HUNGER ∗, DANIEL MARIENFELD ∗∗

∗ Department of Electrical Engineering and Computer Science
University of Paderborn, 33098 Paderborn, Germany

e-mail: mhunger@date.upb.de

∗∗ Department of Computer Science
University of Potsdam, 14415 Potsdam, Germany

e-mail: dmarien@uni-potsdam.de

This work presents the first self-checking Booth-3 multiplier and a new self-checking Booth-2 multiplier using parity pre-
diction. We propose a method which combines error-detection of Booth-3 (or Booth-2) decoder cells and parity prediction.
Additionally, code disjointness is ensured by reusing logic for partial product generation. Parity prediction is applied to a
carry-save-adder with the standard sign-bit extension. In this adder almost all cells have odd fanouts and faults are detected
by the parity. Only one adder cell has an even fanout in the case of Booth-3 multiplication. Especially, for even-number
Booth-2 multipliers parity prediction becomes efficient. Since that prediction slightly differs from previous work which
describes CSA-folded adders, formulas to predict the parity are developed here. The proposed multipliers are compa-
red experimentally with existing solutions. Only 102% of the area of Booth-2 without error detection is needed for the
self-checking Booth-3 multiplier.

Keywords: Booth multiplier, self-checking, parity-prediction, carry-dependent adder, 1-out-of-5 code.

1. Introduction

Transient faults caused by electrical noise or external ra-
diation are of growing importance and must be detected
on-line. As (Shivakumar et al., 2002) describes, they re-
sult in soft errors in output latches of a combinational cir-
cuit if:

1. an output depends on the faulty subcircuit with re-
spect to the input (logical condition);

2. a pulse, resulting from faults, has a significant dura-
tion and amplitude (electrical condition);

3. a pulse, resulting from faults, arrives at the latches at
the clock transition (latching window).

Since there are a lot of masking effects, transient faults
usually result in single bit errors. These effects become
smaller for faults in latches or faults in the logic near lat-
ches. Therefore circuits which detect single input faults,
single stuck-at-faults and multiple output faults are of in-
terest.

This paper presents a self-checking Booth-3 and -2
multiplier. Since data paths usually use the parity code

and/or double rail code for error detection, we developed
a parity checked multiplier with duplicated output.

In Booth multipliers the number system of one ope-
rand is to be changed by some simple decoding steps.
Therefore, effort for additions can be reduced, but depen-
ding on the algorithm, hard multiples of one factor have to
be generated. The proposed self-checking Booth-3 multi-
plier extends the output of each decoder cell to the 1-out-
of-5 code, which is used in combination with the parity
of multiplier X to detect faults in decoder cells and input
faults. To generate the hard multiple 3 ∗ Y and to check
multiplicand Y by its parity, the sum-bit-duplicated look-
ahead-adder (Ocheretnij et al., 2001) is modified. The
proposed Booth-2 multiplier uses an existing solution pre-
sented in (Marienfeld et al., 2005) to check decoder cells.

In both multipliers, as a final Carry-Propagate-Adder
(CPA), a sum-bit duplicated Carry-Ripple-Adder (CRA)
conforming to (Marienfeld et al., 2004) is used together
with parity prediction of a Carry-Save-Adder (CSA) con-
sisting of carry-depended adder cells and realizing the
standard sign extension.

mhunger@date.upb.de
dmarien@uni-potsdam.de


320 M. Hunger and D. Marienfeld

Fig. 1. Example of Booth-2 8-bit signed multiplication.

The following sections briefly describe basics of the
Booth multiplier and self-checking adder networks. Sec-
tion 4 proposes a new multiplier and Section 5 gives expe-
rimental results. Basics on computer arithmetics are pre-
sented in (Parhami, 2001), and (Lala, 2001) describes self-
checking digital design.

2. Booth multiplier

Booth multipliers save costs (time and area) for adding
partial products. They are reported, e.g., in (Booth,
1951; Al-Twaijry and Flynn, 1995). Figure 1 shows an
example of signed Booth-2 multiplication. The multi-
plier X = Xn−1 . . . X0 is transformed from the two’s
complement to a radix-4 Booth code. The multiplicand
Y = Yn−1 . . . Y0 is multiplied with these digits to gene-
rate partial products of the form Y ∗ [±0,±1,±2]. These
partial products are in two’s complement representation
and the most significant bit (MSB) serves as the sign-bit.
The numbers are weighted and added in a combinatorial
or sequential fashion using an adder network to form the
product P = P2∗n−1 . . . P0. With the higher radix the
number of additions is reduced and the redundant Booth
code reduces costs for generating partial products in a hi-
gher radix system. As Fig. 1 shows, the number of sum-
mands is halved in contrast to the classical binary multi-
plication. Additionally, each partial product can be gene-
rated via simple shifts and bit inversion.

Figures 2 and 3 show the logical architecture of com-
binatorial Booth-2 and -3 multipliers. These circuits in-
clude a Partial-Product-Generator (PPG), a Carry-Save-
Adder (CSA) and a final Carry-Propagate-Adder (CPA).
The PPG decodes operand X into the Booth code with a
higher radix. In the case of Booth-2, the radix is 4 and
each decoded digit is in the set [−2 : 2]. Booth-3 uses
a radix of 8 with digits [−4 : 4]. Each digit is decoded
into selection signals Seli, which represent the multiple
to select and the signal N , which is needed for inversions.
Thus decoding partial products can be efficiently selected
(Figs. 4 and 5 describe decoding and selection logic for

Fig. 2. Booth-2 multiplier.

Fig. 3. Booth-3 multiplier.

Booth-2 and -3; these circuits result from Tables 2 and 3).
The hard multiple 3 ∗ Y needed in Booth-3 multi-



New self-checking Booth multipliers 321

Fig. 4. Booth-2 selection circuit and decoder.

Fig. 5. Booth-3 selection circuit and decoder.

pliers is generated using a CPA and all other multiples
are generated by simple logical operations. The CSA re-
duces all partial products to two summands, which are
added by the final CPA into the product P. There exist
various structures to perform these kinds of additions ba-
sed on full or half adders. The CSA can be realized as a
tree or an array (Al-Twaijry and Flynn, 1995). The me-
thods differ in their regularity, delay, area usage, wiring
effort or power consumption. The CPA (Parhami, 2001)
can be realized as a simple chain of full adders (carry-
ripple-adder). It is possible to fasten carry-propagation by
additional look-ahead or skip units. Alternatively, carries
can be generated speculatively. The correct result can be
obtained using a multiplexer. In this work, the CPA is re-
alized as a carry-ripple-adder and a linear array serves as
the CSA. To generate the hard multiple 3 ∗ Y, we choose
a fast carry-look-ahead adder. This fastens the component
with a small drawback in the area usage. But the described
methods are independent of that choice.

Since in Booth multipliers the partial products are
signed (including both integer and natural multiplica-
tions), they need to be extended to a 2 ∗ n bit length. In
two’s complement representation an extension is perfor-
med by a sign-bit extension as shown in the DOT-scheme
in Fig. 6. Here dots represent the bits generated via se-

Fig. 6. 16-bit Booth-3 with full sign-extension.

Fig. 7. 16-bit Booth-3 with CSA using correction terms.

Fig. 8. 16-bit Booth-2 with CSA using correction terms.

Fig. 9. 16-bit CSA-folded Booth-3.

lector cells. The resulting DOT-scheme is in trapezoidal
form and can be optimized by two known solutions repor-
ted in (Sparmann and Reddy, 1994). The standard sign-
extension, or a “CSA with correction terms”, applies the
equation

S S S S • • • • = 1 1 1 S • • • •
+ 0 0 0 1 0 0 0 0

(1)

(or a similar one) to each partial product. The resulting
constants are added and Fig. 7 serves as an invariant for
Booth-3. The resulting Booth-2 DOT-scheme is shown
in Fig. 8. Special adder cells add remaining ones with
the corresponding bits of partial products. The number of
DOTS and therefore the number of full adders are redu-
ced.

The second solution, described in (Nicolaidis and
Duarte, 1998) and applied to Booth-3 in Fig. 9, consists
of adder cells with multiple fanouts (CSA-folding). Here
we use the fact that all half adders, adding the sign-bits of



322 M. Hunger and D. Marienfeld

Fig. 10. Self-checking CSA with a final CRA.

the first two partial products, generate the same outputs.
Therefore only one adder with multiple fanouts is needed.
The same fact is true for adders in further rows. Thus in
these rows redundant adder cells are saved, too. As in the
first solution, the cost reduction is of significance. As de-
scribed in Section 4.1, the parity of the partial products for
standard sign-extension is different in comparison with a
folded CSA.

3. Self-checking adders

To detect errors on-line, some kind of redundancy is ne-
eded. This includes time and information redundancy. In
this work, with parity and the double rail code, informa-
tion redundancy is used. Inputs I and outputs O for cir-
cuits are extended to code words, which are checked to
detect errors. Codes for arithmetic circuits include, e.g.,
parity (the number of ones in I modulo 2), the Berger code
(the number of zeros in I), as reported in (Lo et al., 1993),
Bose-Lin Codes, described in (Gorshe and Bose, 1996), or
the residue code reported in (Sparmann and Reddy, 1994).

Figure 10 shows a parity checked CSA with a final
CRA. The input code includes the operands and the pa-
rity of all summands (or partial products in the multiplier).
The output code includes the sum and both the generated
parity POut and the predicted parity given by

POut = PIn ⊕ PC , (2)

where PC is the parity of all carries.
For an on-line error detection, the following pro-

perties should be achieved, as described in (Goessel and
Graf, 1993):

• code-disjointness: A circuit is called code-disjoint if
each non code word is mapped to a non-output code
word.

Fig. 11. Carry-duplicated adder.

• fault-security: A circuit is called fault-secure if for
all faults (in the fault model) there is no input code
word that causes the faulty circuit to output an incor-
rect code word.

• self-testing: A circuit is called self-testing if for all
faults (in the fault model) there is at least one input
code word such that the corresponding output is not
a code word.

• self-checking: A circuit is called totally self chec-
king if it is self-testing and fault-secure.

Code-disjointness ensures that faults in input latches
are detectable. The fault-secure property ensures that the
circuit under a fault either generates correct outputs or de-
tects the fault. In self-testing circuits each fault can be te-
sted by applying an input vector. To achieve this property,
redundancies in circuits should be carefully analyzed.

For arbitrary adder cells, the adder described in
Fig. 10 is not self-checking. Not detected are stuck-at-
faults in adder cells, which affects only the carry-output.
That faulty signal affects the generated parity via a sum
output. The predicted parity is affected through PC . The-
refore the following redundant adder cells are needed in a
self-checking adder:

1. A carry-duplicated adder, presented in (Nicolaidis
et al., 1997), duplicates the carries (Fig. 11). The
propagate signal P can be shared by the sum-output
and both carries. One of the carries is needed for
carry-propagation and the other generates PC and
therefore predicts POut. That structure ensures that
always odd or no outputs of the cell are erroneous.

2. A carry-dependent adder, proposed in (Hsiao and
Sellers, 1963), forces a faulty carry to affect the cor-
responding sum-output. Here the sum-bit is realized
as S = f⊕C (with f having a suitable truth table and
a structure to meet the self-checking property). If f
and C share no logic, then each fault affects either the
signal f or C, or none of them. If C and f share an
OR-gate 1, as shown in Fig. 12, the same property is
saved. Also the special half adder, shown in Fig. 13,
and the trivial cell adding A + 1 (here f is logical



New self-checking Booth multipliers 323

Fig. 12. Carry-dependent adder.

Fig. 13. Carry-dependent half adder: A + B + 1.

Fig. 14. Self-checking A + 1 cell.

Fig. 15. Sum-bit duplicated carry-dependent adder.

one) preserve that property. So either no output or S
or C together with S are faulty.

In this work a carry-dependent adder is used for the
CSA since it gave better results in delay and area over-
head.

Figure 15 shows a sum-bit duplicated carry-
dependent adder cell used in the CPA given in Fig. 16.
Note that the logic near latches is more sensitive to soft
errors. Therefore that logic is partially duplicated and one
of the sums is realized as carry-dependent. Since the car-
ries are checked, a look-ahead adder without duplicated
look-ahead units can be used. The parity of the propaga-
ted signals P is checked by the input parity. As shown
in (Marienfeld et al., 2004), a parity-checked carry-save-
adder can be combined efficiently with a final sum-bit du-
plicated carry-dependent CPA to increase the error detec-
tion capability of a multiplier.

Fig. 16. Sum-bit duplicated carry ripple adder.

4. Proposed Booth multiplier

This section describes the proposed self-checking Booth-
2 and Booth-3 multipliers. Caused by the sign-extension
of Y and the decoding of X , parity prediction is not code-
disjoint and so both inputs must be checked locally. Faults
in decoder cells can generate multiple erroneous bits of
one partial product. Faults in the 3 ∗ Y -CPA can generate
multiple erroneous bits of multiple partial products. So
both components need to be checked locally, too.

All faults in selector cells with odd fanout are detec-
ted by parity prediction. As Fig. 7 shows, one selector (ge-
nerating the MSB of the first partial product in the Booth-3
multiplier) has an even fan-out. To meet the self-checking
property, this selector is replaced by two selectors with
odd fan-outs.

In both multipliers a linear array CSA with standard
sign-extension using carry-dependent adder cells is used.
The output-parity is checked by parity prediction. The
final CPA is realized as a sum-bit-duplicated code-disjoint
ripple adder. Faster methods for addition are possible.

Each multiplier needs to predict the parity of partial
products. That prediction is combined with local decoder
checks.

4.1. Self-checking Booth-2 multiplier. Figure 17
shows the architecture of the proposed Booth-2 multiplier.
This multiplier is almost the same as that presented in
(Marienfeld et al., 2005), but a different CSA, and there-
fore different parity prediction, are applied. Operand Y is
checked via a parity tree. The decoder is partially duplica-
ted and checked by parity trees. These trees output needed
signals to predict the output parity of the adder network.

The following describes the code-disjoint and self-
checking decoder (Fig. 18):

1. The parity PSel1 of all Sel1i is checked by the parity
and the MSB of X .

2. The signals Sel2 of each decoder are duplicated and
their parities PSel2 and PSel2D are compared.

With these preparations, odd input faults and single stuck-
at-faults are detected. At the same time, with PSel1 and
PSel2, signals to predict the partial products parity are
computed. Additionally, PY is checked by a parity tree.



324 M. Hunger and D. Marienfeld

Fig. 17. Proposed Booth-2 multiplier.

Fig. 18. Self-checking Booth-2 decoder cell.

Fig. 19. 16-bit self-checking Booth-2 CSA using correction
terms.

Fig. 20. Self-checking Booth-3 multiplier.

In contrast to (Nicolaidis and Duarte, 1998), duplicating
the decoder (and using a two-rail-checker) is avoided and
costs are saved.

The CSA realizes the standard sign-extension instead
of CSA-folding, as performed in (Marienfeld et al., 2005;
Nicolaidis and Duarte, 1998). The adder network is de-
scribed in Fig. 19 and includes adder cells described in
Section 3. For the standard sign-extended CSA, there are
no cells with even fan-out, including adder and selector
cells. Since in a CSA-folded Booth-2 multiplier some
cells have even fan-outs, in (Nicolaidis and Duarte, 1998)
the sum-circuit, including selector cells, of all most signi-
ficant adder cells was duplicated to avoid even “sum-path
parities”. So the proposed method saves a parity tree and
a set of selector cells.

As Fig. 19 shows, in case of “correction terms” the
parity of the i-th partial product (i > 0) is given by (3).
The first term computes the parity of the lower bits (given
by the selector cells and using the fact that both Sel1i and
Sel2i are never equal to 1). The second term computes
the parity of the sign-bit, which is inverted. The term Ni

represents the signal added to the partial product in the
least significant position and the last term 1 is added in
the most significant position. This equation simplifies to

PParti>0

=
n−1∑

j=0

(Sel1i ∗ Yj ⊕ Sel2i ∗ Yj−1 ⊕ Ni)

⊕ (Sel1i ∗ Yn−1 ⊕ Sel2i ∗ Yn−1 ⊕ Ni ⊕ 1)
⊕ Ni ⊕ 1

= (Sel1i ⊕ Sel2i) ∗ PY ⊕ Sel1i ∗ Yn−1. (3)



New self-checking Booth multipliers 325

The parity of the first partial product is

PParti=0

=
n−1∑

j=0

(Sel1i ∗ Yj ⊕ Sel2i ∗ Yj−1 ⊕ Ni)

⊕ (Sel1i ∗ Yn−1 ⊕ Sel2i ∗ Yn−1 ⊕ Ni)
⊕ (Sel1i ∗ Yn−1 ⊕ Sel2i ∗ Yn−1 ⊕ Ni)
⊕ (Sel1i ∗ Yn−1 ⊕ Sel2i ∗ Yn−1 ⊕ Ni ⊕ 1)
⊕ Ni

= (Sel1i ⊕ Sel2i) ∗ PY ⊕ Sel1i ∗ Yn−1 ⊕ 1. (4)

Here the last term 1 is saved. The last equality results
from the fact that, since the sign-bit is tripled, it is added
once to the parity (as in all other partial products).

The partial product parity is given by
∑

i PParti
as

PPart

=
n/2−1∑

i=0

((Sel1i ⊕ Sel2i) ∗ PY ⊕ Sel1i ∗ Yn−1)

⊕ 1
= (PSel1 ⊕ PSel2) ∗ PY ⊕ PSel1 ∗ Yn−1 ⊕ 1. (5)

This parity is independent of PN . As shown in
(Nicolaidis and Duarte, 1998), parity prediction in a CSA-
folded Booth-2 multiplier for even length operands is per-
formed by

PPart CSA−folded

= (PSel1 ⊕ PSel2)PY ⊕ Yn−1PSel2 ⊕ PN . (6)

Since this equation depends on PN , the proposed me-
thod does not requice the generation (by a parity tree or a
two-rail-checker) of that signal.

Since a “CSA with correction terms” differs only in
the cells given in Figs. 13 and 14, from a folded CSA the
self-checking properties are preserved.

4.2. Self-checking Booth-3 multiplier. Figure 20
shows the proposed Booth-3 multiplier. Since Booth-3 de-
coders are more complex and need more area, (partially)
duplicating becomes more expensive. Additionally, the
parity of X is not directly computable by decoder outputs.

The following method, presented in (Hunger, 2006),
makes the Booth-3 decoder code-disjoint and self-
checking.

1. Decoder outputs are extended by Sel0 to the 1-out-
of-5 code (Fig. 21 and Tables 2 and 3). To combine
code checking and parity prediction, for each Seli
an own parity tree forms PSeli. These parities are
checked by the equation

PSel0
�=
= PSel1 ⊕ PSel2

⊕ PSel3 ⊕ PSel4, (7)

Fig. 21. Self-checking Booth-3 decoder.

Fig. 22. Half-sums of 8-bit 3 ∗ Y -CPA.

Fig. 23. Self-checking 3 ∗ Y -CLA.

where the equal sign is used if the number of decoder
cells is even and the unequal sign is used otherwise.

2. The interior XOR-layer is checked by the parity of
X. For a 8-bit decoder we use

PX = PXOR2 ⊕ PN ⊕ Xn−1, (8)

PX = PXOR1,3 ⊕ PN . (9)

The following analyses the self-testing property of
the decoder. The interior XOR-layer and the trees to com-
pute PXOR2 and PXOR1,3 can be tested, since all inputs
of X can be applied. Also the NOR-layer and the parity of



326 M. Hunger and D. Marienfeld

Fig. 24. 16-bit self-checking Booth-3 CSA using correction
terms.

Table 1. Area overhead in % of the multipier.

algorithm | bits 8 16 32 64

Booth-2 100 100 100 100

Booth-3 108 101 91 88

Booth-2 acc. to Sec. 4 134 128 121 121

Booth-3 acc. to Sec. 4 156 132 109 102

Booth-2 acc. to

(Nicolaidis and Duarte, 1998) 184 165 151 142

ext. by a parity tree

the selection signals can be tested. By applying a number
X mapped, e.g., to (0)(+1)(0), and observing the parities
PSel0 and PSel 1,2,3,4, the NOR-layer of the second deco-
der cell can be tested. Under a stuck-at-0 fault in the NOR-
gate computing Sel11, PSel 1,2,3,4 becomes zero. PSel0 is
not affected by that fault and is zero. So both signals are
equal and the fault is detected.

Because of the sign-extension, the selector cell which
forms the most significant bit of the first partial product
needs to be duplicated.

To form the multiple 3 ∗ Y and to check PY ,
the sum-bit duplicated code-disjoint look-ahead adder of
(Ocheretnij et al., 2001) is modified (Figs. 22 and 23).
In this application, the odd and even half-sums are sepa-
rately checked by the parity of Y. Therefore the whole
multiplier becomes code-disjoint with respect to the pa-
rity code of Y. Although the inputs of that adder are re-
stricted to the set of tuples of the form (Y, 2 ∗ Y ), that
adder is self-testing, including the two-rail checker which
checks both sums. All possible inputs for adder cells can
occur, since it can be chosen whether a carry is genera-
ted for cell i (only one vector of the second full adder
is missing). The look-ahead tree consumes propagate P
and generate signals G of adder cells and generates car-

Table 2. Booth-2-decoder.

X N Sel1,2 Sel0

000 0 00 1

001 0 10 0

010 0 10 0

011 0 01 0

100 1 01 0

101 1 10 0

110 1 10 0

111 1 00 1

ries for these cells. For a look-ahead adder with arbitrary
inputs, not all possible inputs into the look-ahead tree can
occur. With the given restricted addition some additio-
nal inputs are missing. These are vectors in which one
adder cell sets a generate signal and in one of its neigh-
bours P and G are equal to zero. But using cascading
standard look-ahead units of bit length 4, all faults are te-
stable. For each bottom two-rail checker cell all needed
inputs {(10, 10), (01, 01), 10, 01), (01, 10)} can be gene-
rated to test that cell. Since each two-rail checker outputs
the parity of its input (the output of the adder cells), the
further two-rail cells can be tested, too.

The “CSA with correction terms” is given in Fig. 24
and the parity of the partial product can be derived based
on the following:

PPart0<i<L

=
n−1∑

j=0

{Sel1i ∗ Yj ⊕ Sel2i ∗ Yj−1 ⊕ Sel4i ∗ Yj−2

⊕ Sel3i ∗ (3Y )j ⊕ Ni}
⊕ {Sel1i ∗ Yn−1 ⊕ Sel2i ∗ Yn−1 ⊕ Sel4i ∗ Yn−2

⊕ Sel3i ∗ (3Y )n ⊕ Ni}
⊕ {Sel1i ∗ Yn−1 ⊕ Sel2i ∗ Yn−1 ⊕ Sel4i ∗ Yn−1

⊕ Sel3i ∗ (3Y )n+1 ⊕ Ni ⊕ 1} ⊕ Ni (10)

=
n−1∑

j=0

{Sel1i ∗ Yj ⊕ Sel2i ∗ Yj−1 ⊕ Sel4i ∗ Yj−2

⊕ Sel3i ∗ (3Y )j ⊕ Ni}
⊕ Sel4i ∗ (Yn−2 ⊕ Yn−1)
⊕ Sel3i ∗ ((3Y )n ⊕ (3Y )n+1) ⊕ Ni ⊕ 1

= Sel1i ∗ PY ⊕ Sel2i ∗ PY ⊕ Sel4i ∗ PY

⊕ Sel3i ∗ P3Y ⊕ Sel2i ∗ Yn−1 ⊕ Ni ⊕ 1
= (Sel1i ⊕ Sel2i ⊕ Sel4i) ∗ PY ⊕ Sel3i ∗ P3Y

⊕ Sel2i ∗ Yn−1 ⊕ Ni ⊕ 1. (11)

Equation (10) shows the parity of the i-th partial pro-
duct (excluded are the first and last ones). Here the first
term computes the parity of bits of lower weight. The fol-



New self-checking Booth multipliers 327

lowing terms represent the two most significant bits (the
last one is inverted). The last summand Ni is the signal
added to the LSB. That equation simplifies to (11).

The first partial products parity is given by

PParti=0

= (Sel10 ⊕ Sel20 ⊕ Sel40) ∗ PY

⊕ (Sel10 ⊕ Sel40) ∗ Yn−1

⊕ Sel30 ∗ (P3Y ⊕ (3Y )n+1) ⊕ 1. (12)

If n ≡ 1 mod 3, as in 16- or 64-bit multipliers, the parity
of the last partial product is given by

PPartL

=
n−1∑

j=0

(Sel1L ∗ Yj ⊕ NL) ⊕ 1 ⊕ 1 ⊕ NL

= Sel1L ∗ PY ⊕ NL. (13)

In 8- and 32-bit multipliers that parity slightly differs from
this equation. We have

The parity of all partial products for n ≡ 1 mod 3 is
computed by

PPart

= PPart0 + PPartL
+

L−1∑

i=1

PParti

= (PSel1 ⊕ PSel2 ⊕ PSel4) ∗ PY

⊕ PSel3 ∗ P3Y ⊕ Sel30 ∗ (3Y )n+1

⊕ (PSel2 ⊕ Sel10 ⊕ Sel20 ⊕ Sel40) ∗ Yn−1

⊕ PN ⊕ N0 ⊕ 1. (14)

It depends on the number of partial products; the re-
maining ones in the partial products are added to one or
zero (the last term in (14)). So (14) is valid for n = 16
or 64.

5. Experimental results

The multiplier was implemented in VHDL, tested by Mo-
delSim and mapped to the vtvtlib25 cmos library (Sulistyo
and Ha, 2002, 2003) by the Synopsis design compiler.
Optimization was performed for the area and delay, such
that all multipliers have almost the same delay. Results for
the operand sizes 8, 16, 32 and 64 are given in Table 1.

By increasing operand sizes, Booth-3 becomes smal-
ler than Booth-2. For 64 bits the method needs 88% of the
area of Booth-2.

For 64 bits the proposed self-checking Booth-3 mul-
tiplier only needs 102% of the area of Booth-2 without
error detection and 115% of Booth-3 without error de-
tection. For the same configuration, the proposed self-
checking Booth-2 multiplier needs 122% of Booth-2 wi-
thout error detection. Thus the higher performance for

Table 3. Booth-3-decoder.

X N Sel1,2,3,4 Sel0

0000 0 0000 1

0001 0 1000 0

0010 0 1000 0

0011 0 0100 0

0100 0 0100 0

0101 0 0010 0

0110 0 0010 0

0111 0 0001 0

1000 1 0001 0

1001 1 0010 0

1010 1 0010 0

1011 1 0100 0

1100 1 0100 0

1101 1 1000 0

1110 1 1000 0

1111 1 0000 1

Booth-3 in the linear carry-save-a dder is preserved and
slightly strengthened.

The Booth-2 multiplier presented in (Nicolaidis and
Duarte, 1998) and extended by one parity tree has an over-
head of 142%. Thus, a significant cost reduction in com-
parison with that multiplier could be achieved. We empha-
size that the small extra parity tree was inserted to check
the parity of Y (the parity of X can be checked by some
two-rail-checker outputs), to meet the code-disjoint pro-
perty and to make all multipliers comparable.

6. Conclusions

An efficient self-checking code-disjoint Booth-3 multi-
plier was proposed based on a linear CSA and a final
CRA. The multiplier detects single input faults, single
stuck-at-faults at logical gates and all errors in an output
register. An error detection scheme without duplicating
decoder cells was presented and combined with parity pre-
diction. The code-disjoint-property could be combined
with forming partial products and no extra parity tree is
needed. Parity prediction for Booth-2 and -3 multipliers
was developed using the standard sign-extension.

Acknowledgments

The authors would like to thank Prof. Michael Goessel
from the Fault Tolerant Computing Group at the Univer-
sity of Potsdam for stimulating discussions.



328 M. Hunger and D. Marienfeld

References
Al-Twaijry H. A. and Flynn M. J. (1995). Performance/area tra-

deoffs in Booth multipliers, Technical Report CSL-TR-95-
684, Stanford University.

Booth A. D. (1951). A signed binary multiplication technique,
The Quarterly Journal of Mechanics and Applied Mathe-
matics 4(2): 236–240.

Goessel M. and Graf F. (1993). Error Detection Circuits,
McGraw-Hill, London.

Gorshe S. S. and Bose B. (1996). A self-checking ALU design
with efficient codes, Proceedings of the 14th IEEE VLSI
Test Symposium (VTS ’96), IEEE Computer Society, Wa-
shington, DC, USA, p. 157.

Hsiao M. and Sellers F. (1963). The carry dependent sum ad-
der, IEEE Transactions on Electronic Computers, EC-12:
265–268.

Hunger M. (2006). Self-checking Booth-3 multiplier, Proce-
edings of the 1st International Conference for Young Re-
searchers in Computer Science, Control, Electrical Engi-
neering and Telecommunications, Zielona Góra, Poland.

Lala P. (Ed.) (2001). Self-Checking and Fault-Tolerant Tigital
Tesign, Morgan Kaufmann Publishers Inc., San Francisco,
CA.

Lo J. C., Thanawastien S. and Rao T. R. N. (1993). Berger check
prediction for array multipliers and array dividers, IEEE
Transactions on Computers 42(7): 892–896.

Marienfeld D., Sogomonyan E. S., Ocheretnij V. and Gossel M.
(2004). A new self-checking multiplier by use of a code-
disjoint sum-bit duplicated adder, Proceedings of the 9th
IEEE European Test Symposium (ETS’04), IEEE Compu-
ter Society, Washington, DC, USA, pp. 30–35.

Marienfeld D., Sogomonyan E. S., Ocheretnij V. and Gossel M.
(2005). New self-checking output-duplicated booth multi-
plier with high fault coverage for soft errors, ATS ’05: Pro-
ceedings of the 14th Asian Test Symposium, IEEE Compu-
ter Society, Los Alamitos, CA, USA, pp. 76–81.

Nicolaidis M. and Duarte R. O. (1998). Design of fault-
secure parity-prediction booth multipliers, Proceedings of
the Conference on Design, Automation and Test in Europe
(DATE ’98), IEEE Computer Society, Washington, DC,
USA, pp. 7–14.

Nicolaidis M., Duarte R. O., Manich S. and Figueras, J. (1997).
Fault-secure parity prediction arithmetic operators, IEEE
Design and Test 14(2): 60–71.

Ocheretnij V., Sogomonya E. S. and Goessel M. (2001). A new
code-disjoint sum-bit duplicated carry look-ahead adder
for parity codes, Proceedings of the 10th Asian Test Sym-
posium (ATS ’01), IEEE Computer Society, Los Alamitos,
CA, USA, pp. 365.

Parhami B. (2001). Instructor´s manual for “Computer Arith-
metic: Algorithms and Hardware Designs”, Vol. 2: Pre-
sentation Material, Oxford University Press, Oxford.

Shivakumar P., Keckler S. W., Kistler M., Burger D. and Alvisi
L. (2002). Modeling the effect of technology trends on
the soft error rate of combinatorial logic, Proceedings of
the International Conference on Dependable Systems and
Networks, pp. 389–398.

Sparmann U. and Reddy S. M. (1994). On the effectiveness of
residue code checking for parallel two’s complement mul-
tipliers, Proceedings of the 24th International Symposium
on Fault Tolerant Computing FTCS-24, IEEE Computer
Society Press, Austin, TX, USA, pp. 219–229.

Sulistyo J. B. and Ha D. S. (2002). A new characterization
method for delay and power dissipation of standard cells,
VLSI Design 15(3): 667–678.

Received: 25 January 2007
Revised: 26 May 2007
Re-revised: 9 May 2008


	Introduction
	Booth multiplier
	Self-checking adders
	Proposed Booth multiplier
	Self-checking Booth-2 multiplier
	Self-checking Booth-3 multiplier

	Experimental results
	Conclusions

