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Principal component analysis (PCA) is a powerful fault detection and isolation method. However, the classical PCA, which
is based on the estimation of the sample mean and covariance matrix of the data, is very sensitive to outliers in the training
data set. Usually robust principal component analysis is applied to remove the effect of outliers on the PCA model. In
this paper, a fast two-step algorithm is proposed. First, the objective was to find an accurate estimate of the covariance
matrix of the data so that a PCA model might be developed that could then be used for fault detection and isolation. A
very simple estimate derived from a one-step weighted variance-covariance estimate is used (Ruiz-Gazen, 1996). This is
a “local” matrix of variance which tends to emphasize the contribution of close observations in comparison with distant
observations (outliers). Second, structured residuals are used for multiple fault detection and isolation. These structured
residuals are based on the reconstruction principle, and the existence condition of such residuals is used to determine the
detectable faults and the isolable faults. The proposed scheme avoids the combinatorial explosion of faulty scenarios related
to multiple faults to be considered. Then, this procedure for outliers detection and isolation is successfully applied to an
example with multiple faults.

Keywords: principal component analysis, robustness, outliers, fault detection and isolation, structured residual vector,
variable reconstruction.

1. Introduction

Principal component analysis (PCA) has been applied
successfully in the monitoring of complex systems
(Chiang and Colegrove, 2007; Kano and Nakagawa, 2008;
Harkat, Mourot and Ragot, 2006). It is a widely used
method for dimensionality reduction. Indeed, PCA trans-
forms the data to a smaller set of variables which are linear
combinations of the original variables while retaining as
much information as possible. In the classical approach,
the first principal component corresponds to the direction
in which the projected observations have the largest vari-
ance. The second component is then orthogonal to the first
one and again maximizes the variance of the data points
projected on it. Continuing in this way, it produces all the
principal components, which correspond to the eigenvec-
tors of the empirical covariance matrix. From a regression
point of view, PCA also constructs the optimal orthogonal
linear projections (in terms of the mean square error) from
the eigenvectors of the data covariance matrix.

By analysing the eigenstructure of the covariance
matrix of data collected under normal operating condi-
tions, linear relations among the variables are revealed.
The PCA model so obtained describes the normal process
behaviour and unusual events are then detected by refer-
encing the observed behaviour against this model. The
performance of the PCA model is then based on the ac-
curate estimation of the covariance matrix from the data,
which is very sensitive to abnormal observations.

In general, the majority of the training data set is as-
sociated with normal operating conditions. The remaining
data (faulty data, data obtained during shutdown or startup
periods or data issued from different operating modes) are
referred to as “outliers”. Often the outlying observations
are not incorrect but they were made under exceptional
circumstances. Consequently, they may disturb the cor-
relation structure of the “normal data” and the result will
be a model that does not accurately represent the process.
The fact that multiple outliers can contaminate the model
derived from a classical PCA has motivated the develop-

{yvon.tharrault,gilles.mourot}@ensem.inpl-nancy.fr
{jose.ragot,didier.maquin}@ensem.inpl-nancy.fr


430 Y. Tharrault et al.

ment of robust methods that are less affected by outliers.
In practice, one often tries to detect outliers using

diagnostic tools starting from a classical fitting method.
However, classical methods can be affected by outliers
so strongly that the resulting fitted model does not al-
low one to detect the deviating observations. This is
called the masking effect. Additionally, some good data
points might even appear to be outliers, which is known
as swamping. To avoid these effects, the goal of robust
PCA methods is to obtain principal components that are
not influenced much by outliers. Large residuals from that
robust fit indicate the presence of outliers.

Several ways of robustifying principal components
have been proposed. They can be grouped as follows.

A first group of robust PCA methods is obtained by
replacing the classical covariance matrix with a robust co-
variance estimator, such as the minimum covariance deter-
minant (MCD) estimator (Rousseeuw, 1987). The MCD
looks for those h observations in the data set whose classi-
cal covariance matrix has the lowest possible determinant.
The user-defined parameter h is the number of fault-free
data among all the data and determines the robustness as
well as the efficiency of the resulting estimator. The com-
putation of the MCD estimator is non-trivial and naively
requires an exhaustive investigation of all h-subsets out of
the N observations. This is no longer possible for large
N or in a high dimension. Rousseeuw and Van Driessen
(1999) constructed a much faster algorithm called the
FAST-MCD, which avoids such a complete enumeration.
It is obtained by combining a basic subsampling and an
iterative scheme with an MCD estimator.

A second approach to robust PCA uses projection
pursuit (PP) techniques. These methods maximize a ro-
bust measure of data spread to obtain consecutive di-
rections on which the data points are projected (Hubert,
Rousseeuw and Verboven, 2002; Li and Chen, 1985;
Croux and Ruiz-Gazen, 2005; Croux, Filzmoser and
Oliveira, 2007). The main step of these algorithms is then
to search for the direction in which the projected obser-
vations have the largest robust spread to obtain the first
component. The second component is then orthogonal to
the first one and has the largest robust spread of the data
points projected on it. Continuing in this way produces
all the robust principal components. To make these algo-
rithms computationally feasible, the collection of direc-
tions to be investigated are restricted to all directions that
pass through the robust centre and a data point or through
two data points. However, the robust directions obtained
are approximations of the true ones. To improve the speed
of algorithms, a PCA compression to the rank of the data
is performed as a first step. According to the authors, these
algorithms can deal with both low and high dimensional
data.

Another approach to robust PCA was proposed by
Hubert et al. (2005) and is called ROBPCA. This method

combined the ideas of both projection pursuit and ro-
bust covariance estimation based on the FAST-MCD algo-
rithm. It first applied projection pursuit techniques in the
original data space. These results are then used to project
the observations into a subspace of small to moderate di-
mensions. Within this subspace, robust covariance estima-
tion is applied. According to the authors, this algorithm is
a powerful tool for high dimensional data when the num-
ber of variables is greater than the number of observations.
The authors also used a diagnostic plot to visualize and
classify the outliers. It plots the squared Mahalanobis dis-
tance versus the orthogonal distance of each observation
to the PCA subspace, these indices being known as T2 and
SPE statistics, respectively, in statistical process monitor-
ing field (Qin, 2003).

Last proposals for robust PCA include the robust
LTS-subspace estimator and its generalizations (Maronna,
Martin and Yohai, 2006). The idea behind these ap-
proaches consists in minimizing a robust scale of the or-
thogonal distances of each observation to the PCA sub-
space, similar to the LTS estimator, S-estimators and
many others in regression. These methods are based on
iterative procedures for which the problem of starting val-
ues remains open. For example, for the LTS-subspace es-
timator, the classical PCA is performed on the h obser-
vations with the smallest orthogonal distance to the PCA
subspace. Its drawbacks are the same as for the MCD-
estimator: a high computational cost, the choice of the
user-defined parameter h and the starting values. Like
the MCD-estimator, a FAST-LTS algorithm has been pro-
posed.

Our presentation is devoted to the problem of sen-
sor fault detection and isolation in data. In this paper, a
fast two-step algorithm is proposed. First, a very sim-
ple estimate derived from a one-step weighted variance-
covariance estimate is used (Ruiz-Gazen, 1996). Second,
structured residuals are employed for multiple fault detec-
tion and isolation. These structured residuals are based
on the reconstruction principle. The variable reconstruc-
tion approach assumes that each set of variables, e.g., one,
two, or n variables is unknown and suggests to reconstruct
these variables using the PCA model from the remaining
variables (Dunia and Qin, 1998). If the faulty variables are
reconstructed, the fault effect is eliminated. This property
is useful for fault isolation. Moreover, instead of consider-
ing the isolation of one up to all sensors, we determine the
maximum number of faulty scenarios to be taken into ac-
count by evaluating the existence condition of structured
residuals. Note that this number is usually much less than
the total number of sensors. The proposed scheme avoids
the combinatorial explosion of faulty scenarios related to
multiple faults to consider. Section 2 is a short reminder,
on the one hand, of the principal component analysis in
the traditional case and, on the other hand, of the robust
principal component analysis. A detection and isolation
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procedure for outliers is proposed in Section 3. Then, in
Section 4, it is applied to an example emphasizing the gen-
eration of fault signatures.

2. PCA fault detection and isolation

Let us consider a data matrix X ∈ R
N×n, with a row vec-

tor xT
i ∈ R

n, which gathers N measurements collected
on n system variables.

2.1. Classical approach. In the classical PCA case,
data are supposed to be collected on a system being in
a normal process operation. PCA determines an optimal
linear transformation of the data matrix X in terms of cap-
turing the variation in the data:

T = XP and X = TPT , (1)

with T ∈ R
N×n being the principal component matrix,

and the matrix P ∈ R
n×n contains the principal vectors

which are the eigenvectors associated with the eigenvalues
λi of the covariance matrix (or correlation matrix) Σ of X:

Σ = PΛPT with PPT = PT P = In, (2)

where Λ = diag(λ1, . . . , λn) is a diagonal matrix with
diagonal elements in decreasing magnitude order.

The relations (1) are useful when the dimension of
the representation space is reduced. Once the component
number � to retain is determined, the data matrix X can be
approximated. For that purpose, the eigenvector matrix is
partitioned as follows:

P =
(
P̂ P̃

)
, P̂ ∈ R

n×�. (3)

From the decomposition (1), X̂ is the principal part of the
data explained by the first � eigenvectors and the residual
part X̃ is explained by the remaining components:

X̂ = XP̂ P̂T = XC�, (4)

X̃ = X − X̂ = X(I − C�), (5)

where the matrix C� = P̂ P̂T is not equal to the identity
matrix, except for the case � = n.

Therefore, the PCA model partitions the measure-
ment space into two orthogonal spaces:

• The principal component space, which includes
data variations according to the principal component
model.

• The residual space, which includes data variation not
explained by the model. Such variations are due to
noise and model errors in the data.

When the process variables are noise-free or cor-
rupted with multivariate zero mean independent and iden-
tically distributed measurement noise (Li and Qin, 2001),

the eigenvectors P̃ of Σ corresponding to its n−� smallest
eigenvalues are such that

XP̃ = 0. (6)

2.2. Robust approach. A major difficulty in PCA
comes from its sensitivity to outliers. In order to reduce
this sensitivity, various techniques can be applied and, in
particular, that which consists in carrying out PCA di-
rectly on the data possibly contaminated by outliers. One
approach is to replace the covariance matrix by its robust
variant which leads to robust PCA. This seems to be a
straightforward way since the principal components are
the eigenvectors of the covariance matrix.

Ruiz-Gazen (1996) define a “local” matrix of vari-
ance in the sense that the suggested form tends to empha-
size the contribution of close observations in comparison
with distant observations (outliers). The matrix is defined
in the following way:

T =

N−1∑

i=1

N∑

j=i+1

wi,j(xi − xj)(xi − xj)T

N−1∑

i=1

N∑

j=i+1

wi,j

, (7)

where the weights wi,j themselves are defined by

wi,j = exp
(
−β

2
(xi − xj)T Σ−1(xi − xj)

)
, (8)

β being a tuning parameter to reduce the influence of the
observations far away (the authors recommend a value
close to 2). It is shown in the sequel that the results are
not very sensitive to this parameter.

Thanks to the presence of adapted weights wi,j , PCA
can then be carried out on this “new” matrix of covariance
considered robust with respect to outliers. From this new
model, the detection and isolation of outliers are carried
out using the reconstruction principle. Then a weight of
zeros is applied on the outliers, and a classical covariance
matrix is calculated. The PCA is then constructed from
fault-free data. To ensure the detection of all outliers, a
fault detection procedure can then be applied again.

3. Fault detection and isolation

The variable reconstruction approach assumes that each
variable may be faulty (in the case of a single fault) and
suggests to reconstruct the assumed faulty variable using
the PCA model from the remaining variables (Dunia and
Qin, 1998). This reconstructed variable is then used to
detect and isolate the faults. Moreover, this principle al-
lows us to determine replacement values for the faulty
variables.
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3.1. Data reconstruction. The PCA model being
known according to (4) and (5), a new measurement vec-
tor x can be decomposed as

x = x̂ + x̃, x̂ = C� x, x̃ = (I − C�) x, (9)

where x̂ and x̃ are respectively the projections of x onto
the principal space and residual space.

From (9), it is possible to estimate a part of the vec-
tor x, for example, the subset R containing the indices of
r reconstructed variables. However, the presence of out-
liers in the observation vector x returns the estimated x̂
sensitive to these values. It is then preferable to express
this estimated x̂ by using only the fault-free part of the
observation vector x.

The reconstruction of variables consists in estimat-
ing the reconstructed vector x̂R by eliminating the effect
of the faults. Matrix ΞR indicates the reconstruction direc-
tions. This matrix is orthonormal with dimension (n × r)
and is built with 0 and 1, where 1 indicates the recon-
structed variables from the other variables (with 0). For
example, to reconstruct variables R = {2, 4} among five
variables, matrix ΞR is formed as follows:

ΞR =
[

0 1 0 0 0
0 0 0 1 0

]T

.

The expression for the reconstruction x̂R of the vec-
tor x is given by

x̂R = GR x, (10)

where

Ξ̃R = (I − C�) ΞR, (11)

GR = I − ΞR(Ξ̃T
RΞ̃R)−1Ξ̃T

R. (12)

Reconstruction condition. Let us note that if Ξ̃R has full
column rank, then (Ξ̃T

RΞ̃R)−1 exists and the variables of
the subset R are completely reconstructible. This condi-
tion implies that the number of reconstructed variables r
must satisfy

r ≤ n − � (13)

and that the columns of matrix Ξ̃R are neither null nor
collinear.

If we write x̂R in the case where the matrix of the
reconstruction directions is reorganized as follows:

ΞR =
[

I1
(r×r)

0
((n−r)×r)

]T

∈ R
n×r (14)

with I1 ∈ R
r×r being the identity matrix, then C� is split-

ted in four parts:

C� =

⎡

⎢
⎣

c1
(r×r)

c2
(r×(n−r))

cT
2

((n−r)×r)

c4
((n−r)×(n−r))

⎤

⎥
⎦ ∈ R

n×n. (15)

The reconstruction x̂R of the vector x is written as
follows:

x̂R =
[

0 (I1 − c1)
−1

c2

0 I2

]
x, (16)

with I2 ∈ R
n−r×n−r being the identity matrix.

This form highlights two characteristics. First, the
reconstructed vector x̂R is formed of the r reconstructed
variables and a copy of the remaining n − r variables.
Second, the reconstructed variables are estimated without
using their own measurement.

Proof. Let us note that the matrix C� is an idempotent
and symetric matrix. From (14) and (15), (11) becomes
Ξ̃T

R =
[

I1 − c1 −c2

]
. From (11) we get

Ξ̃T
RΞ̃R = ΞT

R (I − C�) ΞR = I1 − ΞT
RC�ΞR.

As ΞT
RC�ΞR = c1, we have

(
Ξ̃T

RΞ̃R

)−1

= (I1 − c1)
−1

.

These different terms are replaced in (12):

GR =
[

I1 0
0 I2

]
−

[
I1

0

]
[

I1 − (I − c1)
−1

c2

]

=
[

I1 0
0 I2

]
−

[
I1 − (I − c1)

−1
c2

0 0

]
.

�

3.2. Structured residual generation. With a diagno-
sis objective in mind, residuals are generated for fault de-
tection and isolation. The residuals are obtained by pro-
jecting the reconstructed variables onto the residual space.
Residuals are defined by x̃R, the projection of x̂R onto the
residual space:

x̃R = (I − C�) x̂R

= (I − C�) GR x = P
(�)
R x,

(17)

where

P
(�)
R = (I − C�) GR (18)

= (I − C�) − Ξ̃R(Ξ̃T
RΞ̃R)−1Ξ̃T

R. (19)

Property 1. Matrix P
(�)
R has the following property:

P
(�)
R ΞR = 0. (20)

This means that the components of x̃R are not sen-
sitive to the components of x belonging to the subset R.
This property can be used to identify which components
of x are disturbed by faults.
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Proof. From the matrix partition adopted above, (18)
becomes

P
(�)
R =

[
I1 − c1 −c2

−cT
2 I2 − c4

] [
0 (I1 − c1)

−1
c2

0 I2

]

=
[

0 0
0 −cT

2 (I1 − c1)
−1

c2 + I2 − c4

]
. (21)

�

Example 1. Consider a measurement x composed of the
true value x∗, a noise ε with zero mean and one fault of
amplitude d and direction ΞF , where F is a subset con-
taining the indices of the fault directions:

x = x∗ + ε + ΞF d. (22)

Then the residual is

x̃R = P
(�)
R (x∗ + ε + ΞF d) = P

(�)
R (ε + ΞF d), (23)

with P
(�)
r x∗ = 0, cf. (6), and its expected value is

E(x̃R) = P
(�)
R ΞF d. (24)

The following observations can be made:

• If the reconstruction directions ΞR are the same as
the fault directions, i.e., if R = F , then all compo-
nents of the vector P

(�)
R ΞF are zero and E(x̃R) = 0.

• If the reconstruction directions ΞR are different from
the fault directions, then all components of the vector
P

(�)
R ΞF are a priori nonzero except the components

belonging to the subset R.

The analysis of the residual amplitudes x̃R for all
possible combinations shows the presence of faults and
makes it possible to determine the components of the mea-
surement vector affected by this fault. �
Property 2. If Ξ̃F has full column rank, there is no loss
in sensitivity for some fault component.

Proof. If some components of Ξ̃F and Ξ̃R are orthogonal,
then

Ξ̃T
RΞ̃F =

[
0

(r×k)
×

(r×r−k)

]
, (25)

with × being a matrix without null data.

From (24) it follows that

E(x̃R) = ((I − C�) − Ξ̃R(Ξ̃T
RΞ̃R)−1Ξ̃T

R)ΞF d (26)

=
(
Ξ̃F −

[
0

(n×k)
×

(n×r−k)

])
d. (27)

To suppress some directions of the fault, the first k
columns of the matrix Ξ̃F have to be zero. But in this
case, Ξ̃F is rank-deficient and the faults are not detectable.
Therefore if the directions Ξ̃F and Ξ̃R are orthogonal, this
does not disturb the localization process. �

3.3. Fault isolation. The structural condition for fault
isolation is as follows:

r ≤ n − � − 1. (28)

All the directions of reconstruction have to be explored
for fault detection and isolation. Solutions for which
the faults associated with the reconstruction directions
are not detectable are useless. The number of possible
reconstructions can then be reduced, and the detectable
faults are defined.

The maximum reconstruction number can be calcu-
lated as follows:

n−�∑

r=1

C
r
n, (29)

with C
r
n denoting the number of combinations of n el-

ements taken r at a time. This number takes into ac-
count only the number of reconstructions and not the am-
plitude of the projection of the reconstructed directions
onto the residual space. It can be reduced when the ma-
trix of projected fault directions is rank-deficient or near
rank-deficient. To detect these cases, the condition num-
ber (‘Rcond’), defined as the ratio between the smallest
singular value and the greatest singular value of the ma-
trix Ξ̃R, is used:

Rcond =
min

(
σ
(
Ξ̃R

))

max
(
σ
(
Ξ̃R

)) . (30)

For the near rank-deficient case, fault detection and
localization are possible only if its amplitude is huge.
In the following, faults with huge amplitude are not
considered as realistic.

The process to detect useful directions of reconstruc-
tion can be summarized as follows:

1. r = 1 (single-fault): compute all available directions
Ξ̃R. If Ξ̃T

RΞ̃R is close to zero, this means that the
fault is not projected onto the residual space and then
not detectable. To detect and localize this fault, its
projection onto the principal space can be used.

2. r = r + 1: for all available directions Ξ̃R compute
the values of the condition number Rcond.

• If Rcond is close to zero, then the r faulty vari-
ables of the subset R are not detectable. There-
fore, all combinations which take into account
these r variables will not be detectable. So
they are useless. Moreover, all the combina-
tions of r − 1 variables among the variables of
the subset R are only detectable because their
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fault signatures are identical. Then, it is use-
ful to reconstruct only one combination of these
r − 1 variables selected from these r variables.
Moreover, all the combinations of r − 2 vari-
ables among the r variables of the subset R are
isolable.

• If Rcond is not close to zero, then all the com-
binations of r − 1 variables selected from the r
variables of the subset R are isolable.

3. While r ≤ n − �, go to Step 2.

This analysis of the model structure allows us to de-
termine the detectable and isolable faults. The number of
useful reconstructions can then be reduced.

4. Numerical example

4.1. Single fault case. A simple example based on four
variables (x1, x2, x3 and x4) and two models is used as a
device to illustrate the above ideas.

4.1.1. Data generation. The data matrix X includes
N = 240 measurements defined in the following way:

xi,1 = v2
i + 1 + sin(0.1i), vi ∼ N (0, 1), (31)

xi,2 = xi,1, xi,3 = −2xi,1, xi,4 ∼ N (0, 1).

Realizations of centred normal distributions with the same
standard deviation equal to 0.02 are added to the first three
variables. A constant bias of the amplitude equal to 30%
of the amplitudes of the variables simulates the presence
of outliers δx1, δx2, δx3 affecting the variables x1, x2 and
x3, from 24 to 44 for the variable x1, from 80 to 100 for
the variable x2, from 140 to 160 for the variable x3, re-
spectively. This bias amplitude is important to highlight
the robust PCA. It is important to notice that 60 observa-
tions contained abnormal values, and hence 25 percent of
the data are contaminated by these values. The objective
is to detect and especially isolate them.

Using raw data (Fig. 1), we established a robust PCA
model by applying the propositions of Section 2.2. The
analysis of the decrease in the standardized eigenvalues of
the covariance matrix (92.93, 6.96, 0.06, 0.04) allows us
to retain two principal components (� = 2).

4.1.2. Useful reconstruction. From (29), the maxi-
mum number of reconstructions is 10. Now, the direc-
tion projections onto the residual space are studied (Ta-
ble 1). From this table, let us note that the last variable
x4 is not reconstructible. Then, it is not possible to de-
tect a fault on x4 in the residual space. A solution is to
work in the principal space to detect the fault. Then for
r = 2, the indicator Rcond is computed for all useful
directions (R = {1, 2}, R = {1, 3} and R = {2, 3}).

Table 1. Existence condition of residuals.

Ξ̃T
1 Ξ̃1 Ξ̃T

2 Ξ̃2 Ξ̃T
3 Ξ̃3 Ξ̃T

4 Ξ̃4

0.83 0.83 0.33 0.00

Table 2. Existence condition of residuals.
R {1, 2} {1, 3} {2, 3}

Rcond 0.82 0.41 0.41

The result is shown in Table 2. All the Rcond values are
not close to zero. This means that a fault on x1, x2 or
x3 is isolable. From 10 reconstruction possibilities, only
6 are really reconstructible. Among these reconstructible
directions, only 3 combinations are useful to isolate the
faulty variables. To conclude, in the following, only the
first three variables are reconstructed to ensure localiza-
tion.

Table 3. Fault occurrences.
R = {1} R = {2} R = {3}

x̃11 x̃12 x̃13 x̃14 x̃21 x̃22 x̃23 x̃24 x̃31 x̃32 x̃33 x̃34

δx1 0 0 0 0 × 0 × × × × 0 ×
δx2 0 × × × 0 0 0 0 × × 0 ×
δx3 0 × × × × 0 × × 0 0 0 0

4.1.3. Sensitivity analysis. The data in Table 3 sum-
marize the relationship between the residual sensitivity x̃R

(17) and the outliers or faults δx1, δx2 and δx3 (the fault
δx4 on the variable x4 is not considered). This table was
constructed while taking into account the property (20) of
the matrix P

(2)
R . For example, the first four residuals, x̃11

to x̃14 (relative to the variables x1, x2, x3 and x4), were
obtained by projecting onto the residual space the recon-
structed variables without using the variable x1. As the
first row and the first column of P

(2)
1 are zero, according

to (20), the residual x̃11 is not sensitive to the variables
x1, x2 and x3 and, consequently, to the potential faults
δx1, δx2 or δx3 affecting these variables. Moreover, the
residuals x̃12, x̃13 and x̃14 are not sensitive to the variable
x1 and thus to the fault δx1 which can affect them. To
summarize these different situations, the symbols × and
0 denote the fault influence on the residuals. The other
parts of the table were constructed with this same princi-
ple by considering the different projection matrices P

(2)
2

and P
(2)
3 . By analysing the dependence of the columns

of the signature matrix, one can establish necessary con-
ditions enabling fault detection and isolation.

Let us note that only two projection matrices and two
residuals are necessary for fault detection and isolation.
For example, the matrices P

(2)
1 and P

(2)
2 (19) allow us

to build the residuals x̃12 (relative to x2), x̃21 (relative to
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x1), which permit to detect and isolate one of the three
faults. Indeed, Table 3 indicates that with these two resid-
uals, the signature faults δx1, δx2 and δx3 are respectively
(0 ×), (× 0) and (× ×); these three signa-

tures are independent and thus the faults are isolable from
each other. However, this condition is only structural and
does not take into account the sensitivity of the residuals to
the fault. Indeed, the residuals do not have the same sen-



436 Y. Tharrault et al.

sitivity to different faults. Therefore, if only two residuals
are used, it is not sure if the faulty variable is detectable
and localizable.

4.1.4. Fault detection. Figure 2 shows the residuals
x̃11, x̃12, x̃13 and x̃14 (relative to x1, x2, x3 and x4), de-
fined with � = 2 by (17), and obtained by the projection of
all reconstructed variables without using the variable x1.
As indicated by Property 1, in the case of the residual gen-
erated without using the variable x1, only faults affecting
the variables x2 and x3 are detectable on the residuals x̃12,
x̃13 and x̃14. Panels of Fig. 3 are relative to a global indi-
cator SPER (norm of the projection vector) calculated for
each observation from time 1 to time 240:

SPER = ‖x̃R‖2. (32)

The faulty observations are determined as follows:

SPER > δ2
α, (33)

with δ2
α being the detection threshold of SPER (Jackson

and Mudholkar, 1979).

Table 4. Table of fault signatures.

SPE1 SPE2 SPE3

δx1 0 × ×
δx2 × 0 ×
δx3 × × 0

A global indicator is computed for each direction
(R = {1}, R = {2} and R = {3}). It takes into ac-
count their corresponding residuals, e.g., SPE 1 is com-
puted from x̃11, x̃12, x̃13 and x̃14. Then the global indi-
cators use all the sensitivity of the residuals to the fault.
Table 4 shows the fault signatures with the global indica-
tors and is constructed in the same way as Table 3.

Fault detection and isolation are realized without am-
biguity and are in accordance with the theoretical results
of the isolation procedure (Table 4).

4.1.5. Choice of β. For different values of β, Fig. 4
represents the indicator SPE 1. For β = 0, we have the
same case as that of the classical PCA. We notice that it is
not possible to detect or isolate the fault. For β = 0.5 to 5,
we can detect and isolate the fault with a similar result. So
there is a large range of values for β where the detection
ability is identical. Then, we recommend to choose β = 2.

4.2. Multiple fault case. We consider here the situ-
ation in which several faults affect variables at the same
time.

4.2.1. Data generation. The matrix X includes N =
108 observations of a vector x with 8 components gener-
ated in the following way:

xi,1 = v2
i + sin(0.1i), (34)

xi,2 = 2 sin(i/6) cos(i/4) exp(−i/N), vi ∼ N (0, 1),

xi,3 = log(x2
i,2), xi,4 = xi,1 + xi,2,

xi,5 = xi,1 − xi,2, xi,6 = 2xi,1 + xi,2,

xi,7 = xi,1 + xi,3, xi,8 ∼ N (0, 1).

To the data thus generated were added realizations
of random variables with centred normal distributions and
standard deviations equal to 0.02 as well as the faults δx1,
δx2, δx3, δx4, δx5, δx6 represented by a bias of the am-
plitude equal to 10% of the amplitudes of the variables
and defined in the following way: observations from 10
to 24 for the variable x1, observations from 35 to 49 for
the variables x2 and x3, observations from 60 to 74 for
the variables x4 and x5, observations from 85 to 99 for
the variable x1, x4 and x6. In the following, these four
intervals are indicated by I1, I2, I3, I4.

From the contaminated data, the robust PCA model,
with four principal axes (� = 4), was chosen.

Table 5. Existence condition of residuals.

Ξ̃T
1 Ξ̃1 Ξ̃T

2 Ξ̃2 Ξ̃T
3 Ξ̃3 Ξ̃T

4 Ξ̃4 Ξ̃T
5 Ξ̃5 Ξ̃T

6 Ξ̃6 Ξ̃T
7 Ξ̃7 Ξ̃T

8 Ξ̃8

0.84 0.72 0.46 0.71 0.41 0.40 0.46 0.00

4.2.2. Useful reconstruction. From the size of the
residual space, we cannot reconstruct more than four vari-
ables simultaneously. The maximum number of recon-
structions is then equal to 162 (cf. (29)). Now, the projec-
tions of fault directions onto the residual space are studied
(Table 5). From this table, let us note that the last variable
is not reconstructible. Indeed, the variable x8 is uncorre-
lated with the other variables. To detect and isolate a fault
on this variable, it is better to work in the principal space.
To analyze multiple fault directions, the indicator Rcond
is calculated for all available directions (for r = 2 to 4).
Results for the reconstruction of two variables are shown
in Table 6. For example, for R = {1, 2}, the value of
Rcond is the intersection of the first row and the second
column of Table 6.

Let us notice that for R = {3, 7}, Rcond is close to
zero. This means that the fault signatures for a fault on x3

or on x7 are identical (SPE 3 = SPE 7). So we can only
detect the fault and conclude that the variables x3 or x7 or
x3 and x7 are faulty. To illustrate this case, Fig. 5 shows
the values of the global indicator SPER for R = {3},
R = {7}, R = {2, 3} and R = {2, 7}. This figure shows
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Table 7. Table of fault signatures.
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that SPE 3 = SPE 7 and SPE 23 = SPE 27, and then only
one SPE of each combination is useful to detect a fault.
In the following, only the combinations with 3 are consid-

ered (not with 7). On the interval I2, SPE 3 is nonzero,
so there is another fault at the same time. Moreover, this
figure shows that for SPE 23, on the interval I2, of SPE is
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Table 6. Existence condition of residuals.
Rcond 1 2 3 4 5 6 7

1 0.88 0.72 0.88 0.57 0.57 0.72
2 0.79 0.73 0.42 0.68 0.80
3 0.80 0.75 0.76 0.01
4 0.68 0.41 0.80
5 0.79 0.75
6 0.75

zero. We conclude that on the interval I2, the variables x2

and x3 or/and x7 are faulty.
For all the directions of reconstruction these indica-

tors are calculated. Another case where Rcond is close
to zero with R = {2, 4, 5, 6} is detected. Then all the
combinations of three variables selected from among the
variables of the subset R are only detectable and their
fault signatures are identical (SPE 245 = SPE 246 =
SPE 256 = SPE 456). Therefore only one SPE is use-
ful to detect a fault, e.g., SPE 245. Thus, a fault can be
detected but not isolated. The faulty variables are among
the variables x2, x4, x5 and x6.

From among 162 reconstruction possibilities, only
81 are really reconstructible. Among these reconstructible
directions, only 21 combinations are useful to isolate the
faulty variables. For the others, a set of variables is con-
sidered as faulty but it is not possible to determine the
faulty variables in the set.

4.2.3. Sensitivity analysis. All the useful reconstruc-
tion directions and the corresponding SPE are computed.
Concerning the a priori analysis of fault isolation, a re-
duced table of signatures established from the proper-
ties (20) is given (Table 7). It reveals only some possi-
ble faults, as noted by δ in the first row, those affecting

the variables 1, 2, 3, 4 and those affecting the couples
of variables {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}, {1, 2, 5}. The
columns pertain to the norm SPER of the residual vectors
obtained by the reconstruction-projection of the variables
by using all the components of x except those with the
indices belonging to R. The residuals are defined by (17).

This table, which the reader will be able to extend,
provides a correspondence between the symptoms SPER

and the faults δR. For example, the fault δ2 affects all pro-
jections except those established without components 2,
{1, 2}, {2, 4}, {2, 5}, {2, 6}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}.

4.2.4. Fault detection. The reconstruction is carried
out from all useful directions. Figure 6 visualizes the re-
construction of variables without using Variable 1. This
figure shows the reconstruction of the first seven variables
which are associated with the column SPE 1 of Table 7
specifying the isolable faults. The N reconstructed data
were then projected onto the residual space. For each ob-
servation, fault indicators SPER were calculated.

Let us analyze Fig. 6. Variable 1, biased for the ob-
servations of the interval I1, is not used for the reconstruc-
tion and the other variables which are used for the recon-
struction do not present any bias. For these observations,
the reconstructions are thus correct, emphasizing the first
graph (starting from the top of the figure), which shows
the superposition of the reconstructed variables (the sym-
bol ‘◦’) with the true variables (in practice, the latter are
unknown, but at the stage where the data are generated the
comparison is possible). The measurement of the variable
is also indicative (continuous line) in order to compare it
with the reconstruction.

This result is confirmed by the first graph of Fig. 7,
where the norm of the residual vector (32) is depicted. For
the observations of the interval I1, this norm close to zero
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Fig. 6. Variable reconstruction without using Variable 1.

thus shows the absence of outliers in the variables used for
the reconstruction and projection, i.e., all the variables ex-
cept x1. Let us note that the three other groups of observa-

tions (I2, I3, I4) are affected by faults, without knowing
exactly which components of the measurement vector are
faulty. Finally, by taking into account the fault presence
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Table 8. Fault signatures.

I1 I2 I3 I4

SPE1 0 × × ×
SPE45 × × 0 ×
SPE146 0 × × 0

in the four intervals, the examination of the first graph of
Fig. 7 leads to the conclusion that, in each interval I2, I3,
I4, a variable other than x1 is faulty or more than one vari-
able is faulty.

Other projections are built and are interpreted in a
similar way. Figure 7 shows the global indicator for re-
construction directions which ensure isolation. Table 8
summarizes the conclusions resulting from the projec-
tion analysis (Fig. 7). SPE 1 pertains to the reconstructed
residuals without using the first variable. The symbol ‘0’
denotes the fault absence in the interval considered. The
diagnosis is as follows:

• in the interval I1, x1 is faulty,

• in the interval I2, x2 and x3 or/and x7 are faulty, the
fault is not isolable,

• in the interval I3, x4, x5 are faulty,

• in the interval I4, x1, x4, x6 are faulty.

5. Conclusion

Principal components analysis reduces the data represen-
tation space and enables the determination of the redun-
dancy relationships (linear relations among the variables).
The redundancy relations are then used to detect and iso-
late the faults. PCA is constructed with fault-free data
from a decomposition into the eigenvalues and eigenvec-
tors of a covariance matrix. However, real data sets are
not usually fault-free. Then the covariance matrix is dis-
turbed by outliers. In order to reduce the sensitivity of the
model to outliers, a fast two-step algorithm is proposed.
First, the covariance matrix is replaced by its robust vari-
ant which leads to robust PCA. This one-step weighted es-
timate tends to emphasize the contribution of close obser-
vations in comparison with distant observations (outliers).
Moreover, the results are not very sensitive to the tuning
parameter β. Therefore, a model robust with respect to
outliers was constructed. Second, structured residuals are
generated for multiple fault detection and isolation. These
structured residuals are based on the reconstruction prin-
ciple. For fault isolation, the proposed scheme avoids
the combinatorial explosion of faulty scenarios related to
multiple faults. Indeed, instead of considering all combi-
nations of one up to all sensors, we limit the maximum
number of faulty scenarios to be considered by evaluating

the existence condition of structured residuals. Therefore,
the detectable and isolable faults are determined, as well
as the different faulty scenarios for which it is not pos-
sible to distinguish the faulty variables. This procedure
was applied to two examples, the first with a single fault
and the second with multiple faults. The presence of ap-
proximately 25 percent of outliers authorizes a correct es-
timation of the principal directions. Then the estimation
is not very sensitive to these values. In both examples, the
method is efficient for fault detection and isolation.

A PCA model can thus be built directly from the
available data containing potential faults. One advantage
of the suggested method is that it is not iterative unlike
a majority of robust methods. The most important re-
sult concerns the diagnosis of the systems, applied here
to the detection and isolation of outliers. For that purpose,
we showed how to build fault indicators and to determine
the isolable faults. The use of the principle of the recon-
struction and projection of the reconstructed data together
made it possible to detect and isolate outliers in an effec-
tive way.

In a future work, a comparison, in terms of fault de-
tection and localization, of this robust approach with oth-
ers like the robust LTS-subspace estimator and its general-
izations will be performed. Another way is to improve the
detection indicator. The detection is carried out only in the
residual space and not in the principal space. For exam-
ple, a combined fault indicator (Yue and Qin, 2001) using
the residual and the principal space can be used instead.
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