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With the tools of modern metrology we can measure almost all variables in the phenomenon field of a working machine,
and many of the measured quantities can be symptoms of machine conditions. On this basis, we can form a symptom
observation matrix (SOM) intended for condition monitoring and wear trend (fault) identification. On the other hand,
we know that contemporary complex machines may have many modes of failure, called faults. The paper presents a
method of the extraction of the information about faults from the symptom observation matrix by means of singular value
decomposition (SVD), in the form of generalized fault symptoms. As the readings of the symptoms can be unstable, the
moving average of the SOM is applied with success. An attempt to assess the diagnostic contribution of a primary symptom
is made, and also an approach to assess the symptom limit value and to connect the SVD methodology with neural nets
is considered. Finally, a condition forecasting problem is discussed and an application of grey system theory (GST) to
symptom prognosis is presented. These possibilities are illustrated by processing data taken directly from the machine
vibration condition monitoring area.
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1. Introduction

The idea of multidimensional diagnostics of machines
using the symptom observation matrix and the application
of the singular value decomposition were proposed some
years ago (Cempel 1999; Cempel et al., 2007). It enables
us to extract the information on the developing machine
faults using the component symptom observation vector
m. By successive discrete readings (observations) of this
vector at time moments nΔθ in a machine lifetime θ, one
can create an m× n (n > m) perpendicular (non-square)
observation matrix called the symptom observation matrix
(SOM). This is our only source of information on evolving
faults (wear trends) in the running machine. The applica-
tion of singular value decomposition (SVD) to this set of
diagnostic data enables us to observe the evolution of a
few generalized faults of the diagnosed machine, starting
from the fault of maximal severity. Applying next the con-
cept of symptom reliability (Cempel et al. 2000; Natke et
al. 1997; Cempel, 1991) to the so extracted generalized
fault symptoms, one can calculate the symptom limit va-

lue Sl, the basis for any diagnostic decision. However,
the loadings of machines by production processes (or the
environment) are not constant, so that the resulting symp-
tom readings may have some disturbances influencing the
assessment of the machine condition. This disturbing in-
fluence is most important at the start-up of a new machine,
because, as usual in machine diagnostics, we normalize
symptoms to starting (initial) healthy values.

One of the possibilities of reducing these errors is to
rescale the current symptom reading to a standard load if
such a load assessment is possible. This can be done by
measurements of some quantities connected with a pro-
duction process, with the wind load, or the sea waving, de-
pending on the nature of disturbances. In (Cempel et al.,
2007), it was shown that the idea of symptom rescaling is
workable, giving the possibility of a better assessment of
the machine condition working in a nonstationary loading
regime. But, when the assessment of the load parameter
is not possible, we can use with success the averaging of a
few starting symptom readings, as was shown in (Cempel
et al., 2007). These promising results regarding reducing
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operational instabilities and random disturbances of obse-
rved symptoms lead us towards the employment of SVD
to the averaged SOM applied to the whole matrix, and
in this approach the last trial of averaging encompasses
the few starting values of the SOM (Cempel et al., 2006).
There is another possible approach to treat the multidi-
mensionality of observations, i.e., by means of principal
component analysis (PCA) (Korbicz et al., 2004; Panto-
pian et al., 1999). However, this approach tends to di-
sregard smaller damage information, due to the inherent
squaring effect of singular values in PCA.

Having such tools, it seems reasonable to look for
the analysis and optimization of the whole procedure of
diagnostic information extraction from the SOM. This po-
ssibility may give us some additional insight and hints as
well as allow us to form the research goals on the road to
automated machine diagnostics. Finally, the aim of ma-
chine diagnostics is to assess the future machine condition
and the residual lifetime. For this purpose, for the first
time we will apply grey system theory, a very promising
tool developed by Deng (1989).

This is the aim of our paper, and we will verify these
concepts taking into account real cases of machine condi-
tion monitoring with operational instabilities, random di-
sturbances of readings, and, of course, normal stationary
running conditions.

2. Multidimensional observation of
conditions and the extraction of fault
symptoms

Having in mind the above, consider a critical machine
in operation. During its working life 0 < θ < θb (θb

stands for the anticipated breakdown time), several inde-
pendent faults Ft(θ), t = 1, 2, . . . , u evolve and grow as
some wear processes, leading to the destruction of the ma-
chine. Hence, we would like to identify and assess the ad-
vancement of these faults by forming and measuring the
symptom observation vector [Sm] = [S1, . . . , Sr], which
may have components physically different, like vibration
amplitudes, temperature, machine load, lifetime θ, etc.

In order to track the machine condition (the evolu-
tion of faults) by these measurements, we make equidi-
stant readings of the above symptom observation vector at
the lifetime moments θn, n = 1, . . . , p, θp ≤ θb, for-
ming in this way the rows of the SOM. From previous
research (Cempel, 1999; Cempel et al., 2006) we know
that the best way of SOM preprocessing is to centre it
(subtract), and normalize it (divide) to the symptom initial
value Sm(0) = S0m,m = 1, . . . , r of each given symp-
tom (a column of the SOM). It is also known from that
research that the amount of diagnostic information in the
SOM increases if we append the lifetime θ column as the
first approximation of the system logistic vector L and the
load (Natke et al., 2002; Cempel, 2005). Finally, we will

also apply a three-point moving average procedure to the
successful symptom readings, as was shown in (Cempel
et al., 2006).

After such preprocessing, we will obtain a dimen-
sionless SOM in the form

SOM ≡ Opr = [Snm], Snm =
Snm

S0m
− 1, (1)

where boldface nonitalic letters indicate primary measu-
red and averaged dimensional symptoms.

As was already said in the introduction, we apply
now SVD (Golub et al., 1983; Kiełbasiński et al., 1992) to
the dimensionless SOM (1) to obtain singular components
of the SOM in the form

Opr = UppΣprV
T
rr , (2)

where Upp is a p × p orthonormal matrix of left singular
vectors, Vrr is an r× r orthonormal matrix of right singu-
lar vectors, and the diagonal matrix of singular values Σpr

is defined as

Σpr = diag(σ1, . . . , σl), (3)

where σ1 > σ2 > · · · > σu > 0, and σu+1 = · · · = σl =
0, l = max(p, r), u ≤ min(p, r), u < r < p.

Finally it can be shown that every perpendicular ma-
trix has such a decomposition (2), and it may be also in-
terpreted as the product of three matrices (Will, 2005), na-
mely,

Opr = (Hanger)(Stretcher)(AlignerT ). (2a)

This is a very metaphorical description of the SVD trans-
formation, but it seems to be a useful analogy for the in-
ference and decision making in our case. In terms of con-
dition monitoring, the above decomposition means that
from r primarily measured symptoms (the dimension of
the observation space) we can extract only u ≤ r in-
dependent sources of diagnostic information, describing
evolving generalized faults Ft, creating in this way the
fault space (see Fig. 1). As can be seen in the upper right
panel of Fig. 1, only a few developing faults make essen-
tial contributions to the total fault information. The rest of
generalized faults are below the standard 10% noise level.
What is important here is that such SVD decomposition
can be made on-line, after each new observation (reading)
of the symptom vector [Sm], n = 1, . . . , p, and in this
way we can trace the fault evolution (wear processes) in
an operating mechanical system.

Based on the current research and implementation of
this idea (Cempel, 2003), we can say that the most impor-
tant fault oriented indices obtained from SVD are the first
pair (SDt , σt), t = 1, 2 , and also the pair of the sums of
all indices, SumSDi . The first fault indices SDt can be
named as the discriminant or the generalized symptom of
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Fig. 1. SOM of the railway diesel engine vibration, processed by an early diagnostic program pcainfo.m based on SVD.

the fault t, and one can get it as the SOM product and the
singular vector vt as follows:

SDt = Oprvt = σtut, t = 1, . . . , u. (4)

From SVD theory we know (Golub et al., 1983; Kieł-
basiński et al., 1992) that all singular vectors vt, ut are
orthonormal (orthogonal and normalized to one), so the
energy norm of this new discriminant is simply

Norm(SDt) = ‖SDt‖ = σt, t = 1, . . . , u. (5)

The above discriminant SDt(θ) can be also named the
lifetime fault profile and, in turn, the singular value σt(θ)
as a function of the lifetime seems to be its advancement
(the energy norm).

Similar fault inference can be postulated for the me-
aning and evolution of summation quantities, which can
mean the total damage profile SumSDi(θ) and the total
damage advancement Sumσi(θ) as follows:

SumSDi(θ) =
z∑

i=1

SDi (θ) =
z∑

i=1

σi (θ)ui (θ),

Sumσi(θ) =
z∑

i=1

σi (θ) ∼
z∑

i=1

F (θ)i. (6)

The proportionality sign in the above relation indi-
cates a possible way of inference. But the meaning of
that relation with Σσi(θ) seems not to be fully validated
experimentally. Generally, it seems that the condition in-
ference based on the above summation measures Σ(SDi)

may stand for the first approach to multidimensional con-
dition inference, as was clearly shown in previous papers
(Cempel et al., 2006a; Cempel et al., 2006b; Cempel,
2005; Żółtowski et al., 2004).

Having in mind the optimization of the observation
space, one additional remark should be made concerning
the SOM. It will be good to measure in some way the in-
formation content of the SOM. This can be done by calcu-
lating the Frobenius norm (Frob) of this matrix, and the
volume (V ol) created by this u-dimensional fault space
obtained by the application of singular value decomposi-
tion. We can calculate the former as the square root of the
sum of squares of singular values (Kiełbasiński, 1992),
and the latter as the product of non-squared singular va-
lues σi. However, we know that the last singular values
are very small quantities and the squaring operation will
reduce the value of our measure, making it insensitive to
small contributions of such information. Hence, we will
define both measures as the sum and product of singular
values only,

Frob1(SOM) = (Σσi), V ol1(SOM) = Πσi, (7)

i = 1, . . . , u.
Looking for the values of this measure and the num-

ber of nonzero essential singular values σi, we may have
some assessment of the importance of the fault space ob-
tained by the SVD transformation of the SOM. But how to
assess the relative importance of primary measured symp-
toms as a component of the observation vector [Sm]? If
we examine the left-hand side of (4) and the role of right
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singular vectors νt, we can come to the conclusion that the
components of νt are the weights of primary symptoms in
the creation of generalized fault symptoms. This can be
seen better when we write down explicitly the first, and
diagnostically most important, generalized fault symptom

SD1(θ) = ΣSi(θ)vi1. (8)

This means that the weights νi1 can be treated as normali-
zed sensitivity measures of primary symptoms in the cre-
ation of generalized fault symptoms. What is more, using
the analogy of neural nets (NNs) (Dunham 2003, p. 62)
we can treat the generalized fault SDt(θ) as the output of
a singular neuron, and again the components of Vector νi1

can be treated as the input weights, or the sensitivity we-
ights, of our primary symptoms. We will use this useful
analogy later on.

Finally, let us return to the diagnostic interpretation
of the very useful formula (2a). Using its left-hand side
we are stretching the SOM over the life (observations) di-
mension, obtaining the matrix of generalized symptoms
SD. Using its right-hand side, we are stretching the SOM
over the observation dimension, obtaining the contribu-
tion matrix AL, assessing in this way the contribution of
each primary symptom to the generalized fault symptom
SDi,

SD = OprVrr = UppΣrr,

AL = UT
ppOpr = ΣrrV

T
rr . (9)

We will calculate the above matrices and use them for a
better interpretation of monitoring results (SD), and the
optimization of the dimension of the observation space
(AL).

3. Examples of simple and advanced SVD
decomposition of real diagnostic cases

We have explained all essential steps and transformations
on the way from the measured symptom space to the re-
quired fault space. Let us illustrate these steps and assess
their diagnostic value on data taken from real cases of ma-
chinery condition monitoring. Let us begin our step-by-
step trip with the illustration of the influence of prepro-
cessing of the SOM, shown using the example of diesel
engine vibration condition monitoring data processed by
the program pcainfo.m1, as in Figs. 1 and 2. Here nine
vibration amplitude symptoms were measured (average,
rms, peak amplitudes of vibration acceleration, velocity
and displacement), every 10,000 km distance of the rail-
way diesel engine, on the top of its 12th cylinder. Our
diagnostic measurement starts from the repair time of the
engine and lasts up to its overhaul at 230 km.

1This Matlab version of a principal component procedure analysis is
based on SVD, so the concept of a principal component of PCA and a
singular vector of SV D can be used equivalently here.

The upper-left panel of Fig. 1 presents the life course
of the primary SOM with a dominant symptom, namely,
the peak vibration acceleration amplitude at the top and
average displacement amplitude symptom at the bottom.
Applying any decomposition program to such an unbalan-
ced data set in Fig. 1, PCA or SVD will make the principal
component very similar to the dominant symptom, as was
shown in (Cempel, 1999). Consequently, the middle-left
panel shows the transformed SOM (appended also with
the straight line of the system lifetime θ as the additional
symptom). This means it is centred and normalized to the
initial value of each component of the symptom vector.
This operation on the SOM brings us a divergent bundle
of symptom life curves (middle-left panel), with the range
and different dynamics of evolution only. Now, after pre-
processing, it has the same range from 0 up to 2, appro-
ximately. Even now, as we can see in the bottom-left pa-
nel presenting the evolution of lifetime generalized faults,
there is only one dominant generalized fault SD1, and the
summation generalized symptom SumSDi(θ) does not
differ significantly. The same can be seen in the upper and
bottom left panels, where the singular values σi normali-
zed to their sums and their lifetime evolution are shown.
Now one can be sure that there is only one dominant mode
of damage in the running diesel engine described by our
symptom space (defined by the SOM), and by using the
extraction power of SVD it was possible to capture the
evolution of this fault. The contribution of primary symp-
toms of the transformed SOM to the creation of genera-
lized faults is shown in the middle-right panel. One can
see here that the contributions of Symptoms 9–11 to the
creation of the symptom SD1 is the lowest one, and in the
optimization attempt of the observation space they can be
omitted in a first approach.

Drawing computational conclusions from the pro-
gram just presented and its results, one can see that the
lifetime evolution of singular values σt(θ) does not bring
much new diagnostic information. Also, it will be much
better to see instead the real dimensionless contribution of
primary symptoms, presenting these in terms of dominant
components of U (the hanger matrix) and V (the aligner
matrix) shown by (2a). In order to be sure that the addition
of the system lifetime as a new symptom and the SOM
preprocessing are favorable, two forms of the SOM are
processed in a new version of the program svdneur.m,
one without a preprocessed primary SOM and the second
with a transformed one. The transformed SOM inclu-
des the lifetime symptom addition, centring, normaliza-
tion to the initial value, and three-point moving averaging
(which changes the initial value mentioned). Let us see
the diagnostic inference power of the new program wi-
thout SOM preprocessing through the window of the same
engine data, as is shown in Fig. 2. The organization of
Fig. 2 is similar to the previous one, with the addition of
three hanger and aligner matrix components. We can see
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Fig. 2. Primary SOM of the same diesel engine processed by a new program svdneur.mwith
new possibilities of assessing the symptom contribution of hanger and aligner matrices.

here that the dominance of the peak vibration accelera-
tion symptom (top left) can be observable in all subplots,
being the first generalized fault symptom (middle-left pa-
nel), and its influence (Symptom 3 in the SOM) can only
be comparable to the other acceleration Symptoms 1 and
2. The maximal gain from the transformation of the SOM
can be noticed from the comparison of the middle panels
of Figs. 1 and 2. There is no doubt that all symptoms must
have the same range, and using the symptom of a different
physical origin in some cases of condition monitoring, we
use a transformation of the SOM as in Fig. 1 in each case.

The running conditions of machines, such as load or
environmental interactions, can be hard to control given
some stochastic components at every symptom reading.
This was the reason why we have previously introduced
the three-point moving average of each component of the
observation vector. Next figures will show how it works
in a real measurement situation.

As the next example, let us analyze multi-symptom
observations of bearings tested on an accelerated wear
stand. Here seven vibroacoustic symptoms were measu-
red together with the power of the driving motor and the
temperature of the bearing outer race. In each case of the
new bearing test, the power of the driving motor fell down
abruptly as a result of bearing driving. Moreover, this phe-
nomenon disturbs greatly the observation and the resulting
processing of the SOM. But the moving average opera-
tion of the SOM columns can remove this inconvenience
totally, as can be seen when comparing Figs. 3 and 4.

The running-in symptom values were totally cancel-
led (Fig. 4) when the moving average operation was ap-
plied to the same data. Also the extraction and differen-
tiation of the generalized fault symptom SD1 (the middle-
left panel) is obvious. The same concerns the contribution
of primary symptoms in the creation of SD1 (the middle
left panel), where Symptoms 7 and 8 (driving power and
race temperature) can be neglected without loss of infor-
mation.

Note the decreasing Frobenius norm of the SOM and
the volume of the fault space due to transformation. At the
same time, the rank of the SOM is not changed. Also note
that the contribution of singular values σi was changed
much (upper-right panel) due to removing the influence
of the receding symptom.

Finally, one can say that the evolution of the gene-
ralized fault SD1 obtained now, as a result of the proces-
sing of the transformed SOM, is almost monotonic. In this
way, it is just ready to undertake the go/do not go diagno-
stic decision at the end of the bearing diagnostic test. This
can be done by an operator or automatically, when apply-
ing the concept and calculation of symptom reliability and
the symptom limit value Sl (Cempel et al. 2000; Natke,
2002; Cempel 1991).

From the ball bearing test stand, let us pass to the
huge fan with a rotor mass of three tons, which pumps air
into the mining shaft, where the demand for the air is un-
controllable. As is shown in Fig. 5, even the transformed
SOM gives unstable symptoms. But the SVD operation
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Fig. 3. Multisymptom diagnostic observation of the rolling bearing krak3 on an accelerated
test stand with an untransformed SOM and a visible bearing driving for one period.

Fig. 4. Bearing test stand as before krak3, but with processing using a transformed SOM.
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Fig. 5. Vibration diagnostics of a huge fan for the ventilation of mining shaft, where the air de-
mand (load) is uncontrollable, but possible to diagnoze with the program svdneur.m.

on the SOM allows us to distinguish a prevailing genera-
lized fault SD1, and another one which is unstable. When
we apply a rescaling of the SOM as in (Cempel and Taba-
szewski, 2007), even that generalized fault can be stable
and ready for making a diagnostic decision. It is also easy
to decide there that the symptom which is primary 6 does
not give essential diagnostic information, which can be
noticed both as a low contribution in the middle right and
as a small weight in the bottom-right panel. A similar de-
cision can be prompted strongly when analyzing the upper
panel of Fig. 6, which presents the sum of the absolute we-
ights of columns of the V -aligner matrix for the case of a
transformed and an untransformed SOM (the transformed
case has additionally the system life θ as the first primary
symptom).

The bottom panel of Fig. 6 illustrates the neuron
summation concept according to the relation (9). Note that
when comparing this panel with the bottom one of Fig. 5,
we can notice the same diagnostic information, although
they are calculated according to different formulae. This
sums of weight as in (9) seems to be a good starting po-
int to connect SVD with neural nets (Dunham, 2003) or
some neurons, having the final goal of the prognosis and
condition recognition. But this can be the topic of delibe-
rations and calculations, and perhaps a next paper if some
advantage will be produced in this way.

As is commonly known, the main goal of condition
monitoring is to stop a machine for a renewal before its

Fig. 6. Sensitivity measure of primary symptoms (top), and an
attempt to validate the NN concept for the fan sier1.

breakdown. So, we should determine the symptom limit
value Sl which enables us to do this safely. This limit
value can base on some experimental practice, some stan-
dards (e.g., ISO), or it can be assessed by the new con-
cept of symptom reliability R(S) (Natke, 1997; Cempel,
2000). Figure 7 shows this possibility of assessing the
symptom limit value Sl (the bottom-right panel), combi-
ned with another possibility of optimizing the dimension
of the primary symptom observation space. One can no-
tice that Symptom 13 does not give any contribution to the
main generalized fault symptoms 1–3 shown there. Hence
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Fig. 7. Diesel engine similar to that considered at the beginning (Figs. 1 and 2) but processed
using new multidimensional condition monitoring software assessing the symptom limit
value Sl and optimizing the dimension of the symptom observation space (one symptom
removed).

with any loss of vital information, this primary symptom
can be omitted from processing, and this decision can even
be made in an automatic way, when this manner of multi-
dimensional data fusion is implemented in some real con-
dition monitoring system.

4. Condition assessment and forecasting
in a multidimensional case

To the best of the author’s knowledge, much is known on
the subject of condition assessment of machines and its
forecasting in the one-dimensional case, i.e., the case of
one fault and one symptom. We can begin this subject
by studying some standards, national or international, like
ISO2372, looking for a gap between the ISO limit and the
measured symptom. The same can be done with respect
to the forecasted symptom value. We can use the oldest
and simplest method described in (Cempel, 1987) or, e.g.,
advanced forecasting techniques based on neural nets (Ta-
baszewski, 2006). However, in our case we have multi-
dimensional observations of machine conditions, and the
possibility to extract generalized faults of the object un-
der investigation, as is shown in the bottom panels of
Figs. 1 and 7. Here we have the choice to follow each
particular generalized fault (SDi), or to take into consi-

deration the total damage advancement in the generalized
symptom denoted here as SumSDi. As the generalized
fault extracted by SVD is dimensionless in nature and is
the result of some linear weighing as explained in Fig. 6,
no symptom limit value taken from some standards (e.g.,
ISO) can be applied in our case. We have to elaborate a
special technique of condition assessment and forecasting
specific to our multidimensional case. The bottom panels
of Fig. 7 are the first step in this direction. Here we have
the possibility to predict the system life based on symptom
reliability Sl calculated in the bottom-right panel. This li-
mit value (denoted here as Sln) is shown in the bottom-
left panel as it determines the system residual life by the
cross-section with the generalized total damage symptom
SumSDi. This is a direct possibility of system residual
life assessment, without a forecast of a next symptom va-
lue, SumSDi provided for the generalized total damage
symptom in this case.

Concerning symptom value forecasting, there exist
now many methods and techniques of forecasting symp-
tom values and conditions (Tabaszewski, 2006), but it se-
ems to be worthwhile to present here a relatively new con-
cept of forecasting flowing directly from grey system the-
ory (GST). This theory, presented for the first time in 1982
by Deng (Deng, 1982; Deng 1989), stems from the idea
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that not all observations of a dynamical system are accu-
rate and reliable enough, partly known, partly unknown,
and there must be some inherent mechanisms in the fore-
casting method to support the inaccurate data of the evo-
lution of the observable system. The area of application
covered by GST includes grey relational analysis, grey
modelling and prediction, as well as decision making and
control. It covers not only all branches of engineering, but
economic and social sciences as well. There is no room
here to present details of the grey system (GS) prediction
methodology. We will describe it qualitatively, passing
only some important reference (Wen, 2005).

In general, GST assumes that our incomplete and un-
certain observation can be the output of some dynamic
multi-input system of a high order described by a grey
differential or difference model (Deng, 1982; Wen, 2005).
In condition monitoring, we may assume it is a first-order
system described by a grey differential equation and one
forcing or control input. This simplest case in GST, deno-
ted by GM(1,1), means the grey model of order 1 with one
input only. The output of the system is a series of discrete
observations (symptom readings) denoted here as

x(0) = x(0)(1), x(0)(2), . . . , x(0)(n), (10)

where n ≥ 4 is the number of observations made on a
system, sometimes enough for prediction.

The application of GST to the above symptom re-
adings offers a possibility to forecast the future symptom
value, starting from a very small observation number, and
using the formula

x̂(0)(k + 1) =
[
x(0)(1) − u

a

]
(e−ak − e−a(k−1)), (11)

k = 2, 3, . . . , n, where u and a are parameters to be es-
timated by a special least-squares matrix procedure using
the observed data (10). The hat symbol means a foreca-
sted quantity.

As is well known, one of the indicators of foreca-
sting quality is the error of prognosis and the flexibility to
follow the symptom evolution. What is more, these two
criteria are often contradictory. On the other hand, it has
been found in many papers using GST that this error can
be much smaller if we use only a small portion of fresh
observations, disregarding the old ones. This technique is
known as the rolling modelling (Yao, 2004), or one can
say that we define and use a forecasting window which
remembers only some portion of fresh data.

This forecasting technique was used in our case of
multidimensional condition monitoring, and a special Ma-
tlab program was prepared to forecast the future values of
generalized symptoms of the total damage SumSDi (see,
e.g., Fig. 7) using the grey model GM(1,1) and the win-
dow forecasting technique (rolling modelling). The deta-
ils of rolling forecasting when applied to condition moni-
toring are presented in (Cempel et al., 2007). Here we will

show only the results and conclusions coming from such
symptom processing. Hence, Fig. 7 gives a summary of
the grey system forecasting method for the total damage
symptom SumSDi of the engine sil24.d1 illustrated
already in the bottom-left panel of Fig. 1. The upper pa-
nel of Fig. 8 presents the symptom forecast made by the
model GM(1,1) and calculated for the all accessible data,
thus without the rolling window. As can be seen, the ave-
rage forecasting error is not large, but the forecast does not
follow the evolution of the symptom, and, what is more,
the next forecasted value is almost equal to the previous
one observed. However, if we introduce the rolling win-
dow (middle panel), the forecast quality improves much
with respect to its flexibility, to follow symptom evolution
well and diminish the average error of prediction. The
last conclusion is shown separately in the bottom panel of
Fig. 8, where the average forecasting error is shown as a
function of the span of the rolling window. We can obse-
rve here that the window span applied, w = 5, seems to
be optimal with respect to the average error as well as the
forecasting flexibility.
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Fig. 8. Specifics of grey system forecasting by a GM(1,1) mo-

del, as applied to the generalized symptom SumSDi of
Fig. 1.

If we accept this forecast, we can next compare the
forecasted symptom value with the symptom limit va-
leu Sl in a given case. We can find this value proces-
sing the data of the sil24d1 engine by the program
svdavgopt.m obtaining the limit value as Sl = 4.9.
This means that the last three forecasts and two symptom
readings already exceeded the calculated symptom limit
value. In addition, this seems to be true, since after the
last symptom reading the engine crankshaft was broken
down.
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5. Conclusions and further problems

Looking back at the problems considered and illustrated
above as well as in previous papers, we can draw several
conclusions and indicate future problems:

• Singular value decomposition (SVD) seems to be a
good technique of diagnostic information extraction
from the SOM, which is equivalent to, or sometimes
better than, principal components analysis (PCA).

• By this decomposition, we can transform the obse-
rvation space described by the SOM into the needed
less dimensional fault space of the observed system.
Moreover, we can optimize our observation space,
omitting some less fault sensitive primary symptoms.

• Real machine condition monitoring data are some-
times unstable and may have a stochastic compo-
nent, so rescaling and averaging the symptoms give
us more inference power and stable generalized fault
symptoms SDi .

• There is some analogy of the final step of SVD in
calculating the generalized fault symptom (4) to the
activity of the set of neurons (9), and this needs more
attention and consideration.

• The results of the SVD procedure enable us to deter-
mine the symptom limit value Sl , the quantity most
important in vibration condition monitoring.

• Having extracted generalized fault symptoms by
SVD, we can pass to the condition recognition and
forecasting task, using the calculated symptom limit
value Sl .

• For the forecasting task, the use of grey system the-
ory was shown here, which is particularly suited for
short data sequences which are sometimes encounte-
red in the machine condition monitoring area. This
technique gives us good a flexibility of forecast and
a small average error.
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