
Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 4, 581–592
DOI: 10.2478/v10006-008-0051-6

LOCAL DETECTION OF DEFECTS FROM IMAGE SEQUENCES

EWARYST RAFAJŁOWICZ, MAREK WNUK, WOJCIECH RAFAJŁOWICZ

Institute of Computer Engineering, Control and Robotics
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50–370 Wrocław, Poland
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Our aim is to discuss three approaches to the detection of defects in continuous production processes, which are based on
local methods of processing image sequences. These approaches are motivated by and applicable to images of hot metals
or other surfaces, which are uniform at a macroscopic level, when defects are not present. The first of them is based on
the estimation of fractal dimensions of image cross-sections. The second and third approaches are compositions of known
techniques, which are selected and tuned to our goal. We discuss their advantages and disadvantages, since they provide
different information on defects. The results of their testing on 12 industrial images are also summarized.
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1. Introduction

Problems of on-line detection of defects in metals, ceram-
ics and other goods are still challenging, since both earlier
successes in research (Davies, 2005; Davies, 2008; Mala-
mas et al., 2003) and the growth of computational power
stimulate the need for monitoring more demanding and
faster production processes. The main difficulty is in
on-line and reliable processing of subsequent images,
which partially overlap. Furthermore, defects are fre-
quently small and differ only slightly from their back-
ground, while their shapes usually cannot be precisely de-
fined. These features motivate our attempts to elaborate
a new method for detecting defects as well as composing
and tuning known subalgorithms into efficient methods.
In contrast to global methods (see (Rafajłowicz, 2008) and
the bibliography cited therein), we put emphasis on lo-
cal methods, since in certain industrial processes we are
faced with global variability of image intensity, which is
not a defect indicator, while local variabilities of globally
nonuniform intensities are such indicators.

As an example of such a process, which was motivat-
ing for the authors, consider a hot metal slab just before
entering a hot rolling mill. Images of the slab can be char-
acterized as follows:

1. Defects which are easily visible by the human eye
are also visible on images taken by CCD or CMOS
cameras, but their contrast is very low (even 10–20
in the scale [0, 255]).

2. The same images, when observed by an infra-red
sensitive camera, reveal a high variability in metal
temperature, even for images taken at intervals of 2–
3 seconds. The variability in the temperature trans-
lates into the variability in the background on images
observed by CCD or CMOS cameras.

3. Furthermore, even the temperature (hence, also the
background) of a slab in one image is nonuniform,
since its boundaries are colder.

The reader can find discussions on implementation is-
sues of CCD cameras for registering hot metal surfaces
in (Dworkin, 2006; O’Leary, 2005).

We discuss three approaches to detecting defects,
which take into account the above circumstances. First,
a method which is based on the estimation of fractal di-
mensions of gray levels in cross-sections (see Section 4) is
considered. Fractal dimensions were already used in im-
age processing (Conci, 1998), but their use was global in
the sense that the box counting dimension was estimated
from the entire image. In contrast, we propose to esti-
mate fractal dimensions more locally, for each column (or
row) in order to increase sensitivity to small defects. As
is known (see, e.g., (Barnsley, 1988)), the fractal dimen-
sion of a set, which is composed of subsets having dif-
ferent fractal dimensions, is dominated by the one with
the largest fractal dimension. In our case, defects have
lower fractal dimensions than their surroundings. Thus,
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the proposed local approach is expected to be much more
sensitive to defects than the global one. Additionally, the
estimation of fractal dimensions by the correlation method
is more accurate and less computationally demanding than
the box counting method.

Simultaneously, we discuss two approaches which
are compositions of known operations on images, selected
and tuned to detecting defects in low contrast industrial
images. The first of them (see Section 5) uses the method
of finding all local minima and the morphological open-
ing. The second one (see Section 6) consists of adaptive
background removing and a special kind of thresholding.
The description of each method is accompanied by a sim-
ple example which illustrates its performance, while the
results of more extensive verifications and comparisons
are deferred to the end of the paper.

We emphasize that the methods considered can be
applied to the same task of detecting defects, but they are
not fully equivalent in the following sense. The method
based on estimating fractal dimensions allows only the
detection of defects. The method based on morphologi-
cal operations is able not only to detect defects but also to
localize them. The third approach additionally allows the
estimation of their areas, moments, etc.

Alternative ways of detecting defects can be based
on globally or locally calculated correlations and en-
tropy (Tsai et al., 2003; Skubalska-Rafajłowicz, 2008),
but these approaches require further studies before trying
to apply them to hot metals.

The paper is organized as follows (see Fig. 1): In the
next section we introduce the notations and basic assump-
tions. Then, an outline of the algorithm for redundancy
reduction from overlapping subimages is described. As a

Motion compensated filtering

(Section 3)

Detection of defects

(Section 4,5 or 6)

Counting defects

defects

(only Section 6)

Area or size of

Fig. 1. Flow chart of defect detection steps.

result, we obtain initially filtered and nonoverlapping im-
ages that can be further processed by algorithms which
are described in Sections 4–6. Finally, in Section 7, the
results of their empirical verification are presented.

2. Assumptions

Images that are considered in this paper are represented by
functions f(x, y) of two spatial variables (x, y), where
f(x, y) is the intensity of the gray level of the image at
a spatial coordinate (x, y). As usual, x and y are coor-
dinates of a pixel and they can take only discrete values,
i.e., x ∈ {1, 2, . . . , Nx}, y ∈ {1, 2, . . . , Ny}, where Nx

and Ny denote the image width and height, respectively.
Time-varying images f [t](x, y) have an added temporal
argument t ∈ {1, 2, . . .}. Also the range of f is bounded
to [0, 1] or to integers in the interval [0, 255].

The image g provided by a camera is a noisy version
of the above, and we assume that

g[t](x, y) = f [t](x, y) + ε[t](x, y), (1)

where g[t](x, y) is the observed brightness of pixel (x y)
at time t, while ε[t](x, y) represents zero-mean noise.
A correlation structure of ε[t](x, y) is postulated only in
those sections where it is necessary.

We assume that the observed production line moves
in a horizontal direction at a constant speed. Let a positive
integer Δ > 0 denote the time between the acquisition
of two subsequent frames. Without losing generality, we
assume that Δ is the unit of time. During that time the
production line moved, and the image of the same portion
appears in the next frame h > 0 pixels further. In other
words, for all pixels and time instants we have

f [t](x + h, y) = f [t− 1](x, y). (2)

Note, however, that we admit

g[t](x + h, y) �= g[t− 1](x, y), (3)

since noise is not directly linked to the parts of the moni-
tored production line.

Some remarks concerning images to which our as-
sumptions apply are as follows:

1. Hot metals before entering a rolling mill can be ob-
served by infrared cameras or by industrial cameras,
working on the border between visible and infrared
light.

2. Monitoring the production of fabrics is a classic ex-
ample of applying quality monitoring.

3. The results of this paper also apply when discrete
products appear in front of a camera. In such a case
the reduction of redundant information may not be
needed.
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Fig. 2. Example of applying motion compensated filtering to
hot metal slabs. Global nonuniformity of the tempera-
ture filed is visible.

3. Motion compensated filtering

Inequality (3) implies that it is reasonable to filter out
noise, taking into account that the corresponding pixels
of the clean image f have moved. Clearly, if h ≥ Nx,
then motion compensated filtering is not relevant. Thus,
to the end of this section we assume that h < Nx. This
means that the same part of the production process is vis-
ible at least m

def= �Nx/h� times, where �a� is the largest
integer not exceeding a.

From (2) it follows that for unavailable ‘clean’ im-
ages we have

f [t+j](x+j h, y) = f [t](x, y), j = 1, 2, . . . , m. (4)

Hence, averaging their noisy counterparts as

m−1
m∑

j=1

g[t + j](x + j h, y), (5)

we obtain f̂ as an estimate of f , but with reduced variance.
Note that the averaged full image is obtained after every
m time steps. Later in this paper subsequent averaged im-
ages will be denoted by f̂ [n](x, y), n = 1, 2, . . . Such
images can be further processed in the same way as if the
acquisition time were synchronized with the speed of the
production line. In other words, each f̂ [n](x, y) contains
its own portion of the production line. Note that the length
of the time interval between n and n + 1 is equal to m Δ.

Having f̂ [n](x, y) at our disposal, we can process it
further either column by column, as proposed in the next
section, or as a whole image, as described later.

4. Defect detection by estimating fractal

dimensions in cross-sections

In this section we propose a method of detecting defects
in otherwise uniform surfaces by estimating fractal dimen-
sions from images. We refer the reader to (Barnsley, 1988;
Falconer, 1990; Ott, 1993; Schuster, 1988) for several def-
initions of fractal dimensions and for classical methods
of their estimation, and to (Chan et al., 1995; Constan-
tine, 1994; Davies, 1999; Kent, 1997; Istas, 1997; Benassi

et al., 2002; Skubalska-Rafajłowicz, 2005) for more re-
cent contributions, relevant to this paper.

The following conclusions can be drawn from the
analysis of Fig. 3:

1. The brightness levels in cross-sections are very wig-
gly and one can expect that they can be described by
a fractal stochastic process.

2. When a cross-section does not coincide with a defect,
then its fractal dimension is relatively high (see the
small but frequent twisting and turning movements
in the right upper panel of Fig. 3).

3. In the intervals where cross-sections go through de-
fects, one can observe larger but less wiggly oscilla-
tions (see the right lower panel of Fig. 3).

The last conclusion is crucial for the rest of this sec-
tion, since smaller variations in a curve lead to its smaller
fractal dimension. Thus, to estimate fractal dimensions in
cross-sections, it suffices to find local minima of the curve,
which is composed of the fractal dimensions in cross-
sections and to set a threshold for the fractal dimension
in a local minimum, below which a given cross-section is
declared to contain defects.

The key step in successful applications of the above
simple idea is in a precise estimation of a selected fractal
dimension. For our purposes, we select the correlation

0 50 100 150 200 250 300
60

65

70

75

80

85

90

95

100

105

0 50 100 150 200 250 300
60

65

70

75

80

85

90

95

100

105

Fig. 3. Left panel – a piece of metal with defects and lines, indi-
cating where cross-sections were selected. Right panel –
brightness in the marked cross-sections of the metal sur-
face (the upper right plot corresponds to the left cross-
section).

fractal dimension, which is defined below. Then, we shall
describe the method of its estimation from samples.
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As mentioned above, we estimate a fractal dimen-
sion for each vertical cross-section of images. Thus, sub-
sequent images f̂ [n](x, y), n = 1, 2 . . . are considered
as one long entity. Fix x and denote by s(y) the corre-
sponding column of f̂ [n](x, y). We skip the number n of
this image for brevity and in order to emphasize that each
column in each image is processed in the same way.

We assume s(y) is a stationary stochastic process
with a finite variance and write γ(y) = cov(s(y), s(0))
for its covariance function at distance y. Following
(Davies, 1999) we assume a relatively simple model for
the covariance function

γ(y) = γ(0)− c|y|2H + o(|y|), as y → 0 (6)

for certain c > 0, where o(|y|) denotes terms which de-
cay to zero faster than |y| as |y| → 0. In the above,
0 < H ≤ 1 is the Hurst exponent, which characterizes
the smoothness1 of trajectories of s(y). For a large class
of processes, H is related to the fractal dimension of s as
follows:

Fdim(s) = 2−H. (7)

Equality (7) holds for a wide subset of second-order
stochastic processes. It is not, however, valid for every
second-order process. (See the monograph (Adler, 1981),
Ch. 8, and (Benassi et al., 2002; Benassi et al., 2003; Tri-
cot, 1995) for sufficient conditions.)

The correlation method (CM) of estimating the Hurst
exponent H and by (7) also the correlation fractal dimen-
sion can be described as follows (see (Davies, 1999)).

Let si denote equidistant samples of process s(iτ),
τ > 0, i = 1, 2, . . . , N . If τ = 1, then all pixels in a given
cross-section are taken into account. In this case we have
N = Ny . Select the number of lags, 1 < M < N , say,
which should be a fraction of N . Define the variogram

gj = (N − j)−1

N−j∑
i=1

(si+j − si)2, (8)

j = 1, 2, . . . , M , which estimates 2(γ(0) − γ(jτ)). Ac-
cording to (6), for |y| small enough,

log(γ(0)− γ(y)) = 2H log(|t|) + const.

Thus, the estimator Ĥ of the Hurst exponent H is cal-
culated as half of the slope of the linear regression fit of
log(gj) on log(j), j = 1, 2, . . . , M . Finally, the fractal
dimension is estimated as F̂dim(s) = 2− Ĥ .

Extensive simulations reported in (Rafajłowicz,
2004) indicate that the estimation errors of the above al-
gorithm can be approximated by the Gaussian distribution
with zero mean and dispersion 0.05. As we shall see be-
low, this level of accuracy is in many cases sufficient for
detecting defects.

1For a Gaussian process H = 1, if s( · ) is differentiable.

Having estimated fractal dimensions of cross-
sections, it remains to select a threshold 0 < Fmin < 1.
If the local minimum of the fractal dimensions is below
Fmin, then the existence of defects in the current cross-
section is signaled. Equivalently, one can use Hmax

def=
2− Fmin and a signal is given if in the local maximum of
Ĥ we have Ĥ > Hmax.

Summarizing, the proposed method runs as follows:

Step 1. Acquire gray levels si, i = 1, 2, . . . , N of pixels
of the next cross-section s. For j = 1, 2, . . . , M ,
calculate gj according to (8).

Step 2. Find the minimum of

M∑
j=1

(log(gj)− a log(j))2 (9)

with respect to a (denote the minimizers by â), which
yields

â = C−1
M

M∑
j=1

log(gj) log(j), (10)

where CM
def=

∑M
j=1 log2(j) is a constant, which can

be precomputed together with log(j)s.

Step 3. Calculate F̂dim(s) = (4− â)/2 as the estimate
of Fdim(s) (or the estimate Ĥ(s) = â/2 of the Hurst
exponent).

Step 4. If in the cross-section s the local minimum of
F̂dim(s)s is present and F̂dim(s) < Fmin, then de-
clare the existence of defects in the cross-section s.
(Equivalently, we search for local maxima of Ĥ(s)
and the existence of a defect is declared if Ĥ(s) >
Hmin.)

Step 5. Repeat from Step 1.

In the above algorithm, Fmin (respectively Hmin) is
a preselected level, which controls the sensitivity of the
method (see Section 7). When tuning the above method, it
is more convenient to work with the Hurst exponent curve
Ĥ(s) than with F̂dim(s), since our eyes locate local max-
ima more precisely than minima.

Several remarks concerning the above algorithm are
as follows:

• As the indicator of the local minimum of F̂dim(s) at
s we take the inequalities F̂dim(s − 1) > F̂dim(s)
and F̂dim(s + 1) > F̂dim(s).

• The algorithm does not guarantee that Ĥ ≤ 1 and
F̂dim ≥ 1. This can be done by considering the least
squares method with constraints. We do not intro-
duce such modifications, since it occurred that a vi-
olation of the constraint Ĥ ≤ 1 frequently appears
exactly when a defect is present (see the example be-
low).
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1.5 Upper left panel – a hot slab with defects.
Bottom left panel – the estimates of the Hurst
exponent for each vertical cross-section of the
slab (local maxima indicate cross-section with
defects).
Upper right panel – defects detected by apply-
ing the sequence of morphological operations.

Fig. 4. Illustrative example of the performance of the methods described in Sections 4 and 5.

• The computational complexity of (10) is O(N),
since M is a fraction N (usually, M = N/10). The
calculation time, using a dual core 2.4 GHz com-
puter, for N = 280 was about 0.0025 s. Assuming a
pixel width of 0.4 mm, we can assure on-line moni-
toring of continuous production processes, which run
with at a speed of 20 cm/s.

The performance of the proposed method is illus-
trated on an image of a hot metal slab, which is shown in
the upper panel of Fig. 4. In the lower panel of this figure
the plot of the Hurst exponent estimates in vertical cross-
sections is shown. Each point of this plot was obtained by
estimating the Hurst exponent from one column of pixels
of the slab image. According to the proposed algorithm,
one should look at local maxima of the Hurst exponents
and to select those which are greater than Hmin as indi-
cators of defects. The analysis of the curve in the lower
panel of Fig. 4 shows that if we take Hmin = 0.55, say,

then the peaks precisely point out all the defects which
are visible in this slab. It is also clear that this method
may overlook a defect if two or more defects are placed
exactly one over another. We shall return to the discus-
sion of properties of this method in Section 7.

5. Morphological technique in defect

detection

As mentioned earlier, industrial images of hot metals fre-
quently have a nonuniform and nonstationary background.
For these reasons, the well-known techniques, such as
simple thresholding and contouring, fail. Our aim in this
section is to propose a combination of morphological op-
erations which detects defects and is robust against the
nonuniformity of a background and its nonstationarity.

In the next section we propose an alternative way of
overcoming these difficulties, which is based on a special
kind of thresholding and adaptive background estimation.
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Our first step is to find all local minima in an im-
age. The rationale behind this step is that local minima
are areas in which the temperature is lower than in their
surroundings. A lower temperature, in turn, may indicate
the presence of a defect. Additionally, nonuniform and
nonstationary background does not influence the detection
of minima, since this operation is local. It may, however,
happen that relatively large areas having the same tem-
perature, which is lower than the surroundings, are erro-
neously marked as defects. The only drawback of finding
all local minima is in a relatively high computational com-
plexity, but the algorithm of van Herk, Gill and Werman
(Gill, 1993; Van Herk, 1992) essentially reduces the com-
putational burden.

In order to reduce the number of false positive de-
cisions, one can use a number of tools, but we sug-
gest to stay within the area of morphological algorithms
(Davies, 2005; Jahne, 2002; Pratt, 2001) and to use the
opening operation.

It should be noted that the opening operation was al-
ready applied by Davies (2005, pp. 661–665) in the in-
spection of cereal grains.

The justification of applying the opening operation
also in our case is the following: By selecting a structur-
ing element of an appropriate size, we can control the size
of marked areas, which are wiped out. The erosion op-
erator is usually advocated for this purpose, but we prefer
the opening operator, combined with local minima, for the
following reasons:

• The opening operator completely removes marked
areas that are smaller than a prescribed size and ap-
proximately restores the areas of remaining objects,
since it is a combination of erosion followed by dila-
tion with the same structuring element.

• After the opening operation, the object boundaries
become smoother, which is in agreement with shapes
of defects in hot metals, since they frequently arise as
bubbles caused by gases.

• An algorithm for simultaneous and efficient finding
all local minima and performing the opening opera-
tion is known (Vincent, 1993).

Specifically, the proposed sequence of morphologi-
cal operations runs as follows:

Step 1. Find all local minima, which are deeper than a
specified level 0 ≤ D < 255. Simultaneously, all
the surrounding pixels of a given local minimum are
also marked if they have the same gray level as the
minimum.

Step 2. Apply the opening operation.

Step 3. Count and/or find positions and/or (approxi-
mately) evaluate the sizes of defects.

The result of applying Operations 1 and 2 to our test
image is shown in Fig. 4 (the upper right panel). As one
can notice, local minima indicate points which are iden-
tified as defects by a visual inspection. Simultaneously,
also points which are not classified as defects are marked,
since this is a colder large area (the upper right corner).

6. Selection of the standard image

processing procedures for defect

detection

The basic conditions of defect detection have been formu-
lated on the basis of theoretical and experimental analysis
of a real industrial process of continuous casting:

• The images of defects are dark, as a result of worse
heat propagation from the inside of the slab.

• The brightness of the slab surface is not uniform.
Particularly, the slab boundaries are darker than the
slab centre.

• The average brightness of the slab (which reflects its
temperature) is time-varying. Nevertheless, assum-
ing a constant brightness on the interval of 1 second
seems reasonable.

After some preliminary experiments, the basic pre-
requisites for selecting image processing procedures have
been formulated:

• Gradient-based methods are irrelevant, because the
high-frequency noise is comparable to the amplitude
of the defects.

• The defects are represented by groups of separate
dark spots, rather than connected areas. The elimi-
nation of high-frequency components results in de-
creasing the contrast of the image. Linear low-pass
filtering (both in the space and frequency domains)
are not applicable. Clustering methods for the aggre-
gation of the subregions of similar local characteris-
tics (texture) are highly recommended.

• The brightness of the slab surface is not uniform, and
hence simple thresholding methods cannot be ap-
plied for defect detection. Instead, a variable thresh-
old can be used, with the threshold function esti-
mated on-line, based on the short (1 second) se-
quence of the slab images. The proposed method
allows eliminating the main error sources:

– nonuniform brightness of the slab surface (par-
ticularly on the slab boundaries);

– time-varying average brightness of the slab sur-
face;
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– permanent artifacts resulting from the image
acquisition subsystem (e.g., stains on the lens
and optical filters).

The suggested stages of the image processing system for
the estimation of defects in the metal slab, resulting from
the former analysis, are as follows:

• early processing,

• segmentation (thresholding),

• secondary processing (aggregation),

• parametrization of the extracted blobs (the area and
shape of a blob, an estimated volume of the underly-
ing defect).

A more detailed description of the enumerated stages fol-
lows.

6.1. Early processing. The first problem is to define
the ROI (Region of Interest)—a rectangular area of the
frame, which corresponds to the visible slab surface. Dur-
ing system calibration this can be performed on the basis
of the Hue analysis of the color image (which is a very dis-
tinctive feature of the slab). Better results can be obtained
by applying an adaptive ROI extraction at every one sec-
ond interval or even on every frame basis.

All further processing is limited to the defined ROI,
which significantly reduces the data volume. Applying a
color (RGB) camera allows us to select the signal which
is most relevant to defect extraction. Experiments have
shown that the Red plane is the best, while the Blue—
the worst. In the described experiment we assumed using
only the Red component of the RGB image. Note that it
is possible to replace the color camera with a grey-scale
one, equipped with a Red optical filter, which allows us to
reduce both the equipment cost and the amount of trans-
mitted and acquired data.

The requirement of on-line processing yields choos-
ing thresholding as the segmentation method. The afore-
mentioned nonuniformity of the image brightness, as well
as its time-dependent nature, requires an adaptive version
of the variable-threshold method. It is well known that
the variable thresholding segmentation is equivalent to
the composition of background subtraction and uniform
thresholding.

The slab image is created by the emitted light, rather
than the reflected one. In this case we have to consider
an additive model of image formation. Assuming that the
average value of the nonuniformity is close to zero in a
certain time interval (t1, t2), we can use the slab image,
averaged in that interval, as the correction image fc(x, y).
Hence we can perform a subtractive shading correction:

g(x, y) = f(x, y)− fc(x, y). (11)

Choosing an appropriate constant threshold t, we can per-
form a simple segmentation of the corrected image:

gt(x, y) =

⎧⎨
⎩

1 if g(x, y) ≥ t,

0 if g(x, y) < t,
(12)

which is equivalent to variable thresholding of the original
image:

gt(x, y) =

⎧⎨
⎩

1 if f(x, y) < t(x, y),

0 if f(x, y) ≥ t(x, y),
(13)

with the threshold function

t(x, y) = t + fc(x, y). (14)

We should implement a moving average of the
frames in order to follow slow changes in the average
slab brightness. The brute-force method requires a large
amount of memory space and processing power. We
implemented an iterative algorithm of the exponentially
weighted moving average, which requires only one frame
buffer for the correction image. At the moment nτc

(where τc denotes the image acquisition period) we get
a consecutive image f [n](x, y). The new correction im-
age fc[n](x, y) is formed as a convex combination of the
former correction image and the current frame:

fc[n](x, y) = (1−ε) fc[n−1](x, y)+ε f [n](x, y), (15)

where 0 < ε < 1 determines the degree of smoothing
(for ε closer to zero the filtering is more intensive). In
our context it is expedient to provide also the following
interpretation of ε by an analogy to the first-order low-
pass RC filter, for which the time constant is equal to R C,
where R is the resistance and C is the capacitance of the
filter elements: The ε parameter defines the time constant
of the resulting first-order low-pass filter as

T = − τc

ln(1− ε)
, (16)

where τc is the frame acquisition period. Note that (16)
suggests that in selecting ε, one should take into account
the frame acquisition rate. In our examples, ε = 1/8 was
selected for τc = 0.16 s, which resulted in the time con-
stant T = 1.2 s. Thus, after about 5 T = 6 s, the filter
forgets old frames.

6.2. Segmentation. As shown before, after shading
correction, segmentation can be performed with a fast and
simple method of thresholding. The method is based on
a-priori known distributions of both the object and the
background brightness, and the expected total objects size
(e.g., Bayes classifiers) cannot be used for the lack of a-
priori data.
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Fig. 5. Exemplary results. Upper panels – original, shading correction, segmentation. Bottom panels – aggregation, blob coloring,
contours.

The only information we can rely on is that the de-
fects are represented by connected areas with brightness
lower than the surrounding background. The proposed
method of double thresholding (Rosenfeld, 1982) is lo-
cal (unlike simple thresholding, which is point-based). It
consists in defining two thresholds:

• radical one: tr (the pixels darker than tr belong to
the defect area unconditionally),

• liberal one: tl (the pixel below tl are accepted if in
their neighbourhood there exist pixels of the former
kind).

In our case (dark objects on a brighter background),
tr < tl. Let us denote by b(x, y) a binary image at pixel

(x, y), which is the output of the following double thresh-
olding procedure:

1. Denote by Sxy a neighbourhood of pixel (x, y).

2. Set b(x, y) = 1 if g(x, y) > tl, and simultaneously
one can find a pixel (ξ, ψ) in Sxy such that g(ξ, ψ) >
tr.

3. Set b(x, y) = 1 if for every (ξ, ψ) from Sxy we have
g(ξ, ψ) < tr.

The described method is only slightly more complex
than plain thresholding, but is very robust and does not re-
quire thorough tuning of the tr and tl thresholds. It should
be noted that this approach, called hystheresis threshold-
ing, was used in (Davies, 2005; pp. 209–212), for thinning
detected edges.
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6.3. Secondary processing. The result of threshold-
ing is a binary image representing the slab defects as well
as the imperfections of the image acquisition system. A
practised observer can easily distinguish between them.
In fact, a kind of aggregation algorithm based on relative
nearness of the subareas can solve the problem.

The median filtering allows us to assure a proper
aggregation. In general, this method is computationally
complex, but in the case of a binary image it can be re-
duced to simple voting (a majority filter). It can be imple-
mented as a uniform linear filter with simple thresholding
on the level of half the area of the filter neighbourhood.
Linear (FIR) filters are efficiently implemented in DSPs
and other machines supporting the MAC (Multiply and
Accumulate) instruction.

6.4. Parametrization. The silhouettes, extracted by
segmentation, must be described by some parameters
(area, eccentricity, location within the image frame, etc.).
These parameters can be calculated by means of geomet-
rical moments. Software implementation of this method
can be very efficient (a single image scan is sufficient).
Moreover, even hardware solutions are possible (using the
pipelined architecture, see (Wnuk, 2008)).

The method of moments (Gonzalez, 1977) provides
not only the location of the object represented by the sil-
houette but also many parameters describing its shape
(e.g., Hu moments) (Hu, 1962). The parameters based
on normalized central moments are translation-, rotation-,
and scale-invariant and thus can be used for object classi-
fication.

6.5. Implementation example. Tests of the proposed
image processing sequence were performed with many
real, industrial image sequences of the moving metal slab.
The Khoros environment (2.2.0.0 version) was used in the
experimental implementation. The original color image is
redundant in the described case. For further processing,
only the Red component was used. After shading correc-
tion the defects are clearly visible.

Double thresholding (tr = −20 and tl = −8), with
the neighbourhood radius of 3, results in a binary image
with groups of spots showing the defects. The results of
early processing and segmentation are presented in Fig. 5
(upper panels).

Aggregation with the majority filter (a linear im-
plementation of the median for binary images), with the
neighbourhood radius of 3, results in clear silhouettes of
the defects.

The four-connected blob coloring algorithm was
used for silhouette indexing. The results of secondary pro-
cessing and object indexing are presented in Fig. 5 (lower
panels).

Finally, the blobs parameters, calculated using the
method of moments, are shown in the exemplary printout
(Fig. 6).

"Object number 1 "
Object : 9 pixels
Ratio Obj/Image : 0.03 %
Xcenter : 2.53e+01
Ycenter : 6.48e+01

"Object number 2 "
Object : 6 pixels
Ratio Obj/Image : 0.02 %
Xcenter : 6.05e+01
Ycenter : 9.00e+00

"Object number 3 "
Object : 24 pixels
Ratio Obj/Image : 0.09 %
Xcenter : 1.53e+02
Ycenter : 8.78e+01

"Object number 4 "
Object : 16 pixels
Ratio Obj/Image : 0.06 %
Xcenter : 2.03e+02
Ycenter : 1.26e+01

"Object number 5 "
Object : 236 pixels
Ratio Obj/Image : 0.84 %
Xcenter : 2.23e+02
Ycenter : 4.78e+01

"Object number 6 "
Object : 209 pixels
Ratio Obj/Image : 0.75 %
Xcenter : 2.38e+02
Ycenter : 8.31e+01

"Object number 7 "
Object : 338 pixels
Ratio Obj/Image : 1.21 %
Xcenter : 2.49e+02
Ycenter : 6.10e+01

"Object number 8 "
Object : 72 pixels
Ratio Obj/Image : 0.26 %
Xcenter : 2.69e+02
Ycenter : 2.10e+01

Fig. 6. Parameters of the blobs.
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Table 1. Comparison of tasks that can be realized by the dis-
cussed methods. The column ‘Size’ refers to possibili-
ties of measuring a diameter, area, etc. ‘yes/no’ means
that the task can be realized with a limited accuracy
only.

Defects
Method Counting Locating Size

FracDim yes no no

Morph. yes yes yes/no

DT yes yes yes

7. Discussion and comparisons

Before entering into details of comparisons, we discuss
properties and sources of errors of each method.

Firstly, we concentrate on false decisions.

1. The method based on the estimation of the corre-
lation fractal dimension may overlook a defect if
it is hidden behind another one, i.e., when their
x-coordinates are almost the same while the y-
coordinates are different. This drawback can be re-
duced to some extent by repeating the same proce-
dure to all rows of the image and taking a larger num-
ber of defects detected in rows and columns. This
approach, however, increases the computational bur-
den. In fact, the situation here is similar to the one
which is observed when the method of a lateral his-
togram is used (Davies, 2005). False detections are
possible when additional local maxima of the frac-
tal dimension curve arise as a result of the estimation
errors.

2. The sequence of morphological operations may over-
look defects which are smaller than the size of the
structuring element used for erasing noise, speckles,
etc. It seems that this kind of errors is unavoidable
for this method, since by reducing the size of the
structuring element we simultaneously increase the
number of falsely detected defects.

3. The method of double thresholding may fail to detect
small defects with low contrast between the defect
and its surrounding.

Clearly, all three methods can detect nonexistent defects,
when drops of cooling liquid or other objects are present,
which have visual characteristics similar to those of de-
fects.

As mentioned earlier, the three methods are not
equivalent (see Tab. 1) for the following reasons:

(a) Fractal dimensions along columns allow counting de-
fects but cannot locate them without an additional
computational burden.

(b) Local minima followed by opening allow counting
and locating defects, but erosion followed by dila-
tion, although restores a general shape, introduces
unpredictable changes in the size of a defect. Thus,
this method can be used for measuring sizes and ar-
eas of defects only approximately.

(c) Double thresholding allows counting, locating and
measuring defects.

Summarizing, all three methods provide the num-
ber of defects and at this level they are compared below.
For comparisons, we used 12 slabs (five directly before
the one shown in Fig. 4 and six after it). As the ground
truth we used the number of defects counted by our eyes
(see the last column in Tab. 2). The numbers of defects
found by each of the discussed methods are summarized
in Tab. 2, where FracDim stands for the method described
in Section 4, Norph. is the abbreviation for the method
discussed in Section 5 and DT for the one from Section 6.

We do not have enough empirical data for calculat-
ing the receiver operating characteristic of each method.
However, from Tab. 2 we can estimate the lower bounds
for the probability of a false positive (FP) decision and a
false negative (FN) decision, which are presented in Tab. 3
as a summary of all 12 slabs. We can also investigate the

Table 2. Defects detected by the three methods in the sequence
of 12 slabs.

Nr FracDim Morph. DT True

1 20 8 8 21
2 19 22 16 21
3 20 40 24 21
4 14 24 24 17
5 16 14 13 16
6 14 11 8 16
7 15 12 13 16
8 17 12 15 17
9 18 17 25 21
10 15 8 17 15
11 20 30 7 18
12 18 3 3 17

Sum 206 201 173 216

variability of the discussed methods to changes of their
parameters. The methodology of our studies was the fol-
lowing for each method:

(a) a crucial parameter, influencing the number of de-
tected defects in a dominating way, was selected,

(b) numbers of detected defects from images of 12 slabs
were summed.
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The results of these experiments are summarized in Tab. 4,
where the Hmin parameter was selected for the FracDim
method, the minimal depth of local minima was used in
the Morph. method and a radical threshold tr in the DT
method.

Additionally, the sensitivity of the defects’ areas de-
tected by the DT method to changes of tr were investi-
gated. In this case the sensitivity coefficient, κ, say, is
measured as StdDev/Avg, where Avg is the average of the
defects’ areas detected for a certain range of tr changes,
while StdDev is the standard deviation of these areas. A
summary of the results for the defects’ areas collected
from all 12 images is the following: For tr ranging from
−19 to −22, the sensitivity κ was 5.27%, while for tr in
the range from −15 to −19, the sensitivity was 4.42%.
Thus, the DT method keeps estimated areas of detected
defects at a stable level. For aforementioned reasons we
cannot repeat these investigations for the FracDim and
Morph. methods.

The following conclusions are suggested by the
above empirical studies:

1. The FracDim method provides the numbers of de-
tected defects, which are close to the true ones. Si-
multaneously, it is relatively easily tuned, since the
variability to changes of Hmin is relatively low.

2. The Morph. method behaves well in most cases but
it may happen that the number of false positive de-
tections is almost equal to the number of true defects
(see row 3 in Tab. 2). A fine tuning of the Depth pa-
rameter is required, otherwise one can expect large
FN or FP errors.

3. The DT method has a tendency to underestimate the
number of detected defects, but omitted defects have
small areas and for this reason it is stable in estimat-
ing the total area of defects. Its tuning is also rela-
tively easy (small variability with respect to changes
in tr). One can wonder what the reason of false pos-
itive detections of this method is. A deeper analysis
of Cases 3, 4, 9, 10 in Tab. 2 reveals that the DT
method can split larger defects into parts, leading to
an increase in the number of detected defects, but this
does not significantly distort the estimated areas.

8. Conclusions

A method of motion compensated filtering was presented.
As a result of its application, we obtain subsequent im-
ages, which are filtered and do not contain redundant in-
formation. These images are then processed in order to
detect defects. Three methods, which are dedicated for
detecting low contrast defects, were tuned for and tested
on industrial images of hot metal surfaces. All of them

Table 3. Estimated lower bounds for the probabilities of FP and
FN decisions, estimated from 12 slabs.

Method FP FN

FracDim ≥ 0.06 ≥ 0.015

Morph. ≥ 0.25 ≥ 0.18

DT ≥ 0.09 ≥ 0.28

Table 4. Variability of the number of defects to changes in pa-
rameters (see explanations in the text).

FracDim
Hmin 0.4 0.45 0.5 0.55 0.6

Total 207 206 206 201 196

Morph.
Depth 8.0 10.0 11. 12. 14.

Total 270 234 201 177 150

DT
tr -18 -19 -20 -21 -22

Total 180 176 173 172 166

proved their abilities of detecting most of the larger de-
fects. On the other hand, each method may have left some
defects undetected. Additionally, the method based on
double thresholding proved their stability in estimating ar-
eas of defects. In a more demanding application, it seems
reasonable to apply selected two or even all three methods
simultaneously.
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