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The diagnosis of multiple faults is significantly more difficult than singular fault diagnosis. However, in realistic industrial
systems the possibility of simultaneous occurrence of multiple faults must be taken into account. This paper investigates
some of the limitations of the diagnostic model based on the simple binary diagnostic matrix in the case of multiple faults.
Several possible interpretations of the diagnostic matrix with rule-based systems are provided and analyzed. A proposal of
an extension of the basic, single-level model based on diagnostic matrices to a two-level one, founded on causal analysis
and incorporating an OR and an AND matrix is put forward. An approach to the diagnosis of multiple faults based on
inconsistency analysis is outlined, and a refinement procedure using a qualitative model of dependencies among system
variables is sketched out.
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1. Introduction

The diagnosis of multiple faults turns out to be more com-
plex than that of singular faults diagnosis. This is not only
because the number of faults increases but also due to the
occurrence of new phenomena that must be considered,
such as a combination of mutual influence of faults, com-
pensation, and combinatorial explosion of possible failure
scenarios. The number of possible diagnoses increases in
a significant way since multiple fault diagnoses are ele-
ments of the power set of single faults.

Numerous works are devoted to the analysis of meth-
ods for singular and multiple fault diagnostic approaches.
Some of the popular models include extended diagnostic
matrices (Kościelny, 2001; Kościelny, 2004b; Kościelny,
2004a), set-covering model (Reggia, Nau and Wang,
1983; Reggia, Nau and Wang, 1985), consistency-based
reasoning (Reiter, 1987; Hamscher, Console and de Kleer,
1992; Ligęza, 2004), logical causal graphs (Fuster-Parra,
1996; Ligęza and Fuster-Parra, 1997; Ligęza, 2004), and
many other (Tzafestas, 1989a; Tzafestas, 1989b; Davis

and Hamscher, 1992; Korbicz, Kościelny, Kowalczuk and
Cholewa, 2004). In the area of Fault Detection and
Isolation (FDI), emerging from classical automatic con-
trol, these problems are discussed in (Frank, 1990; Frank,
1996; Korbicz et al., 2004).

A recent comparative analysis of the approaches
coming from the automatic control area and the FDI com-
munity compared with the ones based on Artificial Intel-
ligence (AI) techniques and developed by the DX Com-
munity1 is provided in (Cordier et al., 2000b; Cordier
et al., 2000a). It turns out that both of the approaches,
developed almost independently by the FDI and DX re-
searchers, are highly parallel, and there are certain far go-
ing analogies between analytical redundancy analysis and
consistency-based reasoning. Moreover, both of the ap-
proaches are based on similar assumptions and use only
a model of the correct system behavior. Neither expert
nor statistical knowledge or evidence of the fault history
is taken into account.

1DX is a series of conferences devoted to automated diagnosis meth-
ods emerging from AI.
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In this paper an analysis of the binary diagnostic ma-
trix approach (Kościelny, 2001; Kościelny, 2004b; Koś-
cielny, 2004a) and its limitations in the case of more com-
plex systems, as well as the occurrence of multiple faults,
are briefly discussed. It is argued that some limitations
of this model, based on direct, forward interpretation, can
be overcome if backward search procedures are applied.
Further, the model should be extended in order to cover
the case of multiple faults. As a consequence, a new di-
agnostic model, composed of two types of matrices form-
ing two levels, is developed and presented in detail. The
paper builds on ideas initially presented at some confer-
ences, namely, (Ligęza and Kościelny, 2007b; Ligęza and
Kościelny, 2007a; Ligęza and Kościelny, 2007c).

One of the matrices defines the so-called interme-
diate conceptual faults and it is analogous to the clas-
sical OR matrix, while the second level matrix com-
bines the influence of the conceptual faults onto mani-
festations and is a new type AND matrix. The proposed
model covers models founded on analytical redundancy
and consistency-based reasoning (Cordier et al., 2000b;
Cordier et al., 2000a). Simultaneously, it presents a gen-
eralization of the classical diagnostic matrix approach
(Kościelny, 2001; Kościelny, 2004b; Kościelny, 2004a). A
diagnostic algorithm for generating possible minimal di-
agnoses is also presented here. Moreover, an extension
based on the analysis of qualitative influences among the
system variables for eliminating certain irrelevant diag-
noses is put forward.

Taking into consideration the logical point of view,
the presented approach is based on the classical Reiter the-
ory (Reiter, 1987), and incorporates the ideas of AND/OR
causal graphs (Ligęza and Fuster-Parra, 1997). It is aimed
at an extension and improvement of the FDI approach
based on a single OR type diagnostic matrix, which is in-
sufficient in the case of multiple faults diagnosis.

2. Diagnostic matrices and their logical
models

Traditional binary diagnostic matrices (Kościelny, 2001;
Kościelny, 2004b; Kościelny, 2004a) are limited in prac-
tice to the diagnosis of single faults. This follows
from their internal structure and the assumed operational
mode—any such matrix constitutes a set of K patterns
(the columns forming the so-called fault signatures) of
precompiled knowledge for fast decision making.

Consider a binary diagnostic table of the generic
form shown in Table 1. Faults are headers of the columns
of the table, while manifestations are labels of its rows.

Consider the k-th column of the matrix. Let
gi1k, gi2k, . . . , gikk be all the elements of this column tak-
ing value 1 and hence forming the signature for fault fk.
The knowledge specified with Table 1 is normally inter-
preted as a set of forward-chaining rules, each of them of

Table 1. General scheme of a binary diagnostic matrix.

M/F f1 f2 . . . fk . . . fK

m1 g11 g12 . . . g1k . . . g1K

m2 g21 g22 . . . g2k . . . g2K

...
...

... . . .
... . . .

...
mi gi1 gi2 . . . gik . . . giK

...
...

... . . .
... . . .

...
mJ gJ1 gJ2 . . . gJk . . . gJK
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Fig. 1. Exemplary arithmetic system.

the form

rulek : mi1 ∧ mi2 ∧ . . . ∧ mik
−→ fk. (1)

So, in fact, we have K simple expert-like diagnostic rules
interpreted in a single step of inference in the forward di-
rection. However, it turns out that this is not the only
possible interpretation. Below, with the example of a
multiplier-adder system, several other possible interpre-
tations are provided.

3. Multiplier-adder example

Consider the diagnosis of the classical, non-trivial bench-
mark system being a multiplier-adder system presented in
(Reiter, 1987) and further explored in the domain liter-
ature (Hamscher et al., 1992; Ligęza, 2004). It is also
used for the illustration of the FDI and DX procedures in
(Cordier et al., 2000b; Cordier et al., 2000a). The system
is presented in Fig. 1. It is composed of two layers. The
first one contains three multipliers, m1, m2, and m3, re-
ceiving input signals. The second layer is composed of
two adders, namely, a1 and a2, producing the output val-
ues. Only the inputs (of the first layer) and outputs of the
system (of the second layer) are directly observable. The
intermediate variables are hidden and cannot be measured.

In the following, we shall refer mostly to the classical
diagnostic problem as follows: The current state of the
system is that the inputs are A = 3, B = 2, C = 2, D = 3
and E = 3. It is easy to check that—if the system works
correctly—the outputs should be F = 12 and G = 12.
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Since the current value of F is incorrect, namely, F = 10,
the system is faulty. At least one of its components must
be faulty.

3.1. Multiplier-adder: The case of binary diag-
nostic matrix. Let us analyze the binary diagnostic
matrix of the example system. The set of faults will
be denoted by F and the set of manifestations by M .
There are five potential faults corresponding to failures
of the five components. For simplicity, we write F =
{m1,m2,m3, a1, a2}. Further, there are only two diag-
nostic signals or rather manifestations; for simplicity we
denote them as M = {F,G}.

When considering the signal flow inside the system,
it can be observed that the components {m1,m2, a1} are
the only ones influencing the signal F . Similarly, the
components {m2,m3, a2} are the only ones influencing
the signal G. The binary diagnostic matrix obtained from
such a straightforward causal analysis has the form shown
in Table 2. The use of the classical FDI approach based

Table 2. Simple binary diagnostic matrix for the multiplier-
adder system.

M/F m1 m2 m3 a1 a2

F 1 1 1
G 1 1 1

on fault signatures (Kościelny, 2001) and some possibili-
ties of an expert-like and causal interpretation of Table 2
are discussed in (Ligęza and Kościelny, 2007c; Ligęza and
Kościelny, 2007b). In this paper we shall follow a more
complete model.

3.2. More complete model. A further analysis of the
system (Cordier et al., 2000b; Cordier et al., 2000a) al-
lows us to extend the simple matrix through introducing a
third residual corresponding to the difference of signals F
and G. In fact, under the assumed manifestations, one of
the elements {m1, a1, a2,m3} must also be faulty. This
is so since if all of them were correct, then Z = C ·E cal-
culated by m3 must be equal to 6, and since G is observed
to be 12, Y (calculated backwards and under the assump-
tion that a2 is O.K.) must also equal 6; hence, if m1 is
correct, then X must be 6 as well, and if a1 is correct, F
would be equal to 12. Since this is not the case, at least
one of the components used must be faulty.

The complete binary diagnostic matrix is given in Ta-
ble 3. Below we examine the possible rule-based inter-
pretations of the diagnostic matrix given by Table 3 ac-
cording to the principles discussed in (Ligęza and Koś-
cielny, 2007c; Ligęza and Kościelny, 2007b). The follow-
ing results are obtained in terms of forward, expert-like
and backward, causal type inference rules.

Table 3. Complete binary diagnostic matrix for the multiplier-
adder system.

M/F m1 m2 m3 a1 a2

F 1 1 1
G 1 1 1

F − G 1 1 1 1

3.3. Case of forward, expert-like vertical strong di-
agnostic rules (fevs). Through a simple analysis of the
matrix of Table 3, we obtain the following set of strong
(i.e., taking into account both the occurrence and a lack of
the occurrence of symptoms), forward reasoning, expert-
like rules:

rule1fevs : F = 1 ∧ G = 0 ∧ (F − G) = 1 −→ m1,
rule2fevs : F = 1 ∧ G = 1 ∧ (F − G) = 0 −→ m2,
rule3fevs : F = 0 ∧ G = 1 ∧ (F − G) = 1 −→ m3,
rule4fevs : F = 1 ∧ G = 0 ∧ (F − G) = 1 −→ a1,
rule5fevs : F = 0 ∧ G = 1 ∧ (F − G) = 1 −→ a2.

(2)
Observe that the preconditions of the rules 3fevs and

5fevs as well as 1fevs and 4fevs are pairwise identical.
However, the diagnosed faults are different. In fact, in the
case of the singular fault assumption, the faults m3 and a2
are indistinguishable, and so are the faults m1 and a1.

For the analyzed case (F = 1, G = 0 and (F −
G) = 1) only the rules 1fevs and 4fevs can be fired. The
generated diagnoses are m1 and a1 (indistinguishable in
the case of singular faults).

Note that assuming multiple faults, indistinguisha-
bility can be interpreted as a potential multiple fault. In
the analyzed case the indicated diagnosis can be D =
{m1, a1}.

3.4. Case of forward, expert-like vertical weak diag-
nostic rules (fevw). The set of rules presented above in
weak form is as follows:

rule1fevw : F = 1 ∧ (F − G) = 1 −→ m1,
rule2fevw : F = 1 ∧ G = 1 −→ m2,
rule3fevw : G = 1 ∧ (F − G) = 1 −→ m3,
rule4fevw : F = 1 ∧ (F − G) = 1 −→ a1,
rule5fevw : G = 1 ∧ (F − G) = 1 −→ a2.

(3)

Observe that the preconditions of the rules 3fevw and
5fevw as well as 1fevw and 4fevw are pairwise identical.
However, the diagnosed faults are different. In fact, in the
case of the singular faults assumption, the faults m3 and
a2 are indistinguishable, and so are the faults m1 and a1.

For the analyzed case (F = 1, G = 0 and (F −
G) = 1) only the rules 1fevw and 4fevw can be fired. The
generated diagnoses are m1 and a1 (indistinguishable in
the case of singular faults).
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Note that assuming multiple faults, indistinguishabil-
ity can be interpreted as a potential multiple fault. In the
analyzed case (F = 1, G = 0 and (F − G) = 1) the
indicated diagnosis can be D = {m1, a1}.

3.5. Case of forward, expert-like horizontal strong
diagnostic rules (feh). The set of rules generated with
respect to horizontal interpretation of the matrix given by
Table 3 is as follows:

rule1feh : F = 1 −→ m1 ∨ a1 ∨ m2,
rule2feh : G = 1 −→ m3 ∨ a2 ∨ m2.
rule3feh : (F − G) = 1 −→ m1 ∨ m3 ∨ a1 ∨ a2.

(4)
In the examined case one can fire the first and the

third rule. The potential diagnoses are m1, a1, m2, m3,
and a2 as well as, in fact, any combination of them in the
case of admitting multiple faults. Note that both of the
rules point to m1 and a1 so perhaps these diagnoses can
be considered more likely than the other ones.

3.6. Case of backward search with causal vertical
strong rules (bcvs). In the second basic way of interpre-
tation following the direction from faults to signals (equiv-
alent to causal inference), the generated set of rules is as
follows:

rule1bcvs : m1 −→ F = 1 ∧ G = 0 ∧(F − G) = 1,
rule2bcvs : m2 −→ F = 1 ∧ G = 1 ∧(F − G) = 0,
rule3bcvs : m3 −→ F = 0 ∧ G = 1 ∧(F − G) = 1,
rule4bcvs : a1 −→ F = 1 ∧ G = 0 ∧(F − G) = 1,
rule5bcvs : a2 −→ F = 0 ∧ G = 1 ∧(F − G) = 1.

(5)
Note that conclusions of the rules 1bcvs and 4bcvs

as well as 3bcvs and 5bcvs are pairwise identical. When
applying these rules for the backward search of diagnoses
in the analyzed case, we obtain two single fault diagnoses,
namely, m1 and a1, which account for the observed symp-
toms. The interpretation (assuming minimal diagnoses) is
that m1 or a1 must be faulty. It can be also the case that
both of the elements are faulty, i.e., we have a multiple
fault diagnosis {m1, a1}. However, in the context of the
set of rules (5) such a diagnosis would not be a minimal
one.

3.7. Case of backward search with causal vertical
weak rules (bcvw). Applying the weak interpretation
from faults to signals (equivalent to causal inference), the
generated set of rules is as follows:

rule1bcvw : m1 −→ F = 1 ∧(F − G) = 1,
rule2bcvw : m2 −→ F = 1 ∧G = 1,
rule3bcvw : m3 −→ G = 1 ∧(F − G) = 1,
rule4bcvw : a1 −→ F = 1 ∧(F − G) = 1,
rule5bcvw : a2 −→ G = 1 ∧(F − G) = 1.

(6)

Note that conclusions of the rules 1bcvw and 4bcvw
as well as 3bcvw and 5bcvw are pairwise identical. When
applying these rules for backward search of diagnoses in
the analyzed case, we obtain two single fault diagnoses,
m1 and a1. The interpretation (assuming minimal diag-
noses) is that m1 or a1 must be faulty. As above, it can be
also the case that both of the elements are faulty, i.e., we
have a multiple fault diagnosis {m1, a1}; however, in the
context of the set of rules (5) such a diagnosis would not
be a minimal one.

3.8. Case of backward search with horizontal causal
rules (bch). Applying the horizontal interpretation from
faults to signals (equivalent to causal inference), the gen-
erated set of rules is as follows:

rule1bch : m1 ∨ a1 ∨ m2 −→ F = 1,
rule2bch : m3 ∨ a2 ∨ m2 −→ G = 1,
rule3bch : m1 ∨ m3 ∨ a1 ∨ a2 −→ (F − G) = 1.

(7)
In the case considered the diagnoses are generated with
the first and the third rule interpreted backwards; the po-
tential single fault diagnoses are m1, a1 or m2 in the
case of the first rule and m1, m3, a1 or a2 in the case
of the third rule. Further, since assuming the diagnoses
m3, a2 and m2 allows us to fire the rule 2bch, and tak-
ing into account that G = 1 is the conclusion of the sec-
ond rule, these singular diagnoses might be eliminated,
since they are inconsistent with the observed manifesta-
tions (G = 0). Hence the only singular diagnoses are m1
and a1. Note however, that this line of reasoning applies
only under the assumption of a singular fault (no compen-
sation phenomenon takes place).

Now, let us relax the assumption that a singular fault
occurred. Hence a compensation can take place. Note that
in order to fully explain the observed misbehavior (F = 1
and (F − G) = 1), one has to employ both of the rules
1bch and 3bch at the same time. This is a crucial observa-
tion. In fact, a conjunction of symptoms can be explained
with a set of two independent rules.

Now the problem is to find faults allowing firing both
of the rules at the same time. There are two such singu-
lar faults, i.e., m1 and a1, and thus we have two singular
diagnoses. Note, however, that in this specific case we
can find two further, multiple-fault minimal diagnoses al-
lowing us to fire both of the rules: these are {m2,m3}
and {m2, a2}. These multiple-fault diagnoses also fully
explain the observed misbehavior assuming that the fault
of m3 compensates the influence of faulty m2 at output
G and, similarly, that fault of a2 compensates the fault of
m2 at output G.

3.9. Summary. The presented results are summarized
in Table 4. The generated diagnoses are in most of the
cases similar. The weakest model seems to be the one
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Table 4. Diagnostic results. Non-minimal diagnoses are marked
with an asterisk.

Rules Singular faults Multiple faults

fevs m1, a1 {m1, a1}
fevw m1, a1 {m1, a1}
feh m1, a1, a2 2{m1,a1,a2}

bcvs m1, a1 {m1, a1}∗
bcvw m1, a1 {m1, a1}∗
bch m1, a1 {m2, m3},{m2, a2}

based on the forward, expert-like horizontal interpretation
of the diagnostic matrix—apart from the correct minimal
single-fault diagnoses m1 and a1, it produces a diagno-
sis a2 which, in the case of singular diagnoses, is obvi-
ously inconsistent with the observations. Due to the indis-
tinguishability of faults, in the case of forward inference
such faults can be interpreted as potential multiple faults
by simply combining them into one set.

In the case of the backward search based on causal
models, the generated diagnoses are the same in all three
cases under the assumption of singular faults and pro-
vided that the hypothesized diagnoses are consistent with
all manifestations. Multiple diagnoses generated without
the assumption of minimal diagnoses are the same as in
the case of forward, expert like rules.

The most interesting is the case of backward horizon-
tal causal rules. By applying a more complex analysis in
this case also the multiple-fault minimal diagnoses can be
generated.

The core problem with the first five simple models
is that none of them is capable of inferring the whole
set of potential diagnoses, which is m1, a1, {m2, a2},
{m2,m3} (Reiter, 1987). Only the last model allowed
the correct results under a bit more complex analysis of a
conjunction of rules explaining all the observed manifes-
tations. Hence, perhaps a more advanced model should be
incorporated.

The main problem with Table 3 is that in fact it
corresponds to simple OR type causal graphs (Reggia
et al., 1983; Reggia et al., 1985; Ligęza and Fuster-
Parra, 1997; Ligęza, 2004). For example, Table 3 corre-
sponds to the causal graph presented in Fig. 2. The lower-
level nodes {m1,m2,m3, a1, a2} are the initial causes,
and the upper-level nodes {F,G, F − G} are the observ-
able manifestations. Using the classical FDI approach
based on fault signatures (Kościelny, 2001), we obtain the
results presented in Table 5. They are consistent with the
ones which can be generated using the OR graph of Fig. 2
(assuming strong causality, i.e., if a fault occurs, the mani-
festation linked to it by an arrow must occur as well). Note
that patterns such as (1, 0, 0), (0, 1, 0), (0, 0, 1) are incon-
sistent. There are no faults influencing only one mani-
festation. Further, no multiple faults are detected with

m1 m2 m3 a1 a2

F G F−G

Fig. 2. OR causal graph for the multiplier-adder system.

Table 5. Generated diagnoses.

Signature for Singular
(F,G,F-G) diagnoses

(1,1,0) {m2}
(1,0,1) {m1}, {a1}
(0,1,1) {m3}, {a2}
(1,1,1) no singular fault

Table 3, although one can consider certain supersets of
the singular faults as potential multiple fault diagnoses,
provided that they are consistent with signal propagation
rules for the system.

4. Principles of multiple fault diagnosis

The proposed approach follows the ideas of model-based
consistency-based diagnostic inference founded on the
analysis of the so-called conflict-sets and finding diag-
noses as minimal hitting sets of them (Reiter, 1987)
combined with causal graphs, as presented in (Fuster-
Parra, 1996; Ligęza and Fuster-Parra, 1997). The pro-
posed ideas were first stated in (Ligęza, 2004) and recently
developed in (Ligęza and Kościelny, 2007c).

The main conclusion of the presented analysis of the
single-level diagnostic matrix approach and its rule-based
interpretations is that the discussed approach is in practice
limited to single-fault diagnosis. Only one type of rules,
namely, the horizontal, causal ones, allowed a complete
set of diagnoses. Further, it is often impossible to infer a
unique diagnosis under the limited information available
and the possibility of several causes having the same ef-
fect observed at the level of symptoms. The following un-
derlying assumptions seem to constitute the basis for the
understanding and organization of the diagnostic process
in realistic, more complex cases:

• Diagnostics is more a process, and not a single ac-
tion. Hence, it cannot be achieved by single-step for-
ward inference based on precompiled knowledge. It
requires more complex reasoning and auxiliary infor-
mation gathering.
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• The diagnosis of complex systems may be based on
the analysis of causal relationship and models of the
system instead of expert-like knowledge; it can be
also supported by expert and statistical knowledge.

• Causal inference is performed by backward search
for hypotheses explaining the manifestations ob-
served in the case of a failure.

• Two types of causal dependencies should be taken
into account during the analysis, i.e., the AND com-
bination of all the rules forming the observed pattern
of symptoms, and the OR combination of faults caus-
ing the occurrence of a certain symptom.

• Since all the necessary information is not available
at the start of the diagnostic procedure, an incremen-
tal, knowledge-driven information gathering process
is an intrinsic part of diagnostic inference.

• The direction of deviations constitutes useful qualita-
tive information applicable to the refinement of diag-
noses. Further, heuristic information, statistical and
expert knowledge can be used to form preferences
among diagnoses and ordering diagnostic tests.

The practical development of these ideas is presented be-
low.

5. Conjunctive and disjunctive faults

Taking into account the conclusions following from the
presented analysis, the concepts of conjunctive and dis-
junctive faults are introduced. They are necessary to ex-
press two types of causal rules used in the proposed ap-
proach.

Definition 1. A Conjunctive Conceptual Fault (a CCF ,
for short) is the hypothesis that several faults occur at the
same time. A particular CCFi can be expressed as a set
of faults, CCFi = {f1, f2, . . . , f ji}, or, logically, as a
conjunction CCFi = f1 ∧ f2 ∧ . . . ∧ f ji .

In case all the faults belonging to a certain CCF are
confirmed and no more faults are observed, the CCF be-
comes a diagnosis. Otherwise, it can be considered to be
just a hypothetical or conceptual fault. If it fully explains
the misbehavior of the system, it becomes a potential di-
agnosis for the system.

We shall also need the following definition of a Dis-
junctive Conceptual Fault (a DCF , for short) or an Inter-
mediate Conceptual Fault (ICF ). It occurs when a hy-
pothesis is stated that at least one of a set of faults occurs.

Definition 2. A disjunctive conceptual fault or interme-
diate conceptual fault is the hypothesis that a certain set of
components must contain a faulty component under some
set of manifestations observed. A particular DCFi can be

expressed as a set of faults, DCFi = {f1, f2, . . . , f ji},
or, logically, as a disjunction DCFi = f1∨f2∨ . . .∨f ji .

In other words, a DCF (an ICF ) is an imprecise
localization of a fault with the accuracy of a set of system
components. The indicated set of components is called a
conflict set (Reiter, 1987) or an R-conflict (Cordier et al.,
2000b; Cordier et al., 2000a). Here the idea of the DCF
seems to be a useful notion for explaining the diagnostic
approach in terms of the two-level approach.

5.1. Causal OR rules. The causal horizontal interpre-
tations of the matrix with OR type rules is introduced be-
low.

Definition 3. Let g1
i , g2

i , . . . , gji

i be all the elements of
the i-th row of matrix (1) taking the value of 1 and let
f1, f2, . . . , f ji be the corresponding faults. A binary di-
agnostic table of the OR type is a table given by (1) with
a set of OR rules of the the following form:

rulei_or : f1 ∨ f2 ∨ . . . ∨ f ji −→ mi (8)

for i = 1, 2, . . . , J .

This kind of OR matrix is close to the classical binary
diagnostic matrices as discussed in (Kościelny, 2001; Koś-
cielny, 2004b; Kościelny, 2004a). The main difference is
that the rules read from the matrix are causal ones and
not expert-like—the logical interpretation is from faults
to manifestations.

The causal OR rules describe the fact that a single
fault f ∈ F can cause the occurrence of some manifesta-
tions and a single manifestation can have numerous inde-
pendent causes. This seems to be the most typical case in
realistic systems. The intuition behind this model is that
the correct operation of such systems depends on the cor-
rect work of numerous components, and if a single com-
ponent fails, so does the overall system. Systems based
on serially connected components are a perfect example
here.

5.2. Causal AND rules. In some situations the causal
model of the relationship between faults and manifesta-
tions can be of the AND type. In such a case only a con-
junctive occurrence of several faults can evoke a manifes-
tation.

Definition 4. Let g1
i , g2

i , . . . , gji

i be all the elements of
the i-th row of matrix (1) taking the value of 1 and let
f1, f2, . . . , f ji be the corresponding faults. A binary di-
agnostic table of the AND type is a table given by (1) with
a set of AND rules of the the following form:

rulei_and : f1 ∧ f2 ∧ . . . ∧ f ji −→ mi (9)

for i = 1, 2, . . . , J .
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This kind of AND rules and AND matrix is new
with respect to the classical binary diagnostic matrices
as discussed in (Kościelny, 2001; Kościelny, 2004b; Koś-
cielny, 2004a). The main difference is that the rules read
from the matrix are causal ones (i.e., as above) and the
conjunction of faults may only evoke a manifestation.

6. Adder: The two-level approach

Consider once again the multiplier-adder system as pre-
sented in Fig. 1. Assume that, as before, F = 10 and
G = 12, i.e., an incorrect output is observed at F . Re-
call that we shall refer mostly to the classical diagnostic
problem defined as follows: The current state of the sys-
tem is that the inputs are A = 3, B = 2, C = 2, D = 3
and E = 3. It is easy to check that (if the system works
correctly) the outputs should be F = 12 and G = 12.
Since the current value of F is incorrect, namely, F = 10,
the system is faulty. At least one of its components must
be faulty. A further analysis of the case is presented in
Section 3.

Note that the value of F is influenced by the inputs
(observed) and the work of elements m1, m2 and a1. If all
the three elements work correctly, then the output would
be correct. Since it is not, we can conclude that DCF1 is
observed: at least one of the elements {m1,m2, a1} must
be faulty. Hence, a rule of the form

rule1_or : m1 ∨ m2 ∨ a1 −→ DCF1 (10)

can be stated.
A further analysis leads to the detection of DCF2:

under the assumed manifestations, one of the elements
{m1, a1, a2,m3} must also be faulty. This is so since if
all of them were correct, then Z = C ·E calculated by m3
must be equal to 6, and since G is observed to be 12, Y
(calculated backwards and under the assumption that a2
works correct) must also equal 6. Hence, if m1 is correct,
then X must be 6 as well, and if a1 is correct, F would be
equal to 12. Since this is not the case, at least one of the
components used must be faulty. So we have the follow-
ing rule:

rule2_or : m1 ∨ m3 ∨ a1 ∨ a2 −→ DCF2. (11)

Note that if F is correct and G is faulty, e.g., F = 12 and
G = 10, then another DCF observed would be DCF3

equivalent to {m2,m3, a2} and so we have the third OR
rule:

rule3_or : m2 ∨ m3 ∨ a2 −→ DCF3. (12)

Moreover, DCF2 equivalent to a fault in
{m1,m3, a1, a2} would occur as well.

If both of the outputs are incorrect (e.g., F = 10
and G = 14), then, in a general case, one can observe
DCF1, DCF2 and DCF3. Note, however, that whether

DCF2 is a valid fault may depend on the observed out-
puts. For example, if F = 10 and G = 10 (both outputs
incorrect but equal), then the structure and equations de-
scribing the work of the system do not lead to a conceptual
fault (Cordier et al., 2000a; Cordier et al., 2000b).

Depending on the current manifestations, a DCF
can be observed (active) or not (inactive). For an effective
diagnosis one needs only a specification of active DCF s.

The diagnoses are calculated as reduced elements of
the Cartesian product of the conflict sets associated to the
active DCF s. The reduction consists in the elimination
of duplicates.

The OR matrix for the diagnosed system is presented
in Table 6. The AND matrix defining the relationship be-

Table 6. OR binary diagnostic matrix for the adder system (the
lower level).

DCF m1 m2 m3 a1 a2

DCF1 1 1 1
DCF2 1 1 1 1
DCF3 1 1 1

tween the DCF s (active in the case of F being incorrect
and and G correct) and the manifestations are presented in
Table 7. Here F ∗, G∗, etc. mean that the output is incor-

Table 7. AND binary diagnostic matrix for the adder system
(the upper level).

M DCF1 DCF2 DCF3

F ∗, G, (F − G)∗ 1 1

F , G∗, (F − G)∗ 1 1

F ∗, G∗, F − G 1 1

F ∗, G∗, (F − G)∗ 1 1 1

rect, while F , G, etc. denote the correct outputs observed
at the corresponding variable.

In the analyzed case, i.e., F being faulty and G cor-
rect, the final diagnoses for the case considered are cal-
culated as reduced elements of the Cartesian product of
DCF1 = {m1,m2, a1} and DCF2 = {m1,m3, a1, a2}.
There are the following potential diagnoses: D1 = {m1},
D2 = {a1}, D3 = {a2,m2} and D4 = {m2,m3}. The
final diagnoses in a general case are presented in Table 8.

The calculation of diagnoses can be easily inter-
preted using AND/OR causal graphs (Ligęza and Fuster-
Parra, 1997; Ligęza, 2004). An appropriate AND/OR
graph is presented in Fig. 3. The active links are repre-
sented with continuous lines while the potential ones with
dashed lines. Active DCF s are marked with thick-line
open circles and the current diagnostic problem (manifes-
tations) are also represented with a thick-line circle. The
final diagnoses are calculated as the minimal sets of the
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Table 8. Final possible diagnoses.

Manifestations Diagnoses

F ∗, G, (F − G)∗ {a1}, {m1}, {a2, m2}, {m2, m3}
F , G∗, (F − G)∗ {a2}, {m3}, {a3, m2}, {m1, m2},
F ∗, G∗, (F − G) {m2}, {a1, a2}, {a1, m3},

{a2, m1}, {m1, m3}
F ∗, G∗, (F − G)∗ {a1, a2}, {a1, m2}, {a1, m3},

{a2, m1}, {a2, m2},{m1, m2},
{m2, m3}, {m1, m3}

Fig. 3. AND/OR causal graph for the example multiplier-adder
system.

lowest level elements which are necessary to satisfy the
currently observed set of manifestations. The intermediate
nodes representing the DCF s are OR nodes while the top
level nodes representing current manifestations are AND
nodes.

The presented graphical interpretation can help us to
formulate an algorithm for the diagnostic procedure.

7. General diagnostic algorithm for OR
and AND matrices and the two-level
approach

Consider a system to be diagnosed described by an OR
matrix of Table 6 with I manifestations of DCF s (given
by rows) and K potential faults (specified with columns).
Each fault corresponds to a certain system component.
Further, let the second level be described by an AND ma-
trix of the same generic shape, but with maximally 2J

combinations of manifestations (assigned to rows) and I
DCF s (specified by columns).

Note that it is possible to combine these two matrices
into a single one. In fact, by rotating the OR matrix by 90o

counterclockwise and concatenating it to the top row of
the AND matrix, a composite matrix of K+2J rows and I
columns may be obtained. The algorithm to determine the
set of all potential (and minimal) diagnoses is as follows:

1. Let M+ ⊂ M be the set of manifestations to be diag-

nosed. This set identifies a specific row of the AND
matrix. All other rows, referring to other combina-
tions of manifestations, need not be taken into exam-
ination. The specific row will be referred to as the
active one. In Fig. 3 the active row corresponds to
M+ = {F ∗,G, (F − G)∗ }) and it is represented by
the top leftmost node marked with a thick-line open
circle.

2. Determine the set of all DCF s necessary to imply
the combination of manifestations described with the
active row. Let this be DCF 1,DCF 2, . . . , DCF i.
In the example under consideration (manifestations
given by F ∗, G, (F − G)∗), these are DCF1 and
DCF2.

3. Determine the rows of the matrix OR defining
DCF 1,DCF 2, . . . , DCF i. Let these be rows
j1, j2, . . . , ji. In the example under consideration
(manifestations given by F ∗, G, (F − G)∗), these
are rows 1 and 2.

4. For any row j ∈ {j1, j2, . . . , ji} read the con-
tents of appropriate DCFj = {f1

j , f2
j , . . . , fk

j }.
In the example under consideration (manifestations
given by F ∗, G, (F − G)∗), we have just two
DCF s, i.e., DCF1 = {m1,m2, a1} and DCF2 =
{m1,m3, a1, a2}.

5. Find the set D = {D1,D2, . . . , Dd} of all minimal
diagnoses, where each D ∈ D is a minimal hitting
set for all the sets DCF 1,DCF 2, . . . , DCF i, i.e.,
D ∩ DCF j �= ∅ for any j ∈ {1, 2, . . . , i} and D is
minimal.

6. The potential diagnoses are given by
D1,D2, . . . , Dd. Here we have four minimal
diagnoses, i.e., D1 = {m1}, D2 = {a1},
D3 = {a2,m2} and D4 = {m2,m3}.

Note that D can be found by calculating the Cartesian
product DCF 1 × DCF 2 × · · · × DCF i and further re-
ducing all its elements by eliminating repetitions of ele-
ments. It can also be found by the backward search of
the AND/OR graphs for all minimal sets of elementary
faults logically entailing the current observations (Ligęza
and Fuster-Parra, 1997; Ligęza, 2004).

8. Improving the efficiency of diagnosis

8.1. Qualitative evaluation of faults. A most popular
classification of faults is the binary one. An element can
be just faulty (f = 1) or not (f = 0). This kind of classi-
fication is prevailing in technological systems, sometimes
extended to several degrees or a fuzzy fault description.

Note, however, that in some particular cases the fault
can be interpreted as a significant deviation from some
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expected status or value, and the deviation has not only
an amplitude, but a direction or a sign as well. In this
case the fault can be said to be negative or positive, and
a classification described with three values {−, 0,+} can
be established. This kind of knowledge can be used for a
further refinement of diagnoses without taking additional
measurements, tests or observations. Further, the same
classification can be assigned also to manifestations, i.e.,
values of certain variables can be normal (0), below the
norm (−) or above it (+).

8.2. Elimination of spurious diagnoses. The idea is
that in many cases the influence of faults on the mani-
festations can be analyzed in a qualitative way using the
three-valued approach. Two key observations may be use-
ful: (i) some faults can be only negative or only positive,
and (ii) the defined sign of the deviation of a fault also
defines the sign of the deviation of the influenced mani-
festation. For example, the voltage of a battery can only
be normal (0, no fault) or low (−, below normal). The
level of liquid in a tank can be normal (0), low (−), or
high (+). The clock can be exact, but when faulty, it can
slow down (−) or advance (+).

The influence of a fault on a manifestation can
be marked using the sign. For example, low battery
(battery_fault) causes low light (light_fault), i.e.,
battery_fault(−) −→ light_fault(−). Assuming that
both the multipliers and adders of the diagnosed system
when faulty produce results lower than expected, we can
specify the following influences:

m1 −→ F (−),
m2 −→ F (−),
m2 −→ G(−),
m3 −→ G(−),
a1 −→ F (−),
a2 −→ G(−).

(13)

Obviously, the diagnosis must be consistent with the
set of rules defining qualitative influences. Diagnosis
D1 = {m1} is consistent with (13): faulty m1 causes a
lower value of F . The same applies to D2 = {a1}. Note,
however, that in the case of D3 = {m2, a2} also the value
of G should be lower. Since it is not, the diagnosis is in-
consistent and it can be eliminated. The same applies to
D4 = {m2,m3}.

In a general case, the influence of the components
of the multiplier-adder system can be described with the
following set of rules:

m1(−) −→ F (−), m1(+) −→ F (+),
m2(−) −→ F (−), m2(+) −→ F (+),
m2(−) −→ G(−), m2(+) −→ G(+),
m3(−) −→ G(−), m3(+) −→ G(+),
a1(−) −→ F (−), a1(+) −→ F (+),
a2(−) −→ G(−), a2(+) −→ G(+).

(14)

In this case none of the four diagnoses can be eliminated.
However, more detailed characteristics of the diagnoses
can be found. Let us introduce a definition of qualitative
diagnosis taking into account the deviation sign of a fault.

Definition 5. A qualitative diagnosis

D = {d1(#), d2(#), . . . , dk(#)}

is a diagnosis fully explaining the observed misbehavior
and covering the knowledge of the deviation sign for any
fault (if accessible). Here # is + if the deviation sign is
positive, − if the deviation sign is negative and ? if the
deviation sign is unknown (any, undetermined).

In the case of the analyzed failure, we have the fol-
lowing qualitative diagnoses consistent with the observa-
tions:

• D1 = {m1(−)}; if the fault concerns m1 only, then
m1 produces a lower output,

• D2 = {a1(−)}; if the fault concerns a1 only, then
a1 produces a lower output,

• D3 = {m2(−), a2(+)} if the fault concerns m2 and
a2, then m2 produces a lower output, while a2 pro-
duces a higher output,

• D4 = {m2(−),m3(+)} if the fault concerns m2
and m3, then m2 produces a lower output, while m3
produces a higher output.

A further technical analysis can be useful. For example,
some deviations are highly improbable. Hence, a prefer-
ence relation among diagnoses can be established.

8.3. Elimination algorithm. Assume that we have a
set R = {r1, r2, . . . , rr} of qualitative influence rules
of the form (14). Further, let a set of qualitative obser-
vations concerning system variables of the form V =
{V1, V2, . . . , Vv} be given where each of the variables is
described as Vi(−), Vi, or Vi(+) (i.e., lower than ex-
pected, normal, or higher than the expected value). Let
D ∈ D be a certain diagnosis, D = {c1, c2, . . . , cc}. Any
such diagnosis can produce as many as 2c qualitative di-
agnoses DQ = {d1, d2, . . . , dc}, where each dj ∈ DQ is
either dj = cj(−) or dj = cj(+).

The outline of an algorithm for finding qualitative di-
agnoses and eliminating spurious ones is as follows:

1. For any diagnosis D find all possible qualitative diag-
noses DQ. Then examine each qualitative diagnosis
DQ in turn.

2. For any qualitative diagnosis DQ fire all the applica-
ble rules of R and find all the qualitative variables re-
sulting from this operation. Note that if there are two
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or more fired rules concerning the same variable, the
obtained set may be inconsistent (e.g., certain vari-
able should simultaneously increase and decrease).

3. Reduce the obtained set of qualitative variables to a
consistent set. Apply the qualitative composition of
Table 9. Repetitions of facts are thus eliminated.

Table 9. Qualitative composition of variables.

- 0 +

- - - ?
0 - 0 +
+ ? + +

4. Check if the obtained reduced set of qualitative vari-
ables is consistent with the current observations. It
is inconsistent if there exists a variable having a dif-
ferent qualitative deviation assigned in these sets. In
this case, eliminate the qualitative diagnosis DQ as a
spurious one.

As an example, consider the diagnosis D3 =
{m2, a2}. In this case we have to analyze the following
potential qualitative diagnoses:

• DQ3,1 = {m2(−), a2(−)},

• DQ3,2 = {m2(−), a2(+)},

• DQ3,3 = {m2(+), a2(−)},

• DQ3,4 = {m2(+), a2(+)}.

Let us analyze these diagnoses in turn.
In the case of DQ3,1 = {m2(−), a2(−)},

one can infer a qualitative facts set of the form
{F (−), G(−), G(−)}. The reduced set of facts is
{F (−), G(−)}. It is inconsistent with the observations
which are {F (−), G(0)}.

In the case of DQ3,2 = {m2(−), a2(+)},
one can infer a qualitative facts set of the form
{F (−), G(−), G(+)}. The reduced set of facts is
{F (−), G(?)}. Since G(?) is consistent with anything,
this diagnosis is consistent.

In the case of DQ3,3 = {m2(+), a2(−)},
one can infer a qualitative facts set of the form
{F (+), G(+), G(−)}. The reduced set of facts is
{F (+), G(?)}. This set is inconsistent with the observa-
tions which are {F (−), G(0)}.

In the case of DQ3,4 = {m2(+), a2(+)}
one can infer a qualitative facts set of the form
{F (+), G(+), G(+)}. The reduced set of facts is
{F (+), G(+)}. This set is inconsistent with the obser-
vations which are {F (−), G(0)}.

To summarize, there is only one qualitative diagno-
sis. This is DQ3,2 = {m2(−), a2(+)}, and it is consis-
tent with the observations.

9. Concluding remarks

Limitations of the direct application of diagnostic matri-
ces in the case of multiple fault diagnosis have been pre-
sented and examined. The main problem with the binary
decision matrix-based approach is that in realistic systems
it is very seldom that the set of observed manifestations
provides enough information to assure deterministic diag-
nosability, i.e., all the faults (even in the case of singu-
lar faults) have different signatures. In some most typical
cases a single manifestation may have numerous faults as
potential causes. Hence, a kind of hypothetical reasoning,
based on abduction, seems rational in the case of more
complex systems. The explanation for this is simple: us-
ing the classical OR graph causal model, the most typical
situation is that there are several (or even numerous) po-
tential faults in the lower level of initial causes, and only
one (or few) manifestations observable in the upper level.

It is shown that the knowledge expressed with a bi-
nary diagnostic matrix, although interpreted in several
ways, including expert-like, forward reasoning models
and causal, backward reasoning ones, does not lead to the
production of all potential diagnoses in the case of mul-
tiple faults. Hence the direct use of a single diagnostic
matrix, especially the one interpreted in a forward, expert-
like manner, is of limited use in more complex systems
with hidden variables and interactions.

Simultaneously, it can be seen that the model defined
with a diagnostic matrix should be extended to cover more
complex inference possibilities. Multiple faults must be
taken into account. Moreover, the information about sets
of elements such that at least one of them is faulty (the
so-called conflict sets (Reiter, 1987)) must be expressible.

Hence, a proposal of extending the expressive power
of traditional binary diagnostic matrices covers both in-
cluding causal relationship between faults and manifesta-
tions and logical connectives. The main idea of the pro-
posal is three-fold and consists in:

• providing a new interpretation of the matrices with
rules—the new rules should follow the causal direc-
tion of inference (i.e., from faults, which are the ini-
tial causes, to manifestations),

• introducing two types of diagnostic matrices, each
of them having a different logical interpretation, one
with logical OR type meaning and another one with
logical AND type meaning,

• introducing a two-level knowledge representation
with OR matrices at the lower level and AND ma-
trices in the upper one,

As a result, a new diagnostic model, composed of two ma-
trices forming two levels, is put forward. One of the ma-
trices defines the so-called intermediate conceptual faults
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and is analogous to the classical OR matrix, while the sec-
ond level matrix combines the influence of the conceptual
faults onto manifestations and is a new type AND matrix.
A diagnostic algorithm is presented.

The proposed approach combines in fact the
consistency-based diagnosis of (Reiter, 1987) and the
AND/OR graphs (Ligęza and Fuster-Parra, 1997) into
a technical approach similar to FDI (Kościelny, 2001).
Some characteristic features of the proposed approach are
as follows:

• it is based on causal models, including AND and OR
type of causal relations,

• it allows the diagnosis of multiple faults by applying
a backward (abductive) search,

• a set of potential diagnoses is generated, including
both single and multiple faults,

• a refinement procedure can be applied if qualitative
information about the sign of deviations is available.

If auxiliary knowledge about the direction of devi-
ations and their mutual influences is available, the set
of obtained diagnoses can be further refined. Qualita-
tive diagnoses indicating the type of fault (i.e., devia-
tion up or down) are available. The model can also be
extended towards using heuristic and expert-like knowl-
edge, introducing more levels (hierarchic diagnosis) and
constraints for elimination of diagnoses, and ordering test
procedures. For some ideas, see (Ligęza and Fuster-
Parra, 1997; Ligęza, 2004).

Acknowledgment

The support from the Polish Ministry of Science
and Higher Education under the grant ALDIAG no.
1527/T11/2005/29 is kindly acknowledged.

References
Cordier M.-O., Dague P., Dumas M., Lévy F., Montmain J.,

Staroswiecki M., Travé-Massuyès L. (2000a). AI and auto-
matic control approaches of model-based diagnosis: Links
and underlying hypotheses, Proceedings of the IFAC Sym-
posium SAFEPROCESS, Budapest, Hungary, pp. 274–279.

Cordier M.-O., Dague P., Dumas M., Lévy F., Montmain J.,
Staroswiecki M., Travé-Massuyès L. (2000b). A compara-
tive analysis of AI and control theory approaches to model-
based diagnosis, Proceedings of 14th European Confer-
ence on Artificial Intelligence, Berlin, Germany, pp. 136–
140.

Davis R. and Hamscher W. (1992). Model-based reason-
ing: Troubleshooting, in W. Hamscher, L. Console and
J. de Kleer (Eds.), Readings in Model-Based Diagnosis,
Morgan Kaufmann Publishers, San Mateo, CA, pp. 3–24.

Frank P. (1990). Fault diagnosis in dynamic systems using ana-
litical and knowledge-based redundancy – A survey and
some new results, Automatica 26(3): 459–474.

Frank P. (1996). Analytical and qualitative model-based fault di-
agnosis – A survey and some new results, European Jour-
nal of Control 2(1): 6–28.

Fuster-Parra P. (1996). A model for causal diagnostic reasoning.
Extended inference modes and efficiency problems, Ph.D.
thesis, University of Balearic Islands.

Hamscher W., Console L. and de Kleer J. (Eds.) (1992). Read-
ings in Model-Based Diagnosis, Morgan Kaufmann, San
Mateo, CA.
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