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This paper describes an analytical study of open two-node (tandem) network models with blocking and truncation. The
study is based on semi-Markov process theory, and network models assume that multiple servers serve each queue. Tasks
arrive at the tandem in a Poisson fashion at the rate λ, and the service times at the first and the second node are non-
exponentially distributed with means sA and sB , respectively. Both nodes have buffers with finite capacities. In this type of
network, if the second buffer is full, the accumulation of new tasks by the second node is temporarily suspended (a blocking
factor) and tasks must wait on the first node until the transmission process is resumed. All new tasks that find the first buffer
full are turned away and are lost (a truncation factor). First, a Markov model of the tandem is investigated. Here, a two-
dimensional state graph is constructed and a set of steady-state equations is created. These equations allow calculating state
probabilities for each graph state. A special algorithm for transforming the Markov model into a semi-Markov process is
presented. This approach allows calculating steady-state probabilities in the semi-Markov model. Next, the algorithms for
calculating the main measures of effectiveness in the semi-Markov model are presented. In the numerical part of this paper,
the author investigates examples of several semi-Markov models. Finally, the results of calculating both the main measures
of effectiveness and quality of service (QoS) parameters are presented.
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1. Introduction

Queuing network models (QNMs) with finite capac-
ity queues and blocking are often used in mathemat-
ical models of discrete flow systems. These models
are realistic and effective tools for performance analy-
sis of wide classes of systems such as computer sys-
tems and networks, telecommunications networks, trans-
portations networks, production lines, or flexible manu-
facturing systems (Balsamo et al., 2003; Badrah et al.,
2002; Economou and Fakinos, 1998; Kaufman and Rege,
1996; Martin, 2002; Oniszczuk, 2006; Sereno, 1999;
Zhuang,1996).

Over the years, many publications have been written
related to the analysis and application of QNMs with fi-
nite capacity queues and blocking in the field of computer
science, operations research, traffic engineering or indus-
trial engineering (Akyildiz, 1988; Balsamo and de Nitto
Persone, 1994; Boucherie and van Dijk, 1997; Clo, 1998;
Kouvatsos and Almond, 1988; Morrison, 1996; Onvural,
1990; Sharma and Virtamo, 2002).

Most of the investigation results in these areas were

collected and ordered in the well-known books such as
Queueing Networks with Blocking. Exact and Approxi-
mate Solution (Perros, 1994) and Analysis of Queueing
Networks with Blocking (Balsamo et al., 2001). Similarly,
entire issues of the Annals of Operations Research (on
Queueing Networks with Finite Capacity, Vol. 79, 1998,
and Performance Evaluation, Vol. 51, No. 2–3, 2003)
were dedicated to queuing networks with blocking, where
some sections covered exact analysis, approximate meth-
ods and applications. However, there is still a great in-
terest in systems with buffer capacity limitations under
different blocking mechanisms (Bouhchouch et al., 1996;
Gomez-Corral, 2002; Strelen et al., 1998). A blocking
mechanism restricts the total intensity of input streams by
forcing certain limitations on the blocking and synchro-
nization procedures (Kouvatsos et al., 2000; Ramesh and
Perros, 2000; Tolio and Gershwin, 1998; Zhuang et al.,
1994).

Most research in the area of two-node (tandem) open
networks with blocking (see, e.g., (Perros, 1994)) assumes
that each queue is served by a single server, where the
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first node has an infinite or a finite capacity and the sec-
ond node has a finite capacity. The state of this queuing
network can be described by the pair of variables indicat-
ing the number of tasks in the first node and the number
of tasks in the second node. Various closed-form results
related to the single server queuing network with expo-
nentially distributed service times include the following
two limiting cases: a task at the first node receives an
infinitesimal amount of service and the first node is sat-
urated (Perros, 1994; Balsamo et al., 2001). In the first
case, if the task arrives at the tandem when the second
node buffer is not full, it goes through the first node and
immediately joins the second node. In the case of the sat-
urated first node (this node is never empty), the server is
either busy serving or blocked. In view of this, the sec-
ond node becomes an M/M/1 finite waiting capacity queue
with an overall arrival rate equal to the first node ser-
vice rate (the single-node approximation). Another spe-
cial tandem model with blocking assumes that multiple
servers serve each queue (Perros, 1994). In this case, a
task will get blocked upon completion of service at the
first node if at that moment the second node is full. A
closed-form solution for the queue-length distribution of
this model was obtained with the assumption that the first
node is saturated (the single-node approximation). This
model is equivalent to a queue with state-dependent ar-
rivals. We say that a node is saturated when there is al-
ways at least one task waiting for service, i.e., the node is
never empty. Another way to study a tandem configura-
tion is motivated by a Kanban scheme (Boucherie and van
Dijk, 1997), where the first node was assumed to be sat-
urated and it continues to serve tasks during the time that
the second node is full (the served tasks remain in first
node). This approach belongs to single-node decomposi-
tion. Similarly, other authors studied the tandem configu-
ration with exponential service times and no intermediate
buffers, and no queue in front of the first node or where the
first node was assumed to have an infinite (or a finite) ca-
pacity (see, for example, (Balsamo and de Nitto Persone,
1994; Gomez-Corral, 2002)).

This paper extends the author’s previous research
on the open tandem model with blocking (Oniszczuk,
2006). The former paper only considered Markov mul-
tiple servers, two-node queuing networks with blocking
separated serving lines assuming that the first node is un-
der heavy load. The current publication examines an open
non-Markov tandem (the two-node approximation) with
blocking separated lines at the first node assuming that
the first node has a finite capacity buffer. In both cases,
when a departure occurs from the second node, one of the
blocked tasks will enter the second node and its associated
serving line will become unblocked.

This paper provides a mathematical study of a spe-
cial type of network configuration (tandem), as shown
in Fig. 1. This kind of network has N parallel servers

Fig. 1. Tandem model with blocking and truncation.

and a buffer m1 at the first node, and c parallel servic-
ing lines (servers) at the other node. Between these nodes
is a common waiting buffer with a finite capacity, for ex-
ample, equal to m2. When this buffer is full, the accu-
mulation of new tasks from the first node is temporarily
suspended and a phenomenon called blocking occurs, un-
til the queue empties and allows new inserts. This is the
classical mechanism for controlling the intensity of the ar-
riving task stream, which comes to the two-node network.

In this kind of tandem configuration, no more than
N + m1 + m2 + c tasks can be processed simultane-
ously and the tandem becomes idle if there are no tasks in
both nodes. Assuming that the input stream to the tandem
network represents a Poisson process and service time in
both nodes corresponds to a random variable with non-
exponential distribution, it is a non-Markov model of tan-
dem with blocking and truncation. At the beginning of this
paper, the author calculates all possible states of the tan-
dem network, then steady state probabilities and the main
tandem measures of effectiveness. Additionally, he shows
algorithms for the calculation of blocking and truncation
probabilities, delay time in the buffers, blocking time in
the node A, the percentage of buffers filling, etc.

The structure of the paper is as follows: Section 2
specifies the tandem model and shows a procedure for
finding the state probabilities in a semi-Markov tandem
model. Section 3 gives the procedures for calculating the
main measures of effectiveness. Section 4 describes the
implementation model and numerical examples. Section 5
includes conclusions.

2. Analysis of a semi-Markov tandem with

blocking and truncation

Let us consider the two-node network with blocking as
shown in Fig. 1. The input task stream comes to the
node A. This node has a finite capacity buffer and it can
accept only N + m1 tasks. New tasks, arriving at the first
node, which is full, are not accepted and are rejected. Each
task at the first node is processed on the parallel servers
and upon service completion is sent to the node B. If
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there are free lines on this node, the service process starts
immediately, if not, the tasks must wait in the buffer. If
the buffer is full, any task upon service completion at the
node A is forced to wait and blocks this service line.

The general assumptions for this tandem model are
as follows:

1. The external task stream arriving at the node A is
assumed to be a Poisson stream, with the rate λ =
1/a, where a is the mean inter-arrival time.

2. The node A has N parallel servers.
3. The node B has c parallel servers.
4. For both nodes, the service time for each task rep-

resents a non-exponentially distributed random vari-
able, with the means sA = 1/μA and sB = 1/μB ,
where μ is the mean service rate.

5. The buffer capacity is finite, e.g., equal to m1
and m2.

If the second buffer is full, the completed task at the
node A is forced to wait in this service line, because the
transfer process from the node A depends only on the ser-
vice process in the node B. Physically, blocked tasks stay
on the node A, but the nature of the service process in the
node B allows us to treat them as located in additional
places in the second buffer and they belong to the node B.
In this case, there can be maximally c + m2 + N tasks
assigned to the second node including all tasks in the first
node that might be blocked.

In turn, the maximal number of non-blocked tasks
in the first node (the possible number of unblocked, ac-
tive servers) is equal to N . This means that the cur-
rent number of tasks that belong to the second node de-
pends on the number of non-blocked tasks in the node A
(let it be fixed as i). Therefore, the current number of
states in the node B (let us denote it as j) is equal to
j = c + m2 + N − i.

This paper defines the semi-Markov model of an
open two-node network (tandem). The numbers of tasks
located simultaneously at the tandem in the first and sec-
ond nodes are denoted by i and j. This means that a
semi-Markov model with two-dimensional state space has
a unique path from the state (0, 0) to any state (i, j) and
back to the state (0, 0) (see Figs. 2 and 3).

According to the general approach to the analysis of
semi-Markov models, the first step is to find solutions to
the classical Markov model.

Generally, queuing networks with blocking and trun-
cation are difficult to solve, because their steady state
probabilities could not be shown to have a product form
solution. Hence, most of the techniques that are em-
ployed to analyse these networks are in the form of ap-
proximation or numerical techniques. Numerical methods
are particularly useful in cases where it is not possible to
obtain an analytic solution for the queuing system under

study. The equivalent Markov queuing system under study
(with the same rate transition matrix as that of the semi-
Markov model) is first formulated as a continuous-time
Markov process with discrete states, and subsequently its
steady-state probability vector is calculated using an equa-
tion solving technique (Balsamo et al., 2001; Korolyuk
and Korolyuk, 1999; Perros, 1994). Under appropriate
assumptions, a queuing network with blocking and trun-
cation can be formulated as a Markov process and the sta-
tionary probability vector can be obtained using numerical
methods for systems of linear equations.

Before describing the calculation algorithm for
steady-state probabilities, we have to define the service
rates for the node A:

μA
1 = μA,

μA
2 = 2μA,

...
μA

i = iμA,

...
μA

N = NμA,

...
μA

N+m1 = NμA, (1)

and the node B:

μB
1 = μB ,

μB
2 = 2μB ,

...
μB

c = cμB ,

...
μB

c+m2+N = cμB
c . (2)

Based on the analysis of the state space diagrams,
the process of constructing the steady-state equations in
the Markov model can be divided into several independent
steps, which describe some similar, repeatable schemes
(see Figs. 2 and 3). These steady-state equations are

λp0,0 = μB
1 p0,1 for i = 0, j = 0,

(λ + μB
j )p0,j = μA

1 p1,j−1 + μB
j+1p0,j+1

for i = 0, j = 1, . . . , c + m2,

(λ + μA
i )pi,0 = λpi−1,0 + μB

1 pi,1

for i = 1, . . . , N + m1− 1, j = 0,

(λ+μB
j +μA

i )pi,j = λpi−1,j +μA
i+1pi+1,j−1+μB

j+1pi,j+1

for i = 1, . . . , N + m1− 1, j = 1, . . . , c + m2,
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Fig. 2. Two-dimensional tandem state diagram (part I).

Fig. 3. Two-dimensional tandem state diagram (part II).
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μA
N+m1pN+m1,0 = λpN+m1−1,0 + μB

1 pN+m1,1

for i = N + m1, j = 0,

(μB
j +μA

N+m1)pN+m1,j = λpN+m1−1,j+μB
j+1pN+m1,j+1

for i = N + m1, j = 1, . . . , c + m2− 1,

(μB
c+m2 + μA

N+m1)pN+m1,c+m2 = λpN+m1−1,c+m2

for i = N + m1, j = c + m2. (3)

For states with blocking, the equations are

(λ + μB
j )p0,j = μA

1 p1,j−1 + μB
j+1p0,j+1

for i = 0,

j = c + m2 + 1, . . . , c + m2 + N − 1,

(λ + μB
c+m2+N )p0,c+m2+N = μA

1 p1,c+m2+N−1

for i = 0, j = c + m2 + N,

(λ + μB
c+m2+N )pi,j = λpi−1,j + μA

i+1pi+1,j−1

for i = 1, . . . , m1− 1, j = c + m2 + N,

μB
c+m2+Npm1,c+m2+N = λpm1−1,c+m2+N

+ μA
m1+1pm1+1,c+m2+N−1

for i = m1, j = c + m2 + N,

(λ+μB
j +μA

i )pi,j = λpi−1,j +μA
i+1pi+1,j−1+μB

j+1pi,j+1

for i = 1, . . . , m1,

j = c + m2 + 1, . . . , c + m2 + N − 1,

(λ + μB
j + μA

i )pi,j = λpi−1,j + μA
i+1pi+1,j−1

+ μB
j+1pi,j+1

for i = m1 + 1, . . . , N + m1− 2,

j = c + m2 + 1, . . . , c + m2 + N − 1− i + m1,

(μB
c+m2+N−i+m1 + μA

i )pi,j = λpi−1,j

+ μA
i+1pi+1,c+m2+N−(i+1)+m1

for i = m1 + 1, . . . , N + m1− 1,

j = c + m2 + N − i + m1. (4)

The process of solving the equations sets given by
(3) and (4) within common algorithms, independently of
the initial tandem configuration, is not trivial because part
of the graph has an irregular and triangular shape. There
are many methods of solving a system of linear algebraic
equations but some of these are restricted to certain regu-
lar structures of the parameter matrix.

It sometimes happens that the rate transition matrix
of a given Markov chain is so highly structured (as in the
case of the special type network with blocking and trun-
cation) that it is more efficient to write a specific solution
procedure for that problem than to use existing software
packages, due to the repetitive nature of the rate transi-
tion matrix.

If there is a tandem model with a finite number of
states, its steady-state probabilities can be found directly
from (3) and (4) by using some iteration method and the
normalizing condition for the sum of state probabilities.
From the analysis of the tandem state graphs (see Figs. 2
and 3), we can easily calculate the total number K of the
tandem states. For the first iteration, as an approximation
of probability values, we can assume that all the values are
equal to

pi,j =
1
K

. (5)

To speed up the convergence of the iteration process
before a next, e.g., the (k + 1)-th, iteration step, the value
of each probability may be calculated as the mean from
steps (k) and (k−1). These values are used in the (k+1)-
th iteration by substituting them into the right-hand side of
(3) and (4), etc.

Sometimes, for a more precise investigation of
tandems with blocking and truncation, the methods ap-
propriate for continuous-time Markov processes with dis-
crete states may not be precise enough because in many
cases the real service time distributions are different than
the exponential ones. These kinds of models may be in-
vestigated by using, e.g., semi-Markov process theory and
algorithms or methods as shown in (Bradley and Wilson,
2005; Heindl, 2003; Korolyuk and Korolyuk, 1999; Kou-
vatsos and Almond, 1988; Martin, 2002).

Let us examine the semi-Markov model with a fi-
nite number of its states, which is equal to K. In the
semi-Markov model, during the investigation procedure
we try to find the steady-state probabilities qi,j that the
model is in state (i, j). Assume that we have a Markov
tandem model with the identical state transition rates as
the semi-Markov model. Traditionally, steady-state dis-
tributions of semi-Markov processes are found from the
embedded Markov chain with a given rate transition ma-
trix (Korolyuk and Korolyuk, 1999). Clearly this still re-
quires the calculation of the entire steady-state distribu-
tion of the embedded Markov process. What we achieve
in this paper is the direct calculation method of individ-
ual steady-state probabilities of the semi-Markov process,
which are functions of the sojourn time in a state. Ac-
cording to (Bradley and Davies, 2000), this gives us the
possibility of calculating individual steady-state probabil-
ities in less time than it would take to calculate the whole
distribution using traditional methods. Let us assume that
for each model state the mean sojourn time mi,j (the ex-
pected time the process remains in the (i, j)-th state dur-
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ing each visit) is known in a semi-Markov model. If we
choose the number of state changes L in the equivalent
Markov model large enough, we can say that this model
visited the (i, j)-th state Li,j = pi,jL times. By the way,
the total sojourn time in the semi-Markov model in any
given state is

Ti,j = pi,jLmi,j . (6)

By using some convenient state ordering for the tan-
dem model, we may transform the state description (i, j)
to the state number k, where k = 1, 2, . . . , K. In the semi-
Markov model, the average time for L state changes may
be calculated from the following formula:

T =
K∑

k=1

Tk = L

K∑
k=1

(pkmk). (7)

Assuming that qk is the (i, j) state probability in the
semi-Markov model, its entire mean sojourn time (for this
state) during interval T is

Tk = qkT = qkL

K∑
k=1

(pkmk), (8)

and directly from the relation (6) and (8) we have

qk =
pkmk∑K

k=1(pkmk)
, (9)

where qk = qi,j , pk = pi,j , mk = mi,j , and

K∑
k=1

qk = 1. (10)

Recapitulating, in semi-Markov processes any
steady-state probability can be calculated from the equiva-
lent Markov models (Korolyuk and Korolyuk, 1999). The
final problem, which has to be solved, is how to calcu-
late the parameter mi,j in the semi-Markov model, which
means calculating the mean sojourn time for state (i, j).
At the beginning, we try to calculate another parameter,
i.e., m∗

i,j , the mean time simultaneously spent by the tasks
during processing by the node A and the node B, if new
admissions do not appear (the expected time until the next
service completion in either node), where the index i be-
longs to the node A and the index j belongs to the node B.
Let τA be the time until the next service completion in the
node A, and let τB be the time until the next service com-
pletion in the node B (independent random variables). Let
τAB be a random variable for the duration of time until the
next service completion in the node A or B, whichever
comes first (the simultaneous service time). This random
variable distribution for any tandem state can be given by
the following expressions:

P (τAB > x) = P (τA > x, τB > x) = ΦA(x)ΦB(x),
ΦA(x) = 1− FA(x),
ΦB(x) = 1− FB(x), (11)

where FA(x) and FB(x) are cumulative distribution func-
tions of the random service times in the nodes A and B.
From the relations (11), we directly have

m∗
AB =

∫ ∞

0

ΦA(x)ΦB(x) dx. (12)

This parameter is the mean sojourn time for the tan-
dem states (N+m1, 1), . . . , (N+m1, c+m2), (N+m1−
1, c + m2 + 1), . . . , (m1, c + m2 + N) (see Figs. 2 and
3, the bottom graph states, except the state (N + m1, 0)).
The calculation process of the mean sojourn time in the
remaining tandem states (except the state (0, 0)) has to in-
clude the task arrival factor, because any visit to state (i, j)
would finish upon the next service completion or task ar-
rival. According to the general assumptions for the tan-
dem model, the external task stream is a Poisson process,
where the probability of k arrivals in an interval (0, t) is
given by

pk(t) =
(λt)k

k!
e−λt for k ≥ 0, t ≥ 0. (13)

For the states (i, j) mentioned above, and during its
simultaneity service time τAB , only one new task arrival
may appear or not (if it appears, the state is changed to
(i + 1, j)). This means that here we have only two events
(task occurrence or not):

p0(t) + p1(t) = 1 for t = τAB , (14)

where

p0(t) = e−λt, p1(t) = λte−λt = λtp0(t)

and

p0(t) =
1

1 + λt
for t = τAB .

This is a task arrival factor. Remembering that a si-
multaneity service time τAB has the mean value equal to
m∗

AB , we may calculate a mean sojourn time mAB di-
rectly from the following relation:

mAB = m∗
ABp0(t)

=
m∗

AB

1 + λm∗
AB

for t = m∗
AB . (15)

3. Main measures of effectiveness for

a tandem with blocking and truncation

The procedures for calculating the basic measures of ef-
fectiveness in the tandem model use steady-state proba-
bilities in the following manner:
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1. Probability of tandem blocking qbl:

qbl =
m1∑
i=0

c+m2+N∑
j=c+m2+1

qi,j

+
m1+N−1∑
i=m1+1

c+m2+N+m1−i∑
j=c+m2+1

qi,j .

(16)

2. Task truncation probability qtr:

qtr =
c+m2∑
j=0

qN+m1,j +
c+m2+N∑

j=c+m2+1

qc+m2+N+m1−j,j .

(17)

3. Idle tandem probability qidle:

qidle = q0,0. (18)

4. The average number of blocked lines in the node A:

nbl =
m1∑
i=0

c+m2+N∑
j=c+m2+1

(j − c−m2)qi,j

+
N+m1−1∑
i=m1+1

c+m2+N+m1−i∑
j=c+m2+1

(j − c−m2)qi,j .

(19)

5. The average number of active (non-blocked) tasks in
the node A:

lA =
N∑

i=1

c+m2∑
j=0

iqi,j +
N+m1∑
i=N+1

c+m2∑
j=0

Nqi,j

+
c+m2+N−1∑
j=c+m2+1

N+c+m2−j∑
i=1

iqi,j

+
c+m2+N−1∑
j=c+m2+1

N+m1+c+m2−j∑
i=N+1+c+m2−j(

N + c + m2− j
)
qi,j .

(20)

6. The average number of tasks in the first buffer vA:

vA =
N+m1∑
i=N+1

c+m2∑
j=0

(i−N)qi,j

+
c+m2+N∑

j=c+m2+1

N+m1+c+m2−j∑
i=N+1+c+m2−j(

i + j − c−m2−N
)
qi,j .

(21)

7. The average number of tasks in the node A (buffer +
node) nA:

nA =
N+m1∑

i=1

c+m2∑
j=0

iqi,j

+
c+m2+N∑

j=c+m2+1

N+m1+m2+c−j∑
i=1(

i + j − c−m2
)
qi,j .

(22)

8. The average number of tasks on the servers in the
node B:

lB =
N+m1∑

i=0

c∑
j=1

jqi,j +
N+m1∑

i=0

c+m2∑
j=c+1

cqi,j

+
m1∑
i=0

N+c+m2∑
j=c+m2+1

cqi,j

+
N+m1−1∑
i=m1+1

N+c+m2+m1−i∑
j=c+m2+1

cqi,j .

(23)

9. The average number of tasks in the second buffer vB :

vB =
N+m1∑

i=0

c+m2∑
j=c+1

(j − c)qi,j

+
m1∑
i=0

N+c+m2∑
j=c+m2+1

m2qi,j

+
N+m1−1∑
i=m1+1

N+c+m2+m1−i∑
j=c+m2+1

m2qi,j .

(24)

10. The average number of tasks in the node B (buffer +
node) nB :

nB =
N+m1∑

i=0

c+m2∑
j=1

jqi,j

+
m1∑
i=0

N+c+m2∑
j=c+m2+1

(m2 + c)qi,j

+
N+m1−1∑
i=m1+1

N+c+m2+m1−i∑
j=c+m2+1

(m2 + c)qi,j .

(25)

11. The mean blocking time in the node A (from Little’s
formula):

tbl =
nbl

cμB
. (26)

12. The mean response time at the node A:

qA =
lA + vA

λ
+ tbl. (27)
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13. The mean response time at the node B:

qB =
vB

cμB
+

1
μB

. (28)

14. The mean waiting time in the first buffer (from Lit-
tle’s formula):

wA =
vA

λ
. (29)

15. The mean waiting time in the second buffer:

wB =
vB

cμB
. (30)

16. The tandem response time:

tthr =
lA + vA

λ
+ tbl + qB . (31)

4. Model implementation and numerical

examples

The author chose the non-exponential distribution of the
service times for experimental investigation of the semi-
Markov tandem models.

4.1. Service time: A constant value for the node A and

the Erlang-k distribution for the node B. According
to the initial assumptions, the service time for the node A
has a constant value, e.g., equal to b, meaning mA = b.
The service time in the node B has the Erlang-k distri-
bution with the mean value equal to mB = k/μB and the
distribution function given by

FB(x) = 1−
k−1∑
r=0

e−μBx(μBx)r

r!
. (32)

Therefore,

ΦB(x) = 1− FB(x) =
k−1∑
r=0

e−μBx(μBx)r

r!
. (33)

The distribution function for the node A is given by

FA(x) =

{
0, x ≤ b,

1, x > b.
(34)

Then, according to (12), we have

m∗
AB =

∫ b

0

(
k−1∑
r=0

e−μBx(μBx)r

r!
) dx

=
k−1∑
r=0

∫ b

0

e−μBx(μBx)r

r!
dx

=
k−1∑
r=0

(μB)r

r!
e−μBb

(
− br

μB
− rbr−1

(μB)2

− r(r − 1)br−2

(μB)3
− · · ·

− r!b
(μB)r

− r!
(μB)r+1

)
+

1
μB

=
1

μB

k−1∑
r=0

[
1− e−μBb

( (μBb)r

r!

+
(μBb)r−1

(r − 1)!
+ · · ·+ 1

)]

=
k

μB
− e−μBb

μB

k−1∑
r=0

r∑
l=0

(μBb)l

l!
.

(35)

According to the two-dimensional state diagram for
the semi-Markov model, now we must calculate the ade-
quate service rates in the nodes A and B, indicated here as
μA

exp and μB
exp, in the equivalent model with exponential

distributed service times (see Figs. 2 and 3). Thus

μA
exp =

1
b
, μB

exp =
μB

k
. (36)

Next, from these formulae, we may calculate the ser-
vice rates μB

j and μA
i according to the algorithms given

in (1) and (2):

μB
j =

⎧⎪⎨
⎪⎩

μB
expj for j = 0, 1, 2, . . . , c

μB
j = μB

expc for j = c + 1, c + 2, . . . ,

c + m2 + N,

and the service rate μA
i for all states without blocking is

μA
i =

⎧⎪⎨
⎪⎩

μA
expi for i = 0, 1, 2, . . . , N

μA
i = μA

expN for i = N + 1, N + 2, . . . ,

N + m1,

(37)

while for all states with blocking it is

μA
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μA
expi + (j − c−m2)μB

exp

for j = c + m2 + 1, . . . , c + m2 + N,

i = 0, 1, . . . , N + m1 + c + m2− j

if i + j − c−m2 ≤ N,

(N + c + m2− j)μA
exp

+(j − c−m2)μB
exp

for j = c + m2 + 1, . . . , c + m2 + N,

i = 0, 1, . . . , N + m1 + c + m2− j

if i + j − c−m2 > N.

Based on the state diagrams from Figs. 2 and 3, the
mean sojourn time mAB and the mean simultaneity ser-
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vice time m∗
AB for states without blocking can be calcu-

lated according to the following formulae:

m0,0 =
1
λ

,

mN+m1,0 =
1

μA
N+m1

,

mi,j =
1

μB
j

− e
−μB

j k

μA
i

μB
j k

k−1∑
r=0

r∑
l=0

(
μB

j k

μA
i

)l

l!

for i = N + m1, j = 1, 2, . . . , c + m2,

m∗
0,j =

1
μB

j

for j = 1, 2, . . . , c + m2,

m∗
i,0 =

1
μA

j

for i = 1, 2, . . . , N + m1− 1,

m∗
i,j =

1
μB

j

− e
−μB

j k

μA
i

μB
j k

k−1∑
r=0

r∑
l=0

(
μB

j k

μA
i

)l

l!

for i = 1, 2, . . . , N + m1− 1,

j = 1, 2, . . . , c + m2, (38)

and for the states with blocking (here a differently calcu-
lated service rate μA

i ):

mm1,c+m2+N =
1

μB
c+m2+N

,

mi,j =
1

μB
j

− e
−μB

j k

μA
i

μB
j k

k−1∑
r=0

r∑
l=0

(
μB

j k

μA
i

)l

l!

for j = c + m2 + 1, . . . ,

c + m2 + N − 1,

i = N + m1 + c + m2− j,

m∗
i,c+m2+N =

1
μB

c+m2+N

for i = 0, 1, . . . , m1− 1,

m∗
0,j =

1
μB

j

for j = c + m2 + 1, . . . ,

c + m2 + N − 1,

m∗
i,j =

1
μB

j

− e
−μB

j k

μA
i

μB
j k

k−1∑
r=0

r∑
l=0

(
μB

j k

μA
i

)l

l!

for j = c + m2 + 1, . . . ,

c + m2 + N − 1,

i = 1, . . . ,

N + m1 + c + m2− j − 1.

In this set of expressions, all m∗
i,j can be transformed

to mi,j (mean sojourn time) directly, by using the rela-
tion (15).

In this section, the author demonstrates the analysis
of tandem with blocking and truncation. The following
configuration is chosen: N = 10, c = 7, m1 = 5,
m2 = 8, with the inter-arrival and the service rate in the
node A equal to λ = 4.0, μA = 0.7 (the constant service
rate, means b = 1.42857) and with the service rate μB

(the Erlang-4 distributed service time) in the node B that
changes within a range from 6.8 to 1.6 (for the studying of
a model with different utilizations). This model has 361
states; 256 states are without blocking and 105 states are
with blocking.

For the model above, the following major results
were obtained and presented in Fig. 4 and Tab. 1.

The results of the experiment show that the effect of
blocking and truncation appears in a small interval when
the utilization of the node B is greater than 0.75. Here,
the tandem throughput time and the blocking time quickly
increase (bad quality of service parameters). In the mod-
erate utilization interval, the tandem works properly and
the quality of service (QoS) parameter is easy to keep on
the appropriate level.

4.2. Service time in the nodes A and B: Thinned dis-

crete distributions. In computer networks, the tasks flow
and service processes are frequently characterized by us-
ing the concept of thinned streams. Here, during the inves-
tigative process, a renewal process is used as the base of
the thinning operation (Bernoulli thinning). In this kind of
renewal process, on a renewal interval a task may or may
not occur with probabilities 1− π and π. This occurrence
probability is not dependent on whether another task oc-
curs or not in the previous interval. The probability π is
called the thinning parameter.

In practical applications, another kind of renewal
process called a discrete (deterministic) thinned stream
may appear. For this process, the renewal intervals have
a discrete density function given by the following expres-
sion:

fπ(x) = (1− π)
∞∑

i=1

πi−1δ(iT − x), (39)

where T is the renewal interval on the discrete output
stream and δ is the Dirac delta function.

Here, the distribution functions have a piecewise
constant form:

Φπ(x) = πi for iT ≤ x ≤ (i + 1)T. (40)

This kind of discrete thinned stream is often called a
discrete Poisson stream, because it has the same charac-
teristics as a Poissonian stream at some points (points that
are the multiple renewal intervals T ). For these points, the
following relations hold true:

πi = e−λiT , λ = − lnπ

T
. (41)
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Fig. 4. Graphs of QoS parameters, where bloc-pr is the blocking probability, trun-pr is the truncation probability, A-utilization is the
node A utilization factor (active and blocked tasks), B-utilization is the node B utilization factor, n− bl/N is the ratio of the
mean number of blocked lines to the parameter N .

The main characteristics of thinned deterministic streams
are the mean value and the standard deviation, given by
the following expressions:

m =
∫ ∞

0

Φπ(x) dx =
T

1− π
,

σ = m
√

π =
T
√

π

1− π
.

(42)

If we have two thinned discrete streams with given
parameters π1 and π2 and an identical renewal interval
T and with at least one common renewal point, then the
superposition of two streams is the same discrete thinned
regular stream with the thinning parameter equal to π =
π1π2 and with the distribution function

Φπ(x) = (π1π2)i for iT ≤ x ≤ (i + 1)T. (43)

In fact, according to (11), we have

P (τπ > iT ) = P (τπ1 > iT )P (τπ2 > iT ) = (π1π2)i

for i = 0, 1, . . . (44)

Often, the service time distributions are close to
thinned deterministic distributions in computer networks.
Let us assume the tandem with service times in both nodes
having thinned deterministic distributions with parameters
πA and πB and with the same thinning interval equal to
T . If we assume the semi-Markov model with both nodes
processing tasks simultaneously, then according to the ex-
pressions (43) and (44) the simultaneity service time in
this case has the following distribution:

ΦAB = (πAπB)i for iT ≤ x ≤ (i + 1)T. (45)

Based on (42), its mean value is

m∗
AB =

T

1− πAπB
. (46)

In the next analysis step, a Markov model equivalent
to semi-Markov model is chosen, with thinned determin-
istic distribution of the service time in both nodes. This
relation can be found from (41). Therefore,

μ = − lnπ

T
, T = − lnπ

μ
. (47)

Knowing that for a Markov tandem model, its mean si-
multaneity service time for the states which simultaneous
tasks processed can be calculated from

mexp∗
AB =

∫ ∞

0

e−μAxe−μBx dx

=
∫ ∞

0

e−(μA+μB)x dx =
1

μA + μB
.

(48)

Substituting in (47) πAπB and μA + μB for π and μ, re-
spectively, yields the marking service times (cf. (46)):

mπ∗
AB = T

1
1− πAπB

=
− ln(πAπB)

(μA + μB)(1− πAπB)

= −mexp∗
AB

ln(πAπB)
(1− πAπB)

.

(49)

These expressions allow us to calculate the mean si-
multaneity service time for each state in the semi-Markov
tandem model with states presented in Figs 2 and 3. Now,
for the equivalent Markov model, we must calculate the
service rates in nodes A and B. Let us denote these ser-
vice rates by μA

exp and μB
exp. Therefore,

μA
exp = − lnπA

T
, μB

exp = − lnπB

T
. (50)

These formulae allow us to calculate the service rates μA
i

and μB
j from (37).
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Table 1. Comparison of mean time parameters.

μB
Mean time Node A Node B

qA tqB wA wB tbl tthr utilizat. utilizat.
1.6 4.250 5.342 0.925 2.843 2.953 9.592 0.975 1.000
2.0 2.832 4.028 0.518 2.046 1.499 6.861 0.851 0.991
2.4 1.713 2.493 0.129 0.965 0.342 4.026 0.641 0.917
2.8 1.425 1.459 0.031 0.326 0.044 2.884 0.562 0.793
3.2 1.387 0.973 0.019 0.114 0.006 2.360 0.548 0.687
3.6 1.381 0.716 0.018 0.045 0.001 2.097 0.545 0.604
4.0 1.379 0.558 0.018 0.019 0.000 1.937 0.545 0.538
4.4 1.378 0.540 0.018 0.009 0.000 1.829 0.544 0.485
4.8 1.378 0.372 0.018 0.005 0.000 1.750 0.544 0.441
5.2 1.377 0.314 0.018 0.002 0.000 1.691 0.544 0.405
5.6 1.377 0.268 0.018 0.001 0.000 1.644 0.544 0.373
6.0 1.376 0.232 0.018 0.001 0.000 1.608 0.543 0.346
6.4 1.376 0.202 0.018 0.000 0.000 1.578 0.543 0.323
6.8 1.375 0.178 0.018 0.000 0.000 1.553 0.543 0.302

Based on the state diagrams, the mean sojourn time
mAB and the mean simultaneity service time m∗

AB for
states without blocking can be calculated according to

mπ
0,0 =

1
λ

,

mπ
N+m1,0 = mexp

N+m1,0

− lnπA

1− πA
=

1
μA

N+m1

− lnπA

(1− πA)
,

mπ
i,j = mexp

i,j

− ln(πAπB)
(1− πAπB)

=
1

(μA
i + μB

j )
− ln(πAπB)
(1− πAπB)

for i = N + m1, j = 1, 2, . . . , c + m2,

mπ∗
0,j = mexp∗

0,j

− lnπB

1− πB
=

1
μB

j

− lnπB

(1− πB)
for j = 1, 2, . . . , c + m2,

mπ∗
i,0 = mexp∗

i,0

− lnπA

1− πA
=

1
μA

i

− lnπA

(1− πA)
for i = 1, 2, . . . , N + m1− 1,

mπ∗
i,j = mexp∗

i,j

− ln(πAπB)
(1− πAπB)

=
1

(μA
i + μB

j )
− ln(πAπB)
(1− πAπB)

for i = 1, 2, . . . , N + m1− 1,

j = 1, 2, . . . , c + m2, (51)

and for the states with blocking (here for a differently cal-
culated service rate μA

i ):

mπ
m1,c+m2+N = mexp

m1,c+m2+N

− lnπB

1− πB

=
1

μB
c+m2+N

− lnπB

(1− πB)

mπ
i,j = mexp

i,j

− ln(πAπB)
(1− πAπB)

=
1

(μA
i + μB

j )
− ln(πAπB)
(1− πAπB)

for j = c + m2 + 1, . . . ,

c + m2 + N − 1,

i = N + m1 + c + m2− j,

mπ∗
i,c+m2+N = mexp∗

i,c+m2+N

− lnπB

1− πB

=
1

μB
c+m2+N

− lnπB

(1− πB)
for i = 0, 1, . . . , m1− 1,

mπ∗
0,j = mexp∗

0,j

− lnπB

1− πB
=

1
μB

j

− lnπB

(1− πB)
for j = c + m2 + 1, . . . ,

c + m2 + N − 1,

mπ∗
i,j = mexp∗

i,j

− ln(πAπB)
(1− πAπB)

=
1

(μA
i + μB

j )
− ln(πAπB)
(1− πAπB)

for j = c + m2 + 1, . . . ,

c + m2 + N − 1,

i = 1, . . . , N + m1 + c

+m2− j − 1.

In this set of expressions, all m∗
i,j can be transformed to

mi,j (mean sojourn time) directly, by using (15).
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Table 2. Comparison of the average number of tasks in both nodes.

λ
Tasks average number

qbl qtr
Node A Node B

nbl lA vA lB vB utiliz. utiliz.
0.5 0.000 0.603 0.000 0.896 0.006 0.000 0.000 0.067 0.224
1.0 0.008 1.436 0.000 2.012 0.206 0.004 0.000 0.160 0.503
1.5 0.564 2.225 0.093 3.148 1.553 0.142 0.009 0.310 0.787
2.0 5.052 1.866 1.919 3.908 4.319 0.760 0.254 0.769 0.977
2.5 7.674 1.010 3.702 3.996 4.951 0.974 0.565 0.965 0.999
3.0 8.246 0.691 4.325 4.000 4.995 0.996 0.714 0.993 1.000
3.5 8.423 0.559 4.585 4.000 4.999 0.999 0.794 0.998 1.000
4.0 8.499 0.485 4.717 4.000 5.000 1.000 0.843 0.999 1.000
4.5 8.539 0.459 4.794 4.000 5.000 1.000 0.875 1.000 1.000
5.0 8.561 0.438 4.842 4.000 5.000 1.000 0.899 1.000 1.000

For the series of tandem model experiments, the fol-
lowing configuration is chosen: N = 9, c = 4, m1 = 5,
m2 = 8, with the inter-arrival rate λ that changes within a
range from 0.5 to 5.0 (for studying a model with different
utilizations), and with the thinning parameter πA = 0.3
for the node A and πB = 0.4 for the node B. The renewal
interval in both nodes is equal to T = 2.0. This model has
240 states; 150 states are without blocking and 90 states
are with blocking.

For the above model with blocking and truncation
some results were obtained, the majority of them being
presented in Table 2. They show that the blocking proba-
bility, the truncation probability or filling buffers parame-
ters rapidly grow when the inter-arrival rate to the tandem
grows. In this case, the number of blocked lines in the
first node quickly grows. Simultaneously, both buffers are
quickly filled and the number of truncated tasks quickly
increases. All these negative factors depend on the uti-
lization parameter of the second node. The tandem works
properly when the second node utilization parameter is
less than 0.75.

5. Conclusion

A mathematical model of a two-node stochastic transition
system with blocking and truncation, treated as a semi-
Markov process, has been presented. The phenomenon
of blocking and truncation appears simultaneously in this
tandem model. Mathematical procedures allow calculat-
ing the main measures of effectiveness including blocking
and truncation probabilities. These measures may be cal-
culated for any tandem configuration if we have service
rates in both nodes and when inter-arrival rates to the tan-
dem are given.

The results of experiments presented in Section 4
show that, depending on the model configuration and its

characteristics, mathematical modelling makes it possible
to find a proper rate range of the input stream. In the op-
posite case, given an input stream rate, the analysis allows
finding another model characteristic, e.g., buffer capaci-
ties, which guarantees that blocking and truncation prob-
abilities should be in the proper range.

The presented model can be exploited for capacity
planning and performance evaluation of real-time com-
puter networks or telecommunications networks in the
case of blocking and truncation.
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