
Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 2, 219–232
DOI: 10.2478/v10006-009-0018-2

INPUT CONSTRAINTS HANDLING IN AN MPC/FEEDBACK LINEARIZATION
SCHEME

JIAMEI DENG ∗ , VICTOR M. BECERRA ∗∗, RICHARD STOBART ∗

∗ Department of Aeronautical and Automotive Engineering
Loughborough University, Leicestershire LE11 3TU, UK
e-mail: {j.deng,r.k.stobart}@lboro.ac.uk

∗∗ School of Systems Engineering
University of Reading, Reading, RG6 6AY, UK
e-mail: v.m.becerra@reading.ac.uk

The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted
interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is
that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input
constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of
the nonlinear transformation introduced by feedback linearization. This paper introduces a technique for handling input
constraints within a real time MPC/FL scheme, where the plant model employed is a class of dynamic neural networks. The
technique is based on a simple affine transformation of the feasible area. A simulated case study is presented to illustrate
the use and benefits of the technique.
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1. Introduction

The great success of predictive control is mainly due to
its handling of constraints in an optimal way. There is
early work on the integration of a feedback linearizing
controller in an unconstrained MPC scheme (Henson and
Seborg, 1993). However, in practical control schemes
constraints have to be dealt with. Del-Re et al. (1993)
dealt with the integration of output constraints by map-
ping the problem into a linear MPC problem. The ba-
sic idea of this method is to linearize the process us-
ing feedback linearization so that linear MPC solutions
can be employed. However, in most of the cases, this
mapping transforms the original input constraints of the
process into nonlinear and state-dependent constraints,
which cannot be handled by means of quadratic program-
ming (Nevistic, 1994; Oliveiria et al., 1995). Some meth-
ods have been presented in order to deal with such non-
linear constraints mapping while using QP routines to
solve an approximate linear MPC problem (Henson and
Kurtz, 1994; Oliveiria et al., 1995). However, these ap-
proaches suffer from an important limitation as conver-
gence to a feasible solution over the optimization horizon

within the available time becomes a problem (Nevistic and
Morari, 1995).

Ayala-Botto et al. (1999) proposed a new optimiza-
tion procedure that guarantees a feasible control solu-
tion without input constraints violation over the complete
optimization horizon, in a finite number of steps, while
allowing only a small overall closed-loop performance
degradation. Ayala-Botto et al. (1996) integrated in two
complementary iterative procedures the solution of the
QP optimization converting the nonlinear state-dependent
constraints into linear ones. Van den Boom (1997) de-
rived a robust MPC algorithm using feedback lineariza-
tion at the cost of possibly conservative constraint han-
dling. Nevistic and Primbs (1996) considered the problem
of model/plant mismatch of MPC with feedback lineariza-
tion. Guemghar et al. (2005) proposed a cascade structure
of predictive control and feedback linearization for unsta-
ble systems. Scattolini and Colaneri (2007) presented a
multi-layer cascaded predictive controller to guaranteed
stability and feasibility. Ayala-Botto et al. (1999) pre-
sented a new solution for the problem of incorporating an
input-output linearization scheme based on static neural
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networks in a predictive controller, considering the pres-
ence of level and rate inequality constraints applied to the
plant input. However, this scheme can only handle single-
input single-output systems. Moreover, Kurtz and Hen-
son (1997) presented an input constraint mapping tech-
nology, the transformed constraints at each sampling time
were decided by solving a constrained optimization prob-
lem. Also Casavola and Mosca (1996) tried to find box
constraints by employing an optimization algorithm.

In this paper, focus will be positioned on input con-
straint handling on an integrated MPC+FL scheme based
on dynamic neural networks. The aim is to find a con-
straint handling method that is suitable for real time ap-
plication and avoids the shortcomings of the method by
Ayala-Botto et al. (1999). Solving an additional optimiza-
tion problem to find the transformed constraints is avoided
in the proposed method.

The paper is organised as follows: Section 2 briefly
describes the model predictive control formulation em-
ployed in this work. Section 3 describes the neural net-
work structure used and discusses the training problem.
Section 4 discusses the feedback linearization technique
employed. Section 5 presents the proposed method for
handling input constraints within an MPC/FL scheme.
Section 6 discusses how the dynamic neural network is
employed as a closed-loop observer. Section 7 presents
a simulated case study. Concluding remarks are given in
Section 8.

2. Model-based predictive control

The predictive control formulation employed
(Maciejowski, 2002) is based on a linear, discrete-
time state-space model of the plant. This makes sense
within the framework of this paper as the plant is assumed
to be feedback linearized prior to the application of
predictive control. The model has the form

xm(k + 1) = Axm(k) + Bu(k),
ym(k) = Cyxm(k),

z(k) = Czx(k),
(1)

where xm(k) ∈ R
N is the state vector at time k, u(k) ∈

R
m is the vector of inputs, ym(k) ∈ R

n is the vector of
measured outputs, and z(k) ∈ R

γ is the vector of outputs
which are to be controlled to satisfy some constraints, or
to particular set-points, or both. In this work, a Kalman
filter was used that can be described as follows:

x̂m(k + 1|k) = Ax̂m(k|k − 1) + Bu(k) + Lê(k|k),
ŷm(k|k − 1) = Cyx̂m(k|k − 1),

ẑ(k|k − 1) = Cz x̂m(k|k − 1),
(2)

where x̂m(k + 1|k) is the estimate of the state at future
time k + 1 based on the information available at time k,

ŷm(k|k − 1) is the estimate of the plant output at time k
based on information at time k − 1, L is the Kalman filter
gain matrix and ê(k|k) is the estimated error: ê(k|k) =
ym(k) − ŷm(k|k − 1).

The prediction model of MPC is similiar to Eqn. (2),
without ê(k|k). This formulation is inspired in the con-
strained algorithm presented in (Maciejowski, 2002). The
cost function V minimised by the predictive controller
penalises deviations of the predicted controlled outputs
ẑ(k + i|k) from a reference trajectory r(k + i|k), and it
also penalises changes in the future manipulated inputs
Δu(k + i|k). Define the cost function as follows:

V (k) =
p∑

i=1

||ẑ(k + i|k) − r(k + i|k)||2Qw(i)

+
m−1∑

i=0

||Δu(k + i|k)||2Rw(i),

(3)

where the prediction and control horizons are p and m,
respectively, Qw(i) and Rw(i) are output weight and input
weight matrices, respectively. The cost function is subject
to the inequality constraints:

umax(k) ≥ u(k + i − 1|k) ≥ umin(k),
Δumax(k) ≥ Δu(k + i − 1|k) ≥ Δumin(k),

zmax(k) ≥ z(k + j|k) ≥ zmin(k),
(4)

where i = 1, 2, . . . , m and j = 1, 2, . . . , p. The
constrained predictive control algorithm has been imple-
mented in the C programming language using quadratic
programming (Deng and Becerra, 2004), and it has been
interfaced to SIMULINK through an S-Function as it
is difficult to handle constraints using the MPC toolbox
available in Matlab and in a real time case.

3. Dynamic neural networks

A dynamic neural network is used as a model of the plant
for control synthesis in this paper as it can easily approxi-
mate any nonlinear systems. It can be expressed as a vec-
tor differential equation:

ẋ(t) = f(x(t), u(t), θ),
y(t) = h(x(t), θ),

(5)

where x ∈ R
N represents the state vector, y ∈ R

n is
the output vector, u ∈ R

m is the external input vector,
θ ∈ R

l is a parameter vector. Here f is a vector-valued
function that represents the structure of the network, and
h is a vector-valued function that represents the relation-
ships between the state vector and the output vector.

The structure of the dynamic neural network used in
this paper is a particular case of Eqn. (5). Any finite time
trajectory of a given dynamic system can be approximated
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Fig. 1. Illustration of a dynamic neuron.

by the internal state of the output units of a continuous
time dynamic neural network with N dynamic units, m
inputs and n outputs (Garces et al., 2003). These networks
are neural unit arrays which have connections both ways
between a pair of units, and from a unit to itself. The
model is defined by a one-dimensional array of N neu-
rons or units, in which each neuron of the dynamic neural
network can be described as follows:

ẋi = −βixi +
N∑

j=1

ωijσ(xj) +
m∑

j=1

γijuj , (6)

where βi, ωij and γij are adjustable weights, with 1/βi as
a positive time constant and n ≤ N , xi the activation state
of Unit i, and u1, . . . , um the input signals (see Fig. 1).

The states of the first n neurons are taken as the out-
put of the network, leaving N−n units as hidden neurons.
The network is defined by the vectorised expression of (6)
as follows:

ẋ = −βx + ωσ(x) + γu, (7)

ŷ = Cx, (8)

where x are the coordinates on R
N , β ∈ R

N×N , γ ∈
R

N×m , u ∈ R
m, σ(x) = [σ(x1), . . . , σ(xN )]T , σ(·)

is a sigmoidal function, such as the hyperbolic tangent,
In×n is the n × n identity matrix, 0n×(N−n) is an n ×
(N − n) matrix of zeros. C = [In×n 0n×(N−n)], and
β = diag(β1, . . . , βN ) is a diagonal matrix. This paper
used a dynamic neural network described by Eqns. (7)–
(8). The state vector x of the dynamic neural network of
Eqn. (7) can be partitioned into the output state xo and the
hidden states xh:

x =
[

xo

xh

]
. (9)

A dynamic neural network training problem can be

cast as a nonlinear unconstrained optimization problem:

min
θ

FM (θ, ZM ) =
1

2M

M∑

k=1

||y(tk) − ŷ(tk|θ)||2,
(10)

where ZM = [y(tk), u(tk)]k=1,M is a training data set,
y(tk) represents the measured output, ŷ(tk|θ) is the dy-
namic neural network output, and θ is a parameter vector.

The optimization problem associated with training
usually exhibits local minima. Hence, training dynamic
neural networks is typically performed using uncon-
strained local optimization with multiple random starts,
global optimization methods, or hybrid methods. Global
optimization or hybrid methods are usually better choices
for training DNNs when dealing with multivariable plants
(Garces et al., 2003).

In this work dynamic networks are trained us-
ing a hybrid method involving the DIRECT algorithm
(Perttunen et al., 1993), which is a deterministic global
optimization method, and a gradient based local optimiza-
tion method. The solutions obtained by DIRECT are im-
proved using gradient based local optimization. The train-
ing algorithm will find the parameters of the network in
Eqn. (7) for which the error function FM is minimized.
The weight vector θ used by the algorithm is the aggre-
gate of the neurons feedback weight matrix ωN×N , the in-
put weight matrix γN×m, the state feedback weight vector
βN×1 = [β1, . . . , βN ]T and the initial values of the hid-
den states of the dynamic neural network, xh(t0). That
is,

θ =

⎡

⎢⎢⎣

βN×1

vec(γN×m)
vec(ωN×N )

xh(t0)(N−n)×1

⎤

⎥⎥⎦ , (11)

where vec(.) transfers a matrix into a vector.

4. Approximate input-output feedback
linearization and MPC integration

Many nonlinear control methods are based on state space
models where the time derivative of the states depends
nonlinearly on the states and linearly on the control inputs
(Isidori, 1995), which are known as control affine systems
and are described as follows:

ẋ = f(x) + g(x)u,

y = h(x),
(12)

where x ∈ R
N is a state vector, u ∈ R

m is a vector of ma-
nipulated inputs, f and g are differentiable vector fields,
and y ∈ R

n is a vector of outputs variables.
The purpose of input-output linearization is to intro-

duce a new input variable v and a nonlinear transformation
that uses state feedback to compute the original input u, so
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that a system described by Eqn. (12) behaves linearly from
the new input v to the output y.

It is of considerable importance to assess which sys-
tems can be input-output linearized. The necessary and
sufficient conditions for the existence of a feedback law
are presented in (Isidori, 1995).

Input-output linearization and decoupling is a partic-
ular case of input-output linearization. An appropriate se-
lection of the design parameters leads to a feedback lin-
earized system where the i-th output depends on the i-
th external input only. The basic linearizing-decoupling
technique is described in (Isidori, 1995). In this paper, we
apply the linearizing-decoupling technique to the dynamic
neural network model, which is a control affine system,
as formulated by Garces et al. (2002). The control affine
system mappings related to Eqn. (12) can be related to the
dynamic neural network parameters as follows:

f(x) = −βx + ωσ(x),
g(x) = γ,

h(x) = Cx.

(13)

Consider the dynamic neural network described by
Eqns. (7) and (8), and suppose that the dynamic neu-
ral network has a vector relative degree given by r =
[r1, r2, . . . , rn] at a point x0. Assume that the dynamic
neural network has the same number of inputs and outputs
(n = m). For arbitrary values λ̂ik (i = 1, . . . , n and k =
0, . . . , ri), a state feedback law with

u = −S(x)−1E(x) + S(x)−1v, (14)

where

S(x)

=

⎡

⎢⎣
λ̂1r1Lg1L

r1−1
f x1 · · · λ̂1r1LgnLr1−1

f x1

...
. . .

...
λ̂nrnLg1L

rn−1
f xn · · · λ̂nrnLgnLrn−1

f xn

⎤

⎥⎦

n×n

(15)

and

E(x) =

⎡

⎢⎢⎢⎢⎢⎣

r1∑
k=0

λ̂1kLk
fx1

...
rn∑

k=0

λ̂nkLk
fxn

⎤

⎥⎥⎥⎥⎥⎦

n×1

, (16)

where Lk
fh denotes a Lie derivative of order k of a scalar

function h(x) along vector field f , λ̂iks are scalar design
parameters, and ri is the relative degree of the i-th output
ŷi, produced when applied to a dynamic neural network
described by Eqns. (7) and (8) a linearized-decoupled sys-
tem that obeys

ri∑

k=0

λ̂ik
dkŷi

dtk
= vi , i = 1 . . . n, (17)

where ŷi, not yi, is used as it is based on a neural network.
If the relative vector is well defined, S(x) is invert-

ible and

det
[
diag

(
λ̂1r1 , λ̂2r2 , . . . , λ̂nrn

)]
�= 0. (18)

It should be noted that the approximate feedback lin-
earization and decoupling laws described above require
state information. Since the model employed in this work
to generate the linearizing-decoupling laws is a dynamic
neural network, the same model can also be used as a
closed loop observer to provide state information to the
feedback linearizing laws.

Once the feedback linearization is tested and val-
idated on the actual plant, the constrained predictive
controller can be used to control the linearized system.
This controller can deal with disturbances arising from
modelling errors and other sources, and it can handle
constraints on plant variables. While handling output
constraints using the method presented in this paper is
straightforward, input constraints require special treat-
ment due to the presence of the nonlinear transformations
associated with feedback linearization. This aspect will be
discussed in detail in Section 5. The scheme is illustrated
in Fig. 2.

5. Algorithm for handling input constraints

Output constraints are straightforward for feedback lin-
earization. Therefore, only input constraints are discussed
in this paper. The feedback linearization-decoupling law
(14) can be written as follows in discrete time based on
the sampling time Ts, which is chosen using the Nyquist-
Shannon theorem:

u(k + 1|k)

= S(x(k + 1|k))−1

· (v(k + 1|k) − E(x(k + 1|k))),

(19)

where i = 1, 2, . . . , m, S(x(k + 1|k)) and E(x(k + 1|k))
are given by Eqns. (15) and (16), and x(k +1|k) is a sam-
pled state estimate obtained from an observer as as de-
scribed in Section 6. Consider the following constraints
on the input uk:

umin(k) ≤uk ≤ umax(k),
Δumin(k) ≤Δuk ≤ Δumax(k). (20)

From Eqns. (19) and (20), it is possible to see that the
resulting constraints on v(k + i−1|k) are state dependent
and hence are not suitable to be enforced by means of an
MPC algorithm such as the one presented in Section 2,
which assumes constant bounds. Although MPC based on
quadratic programming could solve linear-variant, even
nonlinear-variant constraints, it is not suitable for a real-
time control purpose. This paper proposes the use of an
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Fig. 2. Hybrid MPC/FL control scheme based on a dynamic neural network.

affine transformation to solve this problem for a real-time
application. In order to describe the technique in a simple
way, this paper considers a two-input two-output system.
However, this technique can be used in cases with more
inputs and outputs, simply by increasing the dimensions.

Assume that u = [u1(k + i−1|k) u2(k + i−1|k)]T .
Then, at sampling time k,

u1min ≤u1(k + i − 1|k) ≤ u1max,

u2min ≤u2(k + i − 1|k) ≤ u2max,

Δu1min ≤Δu1(k + i − 1|k) ≤ Δu1max,

Δu2min ≤Δu2(k + i − 1|k) ≤ Δu2max. (21)

Figure 3 illustrates the feasible area of u1(k+ i−1|k) and
u2(k + i − 1|k) at sampling time k. It has four corners
labelled by O, R, S, T . The coordinates of the corners
are (u1min, u2min), (u1min, u2max), (u1max, u2max),
(u1max, u2min), respectively. Note that since these are
bound constraints, the sides of the box are parallel to the
co-ordinates axes xc and yc. Figure 4 illustrates the feasi-
ble area of v1 and v2 after each point in the feasible area of
u1(k+i−1|k) and u2(k+i−1|k) is multiplied by the ma-
trix S(x(k + 1|k)) and translated by E(x(k + 1|k)). The
coordinates of these four corners O, R, S, T have changed
into (a1, a2), (b1, b2), (c1, c2), (d1, d2). The new coordi-
nates have the following relationship with the old ones:

[
a1

a2

]
= S(x(k + 1|k))

[
u1min

u2min

]

+ E(x(k + 1|k)),
[

b1

b2

]
= S(x(k + 1|k))

[
u1min

u2max

]

+ E(x(k + 1|k)),
[

c1

c2

]
= S(x(k + 1|k))

[
u1max

u2max

]

+ E(x(k + 1|k)),

(22)

[
d1

d2

]
= S(x(k + 1|k))

[
u1max

u2min

]

+ E(x(k + 1|k)).

The feasible area in Fig. 4 of the transformed inputs
is not suitable for use with the predictive control algorithm
described in Section 2, as the box is oblique with respect
to the co-ordinate system xc–yc. From Eqn. (22), it is not
difficult to see that the side OT is parallel with the side
RS; the side OR is parallel with the side TS. There-
fore, the feasible area of the transformed inputs can be
expressed in a suitable form for the predictive control al-
gorithm described in Section 2, after an affine change of
coordinates, which involves in the 2D case a rotation and a
translation. Figure 5 shows the new co-ordinates. Axis x′

c

is parallel with sides OT and RS. Axis y′
c is parallel with

the sides OR and TS. In the new coordinates, the points
O, R, S, T map into (a′

1, a
′
2), (b

′
1, b

′
2), (c

′
1, c

′
2), (d

′
1, d

′
2). It

is not difficult to prove that a′
1 = b′1, a′

2 = d′2, b′2 = c′2
and c′1 = d′1.

Suppose the affine change of variables is done by
means of a 2×2 affine matrix H and a translation. Matrix
H can be obtained using the following equations:

[
a′
1

a′
2

]
= H

{[
a1

a2

]
− E(x(k + 1|k))

}
,

[
b′1
b′2

]
= H

{[
b1

b2

]
− E(x(k + 1|k))

}
, (23)

[
c′1
c′2

]
= H

{[
c1

c2

]
− E(x(k + 1|k))

}
,

[
d′1
d′2

]
= H

{[
d1

d2

]
− E(x(k + 1|k))

}
.

Notice that by choosing to have the origin of the x′
c–

y′
c co-ordinate system centered in the box, the effect of

the shift E(x(k + 1|k)) from Eqn. (22) is cancelled by
Eqn. (23). Hence it is safe to ignore the effect of the
shift E(x(k + 1|k)) when computing the new bounds for
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Fig. 3. Illustration of the feasible area of the manipulated inputs: Feedback linearization incorporated in a predictive control scheme
after the affine transformation.

Fig. 4. Illustration of the feasible area of the transformed inputs.

Fig. 5. New coordinates after the affine transformation.

v(k + i − 1|k)′ in the x′
c–y′

c co-ordinates. The following
relationships are also true:

b′2 − a′
2 =

√
(b1 − a1)2 + (b2 − a2)2,

c′1 − b′1 =
√

(b1 − c1)2 + (b2 − c2)2, (24)

c′2 − d′2 =
√

(d1 − c1)2 + (d2 − c2)2,

d′1 − a′
1 =

√
(d1 − a1)2 + (d2 − a2)2.

After a′
1, a′

2, b′1, b′2, c′1, c′2, d′1, and d′2 are obtained from

Eqn. (24), H can be easily obtained from Eqn. (23).
Thus any vector z in the xc–yc co-ordinates can be

transformed into a vector z′c in the x′
c–y′

c co-ordinates as
follows:

z′ = H(z − E(x(k + 1|k))), (25)

while any vector z′ in the x′
c–y′

c co-ordinates can be trans-
formed into a vector in the xc–yc co-ordinates as

z = H−1z′ + E(x(k + 1|k)). (26)
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After the affine transformation, for a given time k,
v(k + i − 1|k)′ will be bounded as follows:

[
a′
1

a′
2

]
≤ v(k + i − 1|k)′ ≤

[
c′1
c′2

]
. (27)

Therefore, we could change the first line of Eqn. (4) into
Eqn. (27) as this is the real input constraint for MPC.

For a given k,

v(k − 1|k − 2) = S(x(k − 1|k − 2))u(k − 1|k − 2)
+ E(x(k − 1|k − 2)),

v(k|k − 1) = S(x(k|k − 1))uk + E(x(k|k − 1)).
(28)

Hence,

Δv(k + i − 1|k)
= v(k + i − 1|k) − v(k − 1|k − 2)
= S(x(k + 1|k))uk

− S(u(k − 1|k − 2))u(k − 1|k − 2)
+ E(x(k + 1|k))
− E(x(k − 1|k − 2)).

(29)

Δv(k + i − 1|k)′ is obtained by transforming
Δv(k + i − 1|k) into the new coordinates x′

c and
y′

c, i.e.,

Δv(k + i − 1|k)′ = HΔv(k + i − 1|k). (30)

Combining Eqns. (29) and (30), we get

Δv(k + i − 1|k)′

= HS(x(k + 1|k))Δu(k + 1|k)
+ Hu(k − 1|k − 2)(S(x(k + 1|k))
− S(x(k − 1|k − 2)))
+ H(E(x(k + 1|k))
− E(x(k − 1|k − 2)).

(31)

Equation (31) also can be writen as

Δv(k + i − 1|k)′

= HΔv(k + i − 1|k)
+ Hu(k − 1|k − 2)(S(x(k + 1|k))
− S(x(k − 1|k − 2)))
+ H(E(x(k + 1|k))
− E(x(k − 1|k − 2))).

(32)

The following two equations will be obtained by using
constraints on Eqn. (31):

Δv′min

= HΔvmin(k + i − 1|k)
+ Hu(k − 1|k − 2)(S(x(k + 1|k))
− S(x(k − 1|k − 2)))
+ H(E(x(k + 1|k)) − E(x(k − 1|k − 2))).

(33)

Δv′max

= HΔvmax(k + i − 1|k)
+ Hu(k − 1|k − 2)(S(x(k + 1|k))
− S(x(k − 1|k − 2)))
+ H(E(x(k + 1|k)) − E(x(k − 1|k − 2))).

(34)

Therefore, we could change the second line of
Eqn. (4) into Eqns. (33) and (34) as this is the real rate
constraint for MPC. Now that the constraints have been
transformed into a new coordinate frame. The next step is
to transform the inputs to the predictive controller. Figure
6 illustrates the control scheme, where the forward trans-
formation and its inverse are denoted by H blocks and
H−1 blocks, respectively.

The use of the affine transformation to define the
bounds for v(k + i − 1|k) does not affect the transfer
function of the plant seen by the predictive controller, pro-
vided the output and the reference signals undergo the
same transformation. This can be proved as follows. For
the scheme in Fig. 6, the matrix transfer function can be
written as follows:
y(s)
v(s)

=
[ 1

c1nsn+···+c11s+c10
0

0 1
c2nsn+···+c21s+c20

]
,

(35)

Here, c1n, . . . , c10 and c2n, . . . , c20 are the arbitrary
values chosen when applying feedback linearization-
decoupling. From Fig. 6, y1(s) can be obtained by

y1(s) = H × G(s) × H−1v1(s), (36)

Let
G1(s) = H × G(s) × H−1, (37)

where G1 is the new transfer function for the predictive
controller, which can easily be transformed into a state
space form. Table 1 gives a step-by-step summary of
the method for handling input constraints in an MPC/FL.
Consider now the multi-input multi-output case and sup-
pose the number of inputs and outputs is m. The number
of inequalities in Eqn. (21) will be 2m. The dimension of
Fig. 3 should be m and the corner number of the feasible
area will be 2m. The dimension of Fig. 4 is also m and
the corner number of new coordinates is 2m. The num-
ber of equations in Eqn. (22) will become 2m, so will the
number of equations in Eqn. (23). H can still be obtained
using equations which are similar to (22) and (23). There-
fore, the multi-input and multi-output case can easily be
solved.

6. Using the dynamic neural network model
as a closed-loop observer

Poznyak et al. (2001) proposed the use of dynamic neu-
ral networks as closed loop observers. In this paper, a
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Fig. 6. Feedback linearization incorporated in a predictive control scheme after the affine transformation.

Table 1. Method for handling input constraints in an MPC/FL
scheme.

Step Description

Step 1 Set k = 0. Obtain a′
1, a′

2, b′1, b′2, c′1, c′2, d′1,
and d′2 according to Eqn. (24) given that
a′
1 = b′1, a′

2 = d′2, b′2 = c′2 and c′1 = d′1.
Step 2 Obtain H is from Eqn. (23).
Step 3 Define the bounds for v(k + i − 1|k)′

as given in Eqn. (27).
Step 5 Calculate Δvmin

′ and Δvmax
′

according to Eqns. (33) and (34).
Step 6 Measure the current plant output yk and

transform it using Eqn. (25) to obtain y′
k.

Step 7 Transform the current reference rk

using Eqn. (25) to obtain r′k.
Step 8 Execute one step of the predictive control

algorithm to obtain v(k + i − 1|k)′.
Step 8 Transform v(k + i − 1|k)′ to obtain

v(k + i − 1|k) using Eqn. (26).
Step 9 Provide v(k + i − 1|k) to

the feedback linearization/decoupling algorithm.
Step 10 Set k = k + 1 and return to Step 1.

dynamic neural network is employed as a closed-loop
observer to provide state information to be used by the
feedback linearization laws. A dynamic neural network
can be used as either an open-loop observer or a closed-
loop observer. A dynamic neural network was used as an
open-loop observer in (Garces et al., 2003; Garces, 2000),
where the state vector of the dynamic neural network
was used to provide state information to the feedback lin-
earization law, with no plant output information used to
correct the state estimates. A closed-loop observer with
output feedback can reduce the state estimation error and
improve the robustness of the estimator. An extended
Kalman filter algorithm (Maybeck, 1982) is employed in

this work as a state estimator, where a dynamic neural net-
work is employed to represent the plant dynamics.

We used a simplified extended Kalman filter which
assumes the following stochastic model of the plant dy-
namics and discrete observations with a sampling interval
Ts:

ẋ(t) = F (x, u) + Gw(t)
= −βx(t) + ωσ(x(t)) + γu(t) + Gw(t),

x(0) = x0,

y(tk) = Cx(tk) + v(tk),

(38)

where x is the state vector, y is the measurement vector,
u is the external input vector, w is assumed to be zero
mean continuous white noise with covariance matrix Q,
v is assumed to be zero mean discrete white noise with
covariance matrix R, and x0 is a random vector with zero
mean and covariance matrix P0.

The algorithm assumes that the Jacobian matrix re-
mains constant between samples, so that

Φ(k) = exp

([
∂F (x, u))

∂x

]

tk

Ts

)
. (39)

A summary of the algorithm is as follows:

• Algorithm initialisation: Give values to Q, R, P0 and
G. Set t = 0, k = 0, P (0) = P0, x(0) = x0.

• Step 1: Time update. Integrate from tk−1 to tk the
following differential equation to obtain x̂(k)−:

ẋ = −βx(t) + ωσ(x(t)) + γu(t). (40)

Also compute the a priori state covariance from

P−(k) = Φ(k)P (k − 1)Φ(k)T + Q. (41)

• Step 2: Measurement update. Measure the current
output y(k) and then compute the Kalman filter gain
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Fig. 7. Schematic diagram of the two tank mixing process.

K(k), the corrected state estimate x̂(k), and the cor-
rected covariance matrix P (k):

K(k) = P−(k)CT (CP−(k)CT + R)−1, (42)

x̂(k) = x̂−(k) + K(k)(y(k) − y−(k)), (43)

P (k) = (I − K(k)C)P−(k). (44)

Set k = k + 1 and return to Step 1.

7. Case study

This section describes a case study based on a simulated
mixing process. A section of the process is shown in
Fig. 7.

Two streams of cold and hot water enter the first tank,
where a motorized mixer operates. These streams are con-
trolled by means of two pneumatic valves. The two tanks
are interconnected via a lower pipe with a manual valve
that is normally open. The outlet valve from Tank 2 is
also normally open. The two measured variables are the
level of Tank 1 and the temperature of Tank 2. A simple
modular model of the mixing process is described below
(Becerra et al., 2001). The model is obtained from mass
and energy balances. The main simplifying assumptions
that were made to derive this model were as follows:

• The mixing is perfect.

• Heat losses are negligible.

• The valves have linear characteristics.

• The temperatures of the cold and hot water streams
are constant.

The model for the first tank is given by the following

algebraic and differential equations:

Qc = Ccvc/100,

Qh = Chvh/100,

Qo1 = K1

√
h1 − h2, (45)

dh1

dt
= (Qc + Qh − Qo1)/A1,

dT1

dt
= [Qc(Tc − T1) + Qh(Th − T1)]/(A1h1),

where vc is the opening of the cold water control valve
(%), vh is the opening of the hot water control valve
(%), Cc is the constant of the cold water control valve
(cm3/s%), Ch is the constant of the cold water control
valve (cm3/s)%), Qc is the cold water flow rate (cm3/s),
Qh is the hot water flow rate (cm3/s), Qo1 is the outlet
flow rate from Tank 1 (cm3/s), h1 is the liquid level in
Tank 1 (cm), T1 is the liquid temperature in Tank 1 (oC),
Tc is the temperature of the cold water stream (oC), Th is
the temperature of the hot water stream (oC), K1 is the re-
striction of the interconnection valve and pipe (cm5/2/s),
A1 is the cross-sectional area of Tank 1 (cm2).

The model for the second tank is given by the follow-
ing algebraic and differential equations:

Qo2 = K2

√
h2,

dh2

dt
= (Q1 − Qo2)/A2, (46)

dT2

dt
= [Qo1(T1 − T2)]/(A2h2),

where Qo2 is the outlet flow rate from Tank 2 (cm3/s), h2

is the liquid level in Tank 2 (cm), T2 is the liquid temper-
ature in Tank 2 (oC), K2 is the restriction of the Tank 2
outlet valve and pipe (cm5/2/s), A2 is the cross-sectional
area of Tank 2 (cm2).

The following values were used for the model pa-
rameters: A1 = 289 cm2, A2 = 144 cm2, Cc =
280.0 cm3/s%, C − h = 100.0 cm3/s%, T = 20oC,
Th = 72oC, K1 = 30 cm5/2/s, K2 = 30 cm5/2/s. Qh
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and Qc are the manipulated inputs. An identification ex-
periment was carried out on this two-tank system model
by using random steps in the inputs u1(k + i − 1|k) and
u2(k + i−1|k) over 4000 sampling points. The first 2000
sampling points data were used for training and the sec-
ond 2000 sampling points data were used for validation.
The sampling time is 20 s. Training was carried out by
means of the DIRECT algorithm combined with the gra-
dient descent algorithm. Fifty training runs were carried
for each network size, starting from the random initial
weights, and the best network in terms of mean square
error for the training data was selected for each network
size. The values of the parameters of the best model found
were

β =
[

0.0059 0
0 0.0106

]
, (47)

γ =
[

0.0084 0.0030
−0.0034 0.0038

]
, (48)

ω =
[ −0.0891 −0.0783

0.1488 0.1850

]
, (49)

C = [1 0]. (50)

In order to explore a reduced region of the error sur-
face, some methods, such as Quasi-Newton ones, result
in finding a local minimum from the given initial parame-

ters. At the same time, values obtained from the DIRECT
algorithm are close to different local minima. A combined
algorithm starts with the DIRECT algorithm and then fine-
tunes the result using a faster local search procedure. This
is illustrated in Fig. 8.

Figure 9 compares the network output obtained for
the training input with the training output using the DI-
RECT algorithm combined with the gradient descent al-
gorithm. Figure 10 compares the network output obtained
for the validation input with the validation output using
the DIRECT algorithm combined with the gradient de-
scent algorithm. After identifying the dynamic neural net-
work model, a feedback linearization based on this DNN
has being calculated. In order to improve the feedback
linearization, the dynamic neural network is also used as
a closed loop observer. The two-tank system yields a 2-
unit network:

h(x) = x =
[

x1

x2

]
,

g(x) = γ =
[

γ11 γ12

γ21 γ22

]
, (51)

f(x) = −βx + ωσ(x).

It has the relative degree of

r = [1 1]. (52)

The control law is given by

u(t) = − S(x(k + 1|k))−1
E(x(k + 1|k))

+ S(x(k + 1|k))−1
v(t),

(53)

where

S(x(k + 1|k)) =
[

λ11Lg1L
0
fx1,k λ11Lg2L

0
fx1,k

λ21Lg1L
0
fx2,k λ21Lg2L

0
fx2,k

]

=
[

λ11γ11 λ11γ12

λ21γ21 λ21γ22

]
, (54)

E(x(k + 1|k))

=
[

λ10L
0
fx1,k + λ11Lfx1,k

λ20L
0
fx2,k + λ21Lfx2,k

]

=

[
λ10x(k + 1|k) + λ11(−β1x(k + 1|k)
λ20x(k + 1|k) + λ21(−β1x(k + 1|k)σ(x(k + 1|k)))

+w11σ(x(k + 1|k)) + w12σ(x(k + 1|k)))
+w21σ(x(k + 1|k)) + w22σ(x(k + 1|k)))

]
, (55)

where λ10 = 0.000062861, λ11 = 0.0165, λ20 =
0.000062861, λ21 = 0.0165. The design parameters λij

are chosen so that λ10 = λ20 and λ11 = λ21, and the static
gain and dominant time constant of the linearized system
v − y is as near to that of the Jacobian linearization of the
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Fig. 9. Comparison of training trajectories using the DIRECT algorithm combined with the gradient descent algorithm.
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Fig. 10. Comparison of validation trajectories using the DIRECT algorithm combined with the gradient descent algorithm.

dynamic neural network model as possible. For this case,
S(x(k + 1|k)) is a constant matrix:

S(x(k + 1|k)) =
[

0.0001394 0.0000485
−0.0000565 0.0000628

]
. (56)

The input constraints are given as

[
0
0

]
≤ u ≤

[
100
100

]
. (57)

After the constraint area is transformed using

S(x(k + 1|k)), the coordinates of the four corners are

(a1, a2) = (0, 0),
(b1, b2) = (0.004983, 0.0062799),
(c1, c2) = (0.01889, 0.00063129),
(d1, d2) = (0.0139387,−0.0056489). (58)

Therefore,

(a′
1, a

′
2) = (0, 0),
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(b′1, b
′
2) = (0, 0.0079984),

(c′1, c
′
2) = (0.01504, 0.0079984),

(d′1, d
′
2) = (0.01504, 0). (59)

According to Eqn. (23),

H =
[

0.81764 −0.64492
0.391138 0.96513

]
. (60)

In this example, S(x(k + 1|k)) and H are constant matri-
ces. However, if S(x(k+1|k)) and H are state-dependent,
the proposed method for handling input constraints within
an MPC/FL scheme remains applicable, only that the con-
straint values change at every sampling time.

The Kalman filter gain was computed using the
linearized model and the covarience matrices Qf =
diag(1, 1), Rf = diag(0.001, 0.001). The references
used in the simulation were two square waves with dif-
ferent frequencies. The sampling time is Ts = 20 s,
the control horizon is m = 2, the prediction horizon is
p = 320, the input and output weights are uwt = [1, 1]T ,
ywt = [0.0001, 0.0001]T , the manipulated variables
constraints are umin = [0, 0]T , umax = [100, 100]T ,
the incremental constraints on the manipulated variable
are Δumax = [0.01, 0.01]T . The tuning parameters
of the extended Kalman filter are P0 = diag(0.1, 0.1),
Q = diag(0.1, 0.1), R = diag(100, 100). The diagonal
elements of the output noise covariance matrix R were
chosen to account for the covariance of the measurement
noise. The diagonal elements of the process noise covari-
ance matrix Q were chosen small and positive in order to
prevent the covariance of the state error from becoming
zero. The initial covariance of the state error P0 is chosen
to reflect some uncertainty in the initial state estimate.

Figure 11 shows the outputs responses under the
MPC/FL scheme. Figure 12 shows the actual inputs to
the process under the MPC/FL control method. In this
case, the input magnitude constraints do not become ac-
tive. Figures 13 and 14 show the output of the controller
and input to the process under the proposed scheme in a
scenario where one of the input magnitude constraints be-
comes active as can be seen in Fig. 13.

8. Conclusion

This paper has introduced a technique for handling input
constraints within a real time MPC/FL scheme, where the
plant model employed is a class of dynamic neural net-
work. Handling input constraints within such schemes is
difficult since simple bound contraints on the input be-
come state dependent because of the nonlinear transfor-
mation introduced by feedback linearization. The tech-
nique is based on a simple affine transformation of the
feasible area. A simulated case study was presented to
illustrate the use of the technique. The issue of recursive

feasiblity of MPC is important (Rossiter, 2003) in the con-
text of the work presented in this paper. This is currently
being investigated by the authors and will be the subject
of a future paper.
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