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This paper describes structured neural models and a computationally efficient (suboptimal) nonlinear Model Predictive
Control (MPC) algorithm based on such models. The structured neural model has the ability to make future predictions of
the process without being used recursively. Thanks to the nature of the model, the prediction error is not propagated. This
is particularly important in the case of noise and underparameterisation. Structured models have much better long-range
prediction accuracy than the corresponding classical Nonlinear Auto Regressive with eXternal input (NARX) models.
The described suboptimal MPC algorithm needs solving on-line only a quadratic programming problem. Nevertheless,
it gives closed-loop control performance similar to that obtained in fully-fledged nonlinear MPC, which hinges on on-
line nonconvex optimisation. In order to demonstrate the advantages of structured models as well as the accuracy of the
suboptimal MPC algorithm, a polymerisation reactor is studied.
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1. Introduction

Model Predictive Control (MPC) refers to a class of
computer control algorithms that directly use an explicit
dynamic model in order to predict future behaviour of
the process (Maciejowski, 2002; Rossiter, 2003; Tatjew-
ski, 2007). At each sampling instant, the model is used
to optimise a future control sequence, the first element of
which is actually applied to the process.

MPC is recognised as the only one among advanced
control techniques (defined as techniques more advanced
than the PID approach) which has been exceptionally suc-
cessful in numerous practical applications (Qin and Badg-
well, 2003). Because the model is used to predict future
behaviour of the process, MPC algorithms have the unique
ability to take into account constraints imposed on both
process inputs (manipulated variables) and outputs (con-
trolled variables) or states. Constraints are very important
in practice; they usually determine quality, economic ef-
ficiency and safety. Moreover, MPC techniques are very
efficient in multivariable process control.

Since properties of many technological processes are
nonlinear, different nonlinear MPC techniques have been
developed (Henson, 1998; Morari and Lee, 1999; Qin and
Badgwell, 2003; Tatjewski, 2007). In many cases, in com-

parison with MPC algorithms based on linear models,
they make it possible to significantly improve the control
quality.

The structure of the nonlinear model and the way
it is used on-line affect the accuracy, computational bur-
den and reliability of MPC. Fundamental (first-principle)
models (Luyben, 1990; Marlin, 1995), although poten-
tially very precise, are usually not suitable for on-line con-
trol. Such models are comprised of systems of differential
and algebraic equations which have to be solved on-line
in MPC. This may lead to numerical problems (e.g., ill-
conditioning, stiffness). Moreover, in many cases, the de-
velopment of fundamental models is difficult and the re-
sulting models are very complex.

Among many structures of empirical models, neu-
ral networks (Haykin, 1999) can be effectively used on-
line in different versions of MPC algorithms (Åkesson
and Toivonen, 2006; Liu et al., 1998; Ławryńczuk,
2007a; 2007b; Ławryńczuk and Tadej, 2008; Nørgaard
et al., 2000; Parisini et al., 1998; Piche et al., 2000;
Pottmann and Seborg, 1997; Tatjewski, 2007; Tatjewski
and Ławryńczuk, 2006; Trajanoski and Wach, 1998; Yu
and Gomm, 2003). This is because neural networks are
universal approximators (Hornik et al.„ 1989), and hence
they may be used to approximate nonlinear behaviour of
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technological dynamic processes (Hussain, 1999; Nør-
gaard et al., 2000). In contrast to fundamental models,
neural models have a simple structure and a relatively
small number of parameters. Moreover, numerical prob-
lems typical of MPC algorithms based on comprehensive
fundamental models are not encountered because neural
models directly describe input-output relations of process
variables; complicated systems of differential and alge-
braic equations do not have to be solved on-line.

Neural models are usually trained using the rudi-
mentary backpropagation algorithm, which yields one-
step ahead predictors. Recurrent neural network training
is much more complicated. The prediction error propa-
gation problem is a challenging theoretical and practical
issue in nonlinear MPC. Models used in MPC have to be
able to make good predictions not only one step ahead, but
over the whole prediction horizon. If a one-step ahead pre-
dictor is used, consecutive predictions depend recursively
on predictions calculated for previous sampling instants
within the prediction horizon. Inevitably, the prediction
error is propagated. In many cases, one-step ahead predic-
tors are not suited to be used recursively in MPC for long-
range prediction. Especially in the case of noise, model
inaccuracies and underparameterisation, the order of the
model used in MPC is usually significantly lower than the
order of the real process, or even the proper model order is
unknown. To solve the problem resulting from the inaccu-
racy of one-step ahead predictors in MPC, a linear multi-
model approach was proposed in Liu et al., 1999; Rossiter
and Kouvaritakis, 2001) for processes whose properties
can be precisely enough approximated by linear models.
For each sampling instant within the prediction horizon,
one independent linear model is used, and the prediction
error is not propagated. In this work, a different approach
to modelling is studied in which the structure of the model
does not ignore its specific role in MPC.

The contribution of this paper is twofold. It de-
scribes structured neural models and a computationally ef-
ficient (suboptimal) nonlinear MPC algorithm with Non-
linear Prediction and Linearisation (MPC-NPL) based on
such models originally described in (Ławryńczuk, 2007b).
Unlike classical one-step ahead predictors, the structured
neural model has the ability to make future predictions of
the process without being used recursively. Thanks to the
nature of the model, the prediction error is not propagated.
The model is easily trained by means of the classical back-
propagation algorithm. In the suboptimal MPC-NPL al-
gorithm, the model is used on-line to determine a local
linearisation and a nonlinear free trajectory. Although the
algorithm needs solving on-line only a quadratic program-
ming problem, in practice it gives closed-loop control per-
formance similar to that obtained in nonlinear MPC with
on-line nonconvex optimisation repeated at each sampling
instant.

This paper is organised as follows: Section 2 shortly

presents the general idea of MPC and discusses predic-
tion using classical models of the Nonlinear Auto Regres-
sive with eXternal input (NARX) type. Next, in Section 3,
the structured neural model is presented and its long-range
prediction is discussed. Section 4 details the suboptimal
MPC-NPL algorithm based on structured models. Sec-
tion 5 demonstrates the advantages of structured neural
models in long-range prediction as well as the accuracy
of the suboptimal MPC-NPL algorithm in the context of
a polymerisation reactor. Finally, Section 6 concludes the
paper.

2. Model predictive control problem
formulation

Although a number of different MPC techniques have
been developed, the main idea (i.e., the explicit applica-
tion of a process model, the optimisation of a cost func-
tion and the receding horizon) is always the same (Ma-
ciejowski, 2002; Rossiter, 2003; Tatjewski, 2007). At
each consecutive sampling instant, k, a set of future con-
trol increments is calculated,

Δu(k) = [Δu(k|k) . . .Δu(k + Nu − 1|k)]T . (1)

It is assumed that Δu(k + p|k) = 0 for p ≥ Nu, where
Nu is the control horizon. Usually, the objective is to min-
imise the differences between predicted values of the out-
put ŷ(k + p|k) and the reference trajectory yref (k + p|k)
over the prediction horizon N and to penalise excessive
control increments. The following cost function is usually
used:

J(k) =
N∑

p=1

μp(yref(k + p|k) − ŷ(k + p|k))2 (2)

+
Nu−1∑

p=0

λp(Δu(k + p|k))2,

where μp ≥ 0, λp > 0 are weighting factors. Typically,
Nu < N . Only the first element of the determined se-
quence (1) is applied to the process, and the control law
is

u(k) = Δu(k|k) + u(k − 1). (3)

At the next sampling instant, k+1, the prediction is shifted
one step forward and the whole procedure is repeated.

Since constraints usually have to be taken into ac-
count, future control increments are determined from the
following optimisation problem:

min
Δu(k|k)...Δu(k+Nu−1|k)

{J(k)} ,



Efficient nonlinear predictive control based on structured neural models 235

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

−Δumax ≤ Δu(k + p|k) ≤ Δumax,

p = 0, . . . , Nu − 1,

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N.
(4)

The general prediction equation for p = 1, . . . , N is

ŷ(k + p|k) = y(k + p|k) + d(k), (5)

where the quantities y(k + p|k) are calculated from a
model of the process. The “DMC type” disturbance
model is used in which the unmeasured disturbance d(k)
is assumed to be constant over the prediction horizon
(Tatjewski, 2007). It is estimated from

d(k) = y(k) − y(k|k − 1), (6)

where y(k) is measured while y(k|k − 1) is calculated
from the model.

2.1. Prediction. Let the Single-Input Single-Output
(SISO) process under consideration be described by the
following nonlinear discrete-time Nonlinear Auto Regres-
sive with eXternal input (NARX) model:

y(k) = f(x(k)) =f(u(k − τ), . . . , u(k − nB), (7)

y(k − 1), . . . , y(k − nA)),

where f : R
nA+nB−τ+1 −→ R is a nonlinear function

(the integers τ , nA, nB define the order of the model,
τ ≤ nB). Using the prediction equation (5) and the model
(7), output predictions over the prediction horizon are cal-
culated from

ŷ(k + p|k) =f(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, (8)

u(k − 1), . . . , u(k − nB + p)︸ ︷︷ ︸
Iu−Iuf (p)

,

ŷ(k − 1 + p|k), . . . , ŷ(k + 1|k)︸ ︷︷ ︸
Iyp(p)

,

y(k), . . . , y(k − nA + p)︸ ︷︷ ︸
nA−Iyp(p)

) + d(k).

The predictions ŷ(k + p|k) depend on Iuf (p) =
max(min(p−τ+1, Iu), 0) future values of the control sig-
nal (i.e., decision variables of the MPC algorithm), where
Iu = nB −τ +1, Iu−Iuf (p) are the values of the control
signal applied to the plant at previous sampling instants,
Iyp(p) = min(p − 1, nA), future output predictions and
nA − Iyp(p) are plant output signal values measured at
previous sampling instants. It is evident that for predic-
tion in the MPC algorithm the NARX model has to be

used recursively, because predictions depend on predic-
tions calculated for previous sampling instants within the
prediction horizon.

Typically, during neural network training, the follow-
ing Sum Squared Error (SSE ) performance function is
minimised:

SSE =
∑

k∈data set

(y(k|k − 1) − y(k))2, (9)

where y(k|k − 1) denotes the output of the model for the
sampling instant k calculated from the neural model using
signals up to the sampling instant k−1 as in (7), and y(k)
is the real value of the process output variable collected
during the identification experiment. The obtained mod-
els are of good quality when one-step ahead prediction
is necessary. Conceptually, one-step ahead predictors are
not suited to be used recursively in MPC for long-range
prediction because the prediction error is propagated, es-
pecially in the case of noise, model inaccuracies and un-
derparameterisation. For many real processes the order of
models used in MPC is significantly lower than the order
of the real process. Very frequently, the proper model or-
der is unknown. In spite of the fact that a one-step ahead
predictor is given as the result of backpropagation train-
ing, it is used for N -step ahead prediction (8). Recur-
rent neural network training, although possible and used
in practice, is much more complicated.

3. Structured neural models

The prediction error propagation problem in the context
of MPC was thoroughly studied in (Rossiter and Kouvar-
itakis, 2001). A multi-model approach was proposed in
(Liu et al., 1999; Rossiter and Kouvaritakis, 2001), but
only for linear models. For each sampling instant within
the prediction horizon, one independent linear model is
used, and hence the prediction error is not propagated.
The idea of the structured neural model presented in this
paper is to use only one model which is also able to calcu-
late predictions over the whole prediction horizon without
being used recursively. The structured model is trained
by means of the classical backpropagation algorithm, in
which the SSE performance function (9) is minimised.

Rewriting the model (7) for sampling instants k −
1, . . . , k − N + 1, one has

y(k − 1) = f(u(k − τ − 1), . . . , u(k − nB − 1),
y(k − 2), . . . , y(k − nA − 1)), (10)

y(k − 2) = f(u(k − τ − 2), . . . , u(k − nB − 2)
y(k − 3), . . . , y(k − nA − 2)),

... (11)
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y(k − N + 2)
= f(u(k − τ − N + 2), . . . , u(k − nB − N + 2),

y(k − N + 1), . . . , y(k − nA − N + 2)), (12)

y(k − N + 1)
= f(u(k − τ − N + 1), . . . , u(k − nB − N + 1),

y(k − N), . . . , y(k − nA − N + 1)). (13)

Using (13), the quantity y(k − N + 2) given by (11) can
be expressed as

y(k − N + 2)
= f(u(k − τ − N + 2), . . . , u(k − nB − N + 2),

f(u(k − τ − N + 1), . . . , u(k − nB − N + 1),
y(k − N), . . . , y(k − nA − N + 1)),
y(k − N), . . . , y(k − nA − N + 2)), (14)

which can be rewritten as the function

y(k − N + 2)
= fN−2(u(k − τ − N + 2), . . . , u(k − nB − N + 1),

y(k − N), . . . , y(k − nA − N + 1)). (15)

Model arguments rearrangement can be repeated for
all quantities y(k − N + 2), . . . , y(k), giving functions
fN−2, . . . , f0. Finally, one has

y(k) = f(u(k − τ), . . . , u(k − nB),
f1(u(k − τ − 1), . . . , u(k − nB − N + 1), . . . ,
y(k − N), . . . , y(k − nA − N + 1)), . . . ,
fnA(u(k − τ − nA), . . . , u(k − nB − N + 1),
y(k − N), . . . , y(k − nA − N + 1))), (16)

which can be rewritten as the function

y(k) =f0(u(k − τ), . . . , u(k − nB − N + 1), (17)

y(k − N), . . . , y(k − nA − N + 1)).

The obtained equation (17) represents the structured
model, and f0 : R

nA+nB−τ+N −→ R is a nonlinear func-
tion, τ ≤ nB + N − 1.

3.1. Prediction. Using the prediction equation (5),
output predictions calculated from the structured
model (17) are

ŷ(k + p|k) (18)

= f0(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

,

u(k − 1), . . . , u(k − nB − N + 1 + p)︸ ︷︷ ︸
Iu−Iuf (p)

,

y(k − N + p), . . . , y(k − nA − N + 1 + p)︸ ︷︷ ︸
nA

)

+ d(k).

For the structured model, Iu = nB + N − τ . As in
the case of the classical NARX model (7) used for pre-
diction (8), predictions ŷ(k + p|k) calculated by means
of the structured model depend on Iuf (p) future values of
the control signal and Iu − Iuf (p) values of the control
signal applied to the plant at previous sampling instants.
Unlike the classical NARX predictions, they do not de-
pend on predictions calculated for previous sampling in-
stants within the prediction horizon, but only on nA values
of the plant output signal measured at previous sampling
instants. As a result, the structured model is not used re-
cursively and the prediction error is not propagated.

There is a clear link between the discussed struc-
tured model (17) and other types of models used in MPC.
More specifically, the Dynamic Matrix Control (DMC)
algorithm (Cutler and Ramaker, 1979; Tatjewski, 2007)
uses step-response linear models in which the output sig-
nal depends only on the control signal. Consequently, the
prediction error is not propagated. Because of their na-
ture, step-response models need many coefficients (usu-
ally dozens or even hundreds), much more than ARX
models of a similar accuracy, which depend on both in-
put and output signals. As a result, in the DMC algorithm
relatively long prediction horizons (and horizons of dy-
namics) should be used. Of course, it is possible to de-
velop a nonlinear DMC algorithm which uses nonlinear
step-response models, for example, of a neural type. Un-
fortunately, such models are likely to have many param-
eters, which unnecessarily complicates the whole control
algorithm.

On the other hand, in the structured model the output
signal depends not only on the control signal but also on
previous values of the output signal in such a way that the
prediction error is not propagated. Such an approach has
two advantages. Intuitively, due to its dependence on pre-
vious values of the output, the structured model depends
on a smaller number of past values of the input signal than
the step-response model does. Secondly, in the MPC algo-
rithm described in the following part of the article, short
prediction horizons can be used, similarly as is possible
in the GPC algorithm (Clarke and Mohtadi, 1989). Yet
another model type whose output signal depends only on
the control signal is the nonlinear Volterra system (Doyle
and Ogunnaike, 2001; Doyle et al., 1995). Unfortunately,
Volterra models, similarly as step-response ones, are usu-
ally very complicated.

A Multi Layer Perceptron (MLP) feedforward neu-
ral network with one hidden layer and a linear output
(Haykin, 1999) is used as the function f0 in (17). The
output of the model is

y(k) = f(x(k)) = w2
0 +

K∑

i=1

w2
i ϕ(zi(k)), (19)

where zi(k) is the sum of inputs of the i-th hidden node,
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ϕ : R −→ R is a nonlinear transfer function (e.g., hyper-
bolic tangent), K is the number of hidden nodes. Taking
into account arguments of the structured model (17),

zi(k) =w1
i,0 +

Iu∑

j=1

w1
i,ju(k − τ + 1 − j) (20)

+
nA∑

j=1

w1
i,Iu+jy(k − j − N + 1).

Weights of the network are denoted by w1
i,j , i = 1, . . . , K ,

j = 0, . . . , nA + nB − τ + N , and w2
i , i = 0, . . . , K , for

the first and the second layer, respectively.
Using (5) and (20), predictions calculated from the

structured model are

ŷ(k + p|k) = w2
0 +

K∑

i=1

w2
i ϕ(zi(k + p|k)) + d(k), (21)

where, using (18), one has

zi(k+p|k) (22)

= w1
i,0 +

Iuf (p)∑

j=1

w1
i,ju(k − τ + 1 − j + p|k)

+
Iu∑

j=Iuf (p)+1

w1
i,ju(k − τ + 1 − j + p)

+
nA∑

j=1

w1
i,Iu+jy(k − j − N + 1 + p).

From (6) and (19), the unmeasured disturbance is

d(k) = y(k) −
(

w2
0 +

K∑

i=1

w2
i ϕ(zi(k))

)
. (23)

4. MPC algorithm with nonlinear
prediction and linearisation based
on structured neural models

In general, two approaches to nonlinear MPC can be dis-
tinguished: MPC with Nonlinear Optimisation (MPC-
NO) and suboptimal MPC. If for prediction a nonlinear
model (e.g., a neural one) is used without any simplifi-
cations, at each sampling instant a nonlinear optimisation
problem (4) has to be solved on-line (Ławryńczuk, 2007a;
Tatjewski, 2007; Tatjewski and Ławryńczuk, 2006). Al-
though the MPC-NO algorithm potentially seems to be
very accurate, the difficulty of the resulting optimisation
problem is twofold. First of all, it is nonlinear and com-
putationally demanding, and the computational burden is
high. Secondly, it may be nonconvex and even multi-
modal.

Fig. 1. Structure of the MPC algorithm with Nonlinear Predic-
tion and Linearisation (MPC-NPL).

4.1. MPC-NPL optimisation problem. The MPC
algorithm with Nonlinear Prediction and Linearisation
(MPC-NPL) (Ławryńczuk, 2007a; Tatjewski, 2007; Tat-
jewski and Ławryńczuk, 2006) which needs solving on-
line only a quadratic programming problem is adopted.
The structure of the algorithm is shown in Fig. 1. At each
sampling instant k the neural model is used on-line twice:
to find a local linearisation and a nonlinear free trajectory.
It is assumed that the output prediction can be expressed
as the sum of the forced trajectory, which depends only
on the future (on future input moves Δu(k)) and the free
trajectory y0(k), which depends only on the past

ŷ(k) = G(k)Δu(k) + y0(k), (24)

where

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T , (25)

y0(k) =
[
y0(k + 1|k) . . . y0(k + N |k)

]T
. (26)

The N × Nu dynamic matrix G(k) is comprised of step-
response coefficients of the linearised model calculated
on-line taking into account the current state of the process,

G(k) =

⎡

⎢⎢⎢⎣

s1(k) 0 . . . 0
s2(k) s1(k) . . . 0

...
...

. . .
...

sN (k) sN−1(k) . . . sN−Nu+1(k)

⎤

⎥⎥⎥⎦ .

(27)
The calculation of the step-response and of the nonlinear
free trajectory is detailed in the following subsection.

Because in (24) it is assumed that the future out-
put prediction is a linear function of future input incre-
ments Δu(k), the general nonlinear MPC optimisation
problem (4) becomes the following quadratic program-
ming task:

min
Δu(k), εmin, εmax

{∥∥yref(k) − G(k)Δu(k) − y0(k)
∥∥2

M

+ ‖Δu(k)‖2
Λ + ρmin

∥∥εmin
∥∥2 + ρmax ‖εmax‖2

}
,
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Table 1. Parameters of the fundamental model.

Parameter Value Parameter Value

CIin 8 kmol m−3 R 8.314 kJ kmol−1 K−1

Cmin 6 kmol/m−3 T 335 K
ETc 2.9442× 103 kJ kmol−1 ZTc 3.8223× 1010 m3 kmol−1 h−1

ETd
2.9442× 103 kJ kmol−1 ZTd

3.1457× 1011 m3 kmol−1 h−1

Efm 7.4478× 104 kJ kmol−1 Zfm 1.0067× 1015 m3 kmol−1 h−1

EI 1.2550× 105 kJ kmol−1 ZI 3.7920× 1018 h−1

EP 1.8283× 104 kJ kmol−1 ZP 1.7700× 109 m3 kmol−1 h−1

f∗ 0.58 V 0.1 m3

Mm 100.12 kg kmol−1

subject to

umin ≤ JΔu(k) + uk−1(k) ≤ umax,

−Δumax ≤ Δu(k) ≤ Δumax,

ymin − εmin ≤ G(k)Δu(k) + y0(k) ≤ ymax + εmax,

εmin ≥ 0, εmax ≥ 0, (28)

where

yref(k) =
[
yref(k + 1|k) . . . yref(k + N |k)

]T
, (29)

ymin =
[
ymin . . . ymin

]T
, (30)

ymax = [ymax . . . ymax]T (31)

are N -element,

umin =
[
umin . . . umin

]T
, (32)

umax = [umax . . . umax]T , (33)

Δumax = [Δumax . . . Δumax]T , (34)

uk−1(k) = [u(k − 1) . . . u(k − 1)]T (35)

are Nu-element vectors, J is the all-ones lower trian-
gular Nu × Nu matrix, M = diag(μ1, . . . , μN ) and
Λ = diag(λ0, . . . , λNu−1).

If output constraints have to be taken into account,
the MPC optimisation task (4) may be affected by the in-
feasibility problem. That is why in (28) output constraints
are softened by slack variables (Maciejowski, 2002; Tat-
jewski, 2007). A quadratic penalty for constraint viola-
tions is used, εmin and εmax are vectors of length N com-
prising slack variables, and ρmin, ρmax > 0 are weights.

In the MPC-NPL algorithm (Fig. 1), at each sampling
instant k the following steps are repeated:

1. Linearisation of the structured neural model: obtain
the matrix G(k).

2. Find the nonlinear free trajectory y0(k) using the
structured neural model.

3. Solve the quadratic programming problem (28) to de-
termine Δu(k).

4. Apply u(k) = Δu(k|k) + u(k − 1).

5. Set k := k + 1, go to Step 1.

Although in practice the stability of the MPC-NPL
algorithm can be achieved by proper tuning of the predic-
tion horizon and weighting coefficients μp, λp, it can be
also combined with the stabilising dual-mode approach,
similarly as in the case of the MPC-NPL algorithm based
on neural NARX models (Ławryńczuk and Tadej, 2008).
If the MPC-NPL algorithm is implemented without any
constraints, the optimal future control moves can be eas-
ily calculated analytically, without any on-line optimisa-
tion. In such a case, the controller unconstrained op-
timisation problem is formulated as a least-squares one
and solved by means of the numerically reliable Singular
Value Decomposition (SVD), similarly as can be done in
the unconstrained MPC algorithms based on linear models
(Maciejowski, 2002; Tatjewski, 2007).

4.2. On-line linearisation of the structured neural
model and calculation of the nonlinear free trajectory.
Defining the linearisation point as a vector composed of
past input and output signal values corresponding to the
arguments of the structured neural model (17),

x̄(k) = [ū(k − τ) . . . ū(k − nB − N + 1) (36)

ȳ(k − N) . . . ȳ(k − nA − N + 1)]T ,

and using Taylor series expansion at this point, the lin-
ear approximation of the model, obtained at a sampling
instant k, can be expressed as

y(k) =f0(x̄(k)) (37)

+
nB+N−1∑

l=τ

bl(x̄(k))(u(k − l) − ū(k − l))

−
nA+N−1∑

l=N

al(x̄(k))(y(k − l) − ȳ(k − l)),
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where

al(x̄(k)) = −∂f0(x̄(k))
∂y(k − l)

,

bl(x̄(k)) =
∂f0(x̄(k))
∂u(k − l)

are coefficients of the linearised model.

Taking into account the structured neural model de-
scribed by (19) and (20), these coefficients are calculated
from

al(x̄(k)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if l = 1, . . . , N − 1,

−
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,Iu+l−N+1

if l = N, . . . , nA + N − 1,
(38)

and

bl(x̄(k)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if l = 1, . . . , τ − 1,
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,l−τ+1

if l = τ, . . . , nB + N − 1.
(39)

If hyperbolic tangent is used as the nonlinear transfer
function ϕ in the hidden layer of the model,

dϕ(zi(x̄(k)))
dzi(x̄(k))

= 1 − tanh2(zi(x̄(k)))

.

Step-response coefficients of the linearised model are

sj(k) =
min(j,nB+N−1)∑

l=1

bl(x̄(k))

−
min(j−1,nA+N−1)∑

l=1

al(x̄(k))sj−l(k).

(40)

The nonlinear free trajectory y0(k + p|k), p =
1, . . . , N , is calculated on-line analogously as in the gen-
eral prediction equation (21) but taking into account only
the influence of the past,

y0(k +p|k) = w2
0 +

K∑

i=1

w2
i ϕ(z0

i (k +p|k))+d(k). (41)

The quantities z0
i (k + p|k) are determined from (22) as-

suming no changes in the control signal from a sampling
instant k onwards, i.e., u(k + p|k) := u(k− 1) for p ≥ 0.

Fig. 2. The polymerisation reactor control system structure.

Table 2. Parameters of neural models before pruning, Nw—the
number of weights.

Model SSE training SSE test Nw

NARX 0.3671 0.5618 25
Structured for N = 5 0.3788 1.2164 41

Structured for N = 10 0.3204 0.8568 66
Structured for N = 15 0.1910 0.3312 91

Table 3. Parameters of neural models after pruning, Nw—the
number of weights.

Model SSE training SSE test Nw

NARX 0.3762 0.5582 21
Structured for N = 5 0.3824 1.1434 28

Structured for N = 10 0.3289 0.8501 34
Structured for N = 15 0.1993 0.3198 39

One has

z0
i (k + p|k) =w1

i,0 +
Iuf (p)∑

j=1

w1
i,ju(k − 1) (42)

+
Iu∑

j=Iuf (p)+1

w1
i,ju(k − τ + 1 − j + p)

+
nA∑

j=1

w1
i,Iu+jy(k − j − N + 1 + p).

5. Experiments

5.1. Polymerisation reactor control system. The pro-
cess under consideration is a polymerisation reaction tak-
ing place in a jacketed continuous stirred tank reactor
(Doyle et al., 1995) depicted in Fig. 2. The reaction is
t free-radical polymerisation of methyl methacrylate with
azo-bis-isobutyronitrile as the initiator and toluene as the
solvent. The output NAMW (Number Average Molec-
ular Weight) [kg kmol−1] is controlled by manipulating
the inlet initiator flow rate FI [m3 h−1]. The flow rate F
[m3 h−1] of the monomer is a disturbance. Because both
steady-state and dynamic properties of the polymerisation
reactor are nonlinear, it is frequently used as a benchmark
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for comparing nonlinear control strategies (Doyle et al.,
1995; Ławryńczuk, 2007a; 2007b; Tatjewski, 2007).

Assuming isothermal operation, perfect mixing, con-
stat heat capacity, no polymer in the inlet stream, no gel
effect, constant reactor volume, negligible initiator flow
rate (in comparison with monomer flow rate) and qua-
sisteady state and long-chain hypothesis, the continuous-
time fundamental model of the polymerisation reactor is
comprised of four nonlinear ordinary differential equa-
tions,

dCm(t)
dt

= −
[
ZP exp

(−EP

RT

)
(43)

+ Zfm exp
(−Efm

RT

)]
Cm(t)P0(t)

− F (t)Cm(t)
V

+
F (t)Cmin

V
,

dCI(t)
dt

= − ZI exp
(−EI

RT

)
CI(t) (44)

− F (t)CI

V
+

FI(t)CIin

V
,

dD0(t)
dt

=
[
0.5ZTc exp

(−ETc

RT

)
(45)

+ ZTd
exp

(−ETd

RT

)]
P 2

0 (t)

+ Zfm exp
(−Efm

RT

)
Cm(t)P0(t)

− F (t)D0(t)
V

,

dDI(t)
dt

=Mm

[
ZP exp

(−EP

RT

)
(46)

+ Zfm exp
(−Efm

RT

)]
Cm(t)P0(t)

− F (t)DI(t)
V

,

where

P0(t) =

√√√√ 2f∗CI(t)ZI exp
(−EI

RT

)

ZTd
exp

(−ETd

RT

)
+ ZTc exp

(−ETc

RT

) , (47)

and the algebraic output equation

NAMW (t) =
DI(t)
D0(t)

. (48)

State variables are Cm—the monomer concentration and
CI—the initiator concentration, and DI/D0 is the num-
ber average molecular weight. The initial operating con-
ditions are FI = 0.028328 m3 h−1, F = 1 m3 h−1,
NAMW = 20000 kg kmol−1, Cm = 5.3745 kmol m−3,
CI = 2.2433 × 10−1 kmol m−3, D0 = 3.1308 × 10−3

kmol m−3, DI = 6.2616 × 10−1 kmol m−3. Parameters
of the fundamental model are given in Table 1.

5.2. Neural modelling of the polymerisation reac-
tor. During the identification experiment, the fundamen-
tal model (43)–(48) is used as the real process, and it is
simulated in open loop in order to obtain two sets of data,
namely, training and test data sets, depicted in Fig. 3. Both
sets contain 2000 samples, and the sampling time is 1.8
min. The output signal contains noise. During calcula-
tions the system of differential equations comprising the
fundamental model is solved using the Runge-Kutta RK45
method.

Four model structures are trained: an NARX (one-
step ahead) model (7) and structured models (17) for N =
5, N = 10, N = 15. A delayed first order NARX model
is used,

y(k) = f(u(k − 2), y(k − 1)), (49)

i.e., τ = nB = 2, nA = 1. In structured models, the same
parameters τ , nA, nB are used. To show the advantages of
structured models all four models are underparametrised,
because in fact the fundamental model (43)–(48) consists
of four differential equations. As previous research shows
(Ławryńczuk, 2007a; Tatjewski, 2007), in order to pre-
cisely capture the nature of the process, the NARX model
should be of at least the second order,

y(k) = f(u(k − 2), y(k − 1), y(k − 2)), (50)

i.e., nA = nB = τ = 2. Since input and out-
put process variables have different orders of magni-
tude, they are scaled as u = 100(FI − FI0), y =
0.0001(NAMW − NAMW 0), where FI0 = 0.028328,
NAMW 0 = 20000 correspond to the initial operating
point.

The NARX model has K = 6 hidden nodes while
structured models have K = 5 nodes. All neural models
are trained as one-step ahead predictors using the BFGS
optimisation algorithm (Bazaraa et al., 1993) which min-
imises the Sum Squared Error (SSE ) performance index
(9). For each neural model the identification experiment is
repeated 10 times and weights of neural networks are ini-
tialised randomly. The results presented are the best ones
obtained. Table 2 compares the accuracy of models for
training and data sets in terms of SSE and the number of
weights. Naturally, the longer the prediction horizon N ,
the bigger the number of models’ parameters (weights).
In order to reduce the complexity of models, the Optimal
Brain Damage (OBD) pruning algorithm is used (LeCun
et al.„ 1989). Parameters of pruned models are compared
in Table 3. The complexity of the NARX model is reduced
by only 16.0% whereas in the case of structured models
by 31.7%, 48.5% and 57.14% for models with N = 5,
N = 10, N = 15, respectively.

Because when trained and tested as one-step ahead
predictors both NARX and structured model classes give
comparable SSE (i.e., of the same order), it is interesting
to compare their step-responses. Figure 4 shows responses
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Fig. 3. Training and test data sets.
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Fig. 4. Step-responses (long-range predictions) calculated by the classical NARX neural model (solid line with asterisks) and by the
structured neural model (dashed line with circles) vs. the real process (solid line with points).

Table 4. Average accuracy ratios of structured models in com-
parison with the NARX model: the training data set.

Model R5 R10 R15

Structured for N = 5 0.5737 – –
Structured for N = 10 0.4320 0.2950 –
Structured for N = 15 0.2541 0.1717 0.1367

of the process and predictions. The manipulated variable
FI changes at the sampling instant k = 0 from 0.028328
to 0.004602, which corresponds to changing the operat-
ing point from NAMW = 20000 to NAMW = 40000.
The one-step ahead NARX neural model is used recur-
rently, and it correctly calculates only the first prediction
(for k = 1). As a result of underparameterisation, for the
next sampling instants the prediction error is propagated
and consecutive predictions significantly differ from the
real process. Conversely, structured neural models have
fundamentally better prediction abilities, and differences
between the process and predictions are very small. The
prediction error is not propagated, and the models predict
correctlythe behaviour of the process over the whole pre-
diction horizon.

Table 5. Average accuracy ratios of structured models in com-
parison with the NARX model: the test data set.

Model R5 R10 R15

Structured for N = 5 0.9100 – –
Structured for N = 10 0.5658 0.3554 –
Structured for N = 15 0.2398 0.1499 0.1150

In order to further compare the long-range prediction
accuracy and show the potential of using structured neural
models for long-range prediction in MPC, the ratio

RN =
1
N

N∑

p=1

∑
k∈data set

(y(k + p|k) − y(k + p))2

∑
k∈data set

(yNARX(k + p|k) − y(k + p))2

(51)
is considered. The coefficient RN compares the aver-
age long-range prediction accuracy of the structured neu-
ral model (the numerator) and the classical NARX model
(the denominator). The output of the classical one-step
ahead model used for long-range prediction is denoted by
yNARX(k + p|k), the output of the structured model is
denoted by y(k + p|k), y(k + p) is the real data.
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Fig. 5. Simulation results: the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line) based on the
same NARX neural model.

10 20 30 40 50 60 70 80 90 100 110 120

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

k

F
I

1 20 40 60 80 100 120

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

x 10
4

k

N
A

M
W NAMWref 

Fig. 6. Simulation results: the MPC algorithm based on the linear model.

If RN < 1, it is clear that there is a potential for us-
ing in MPC structured models rather than classical NARX
models because the former have better long-range predic-
tion abilities. The smaller the value of RN , the worse
long-range prediction abilities of classical NARX mod-
els and it is more appropriate to use structured models
in MPC. Tables 4 and 5 present values of the ratio RN

of structured models trained for different prediction hori-
zons. In general, the longer the prediction horizon, the
worse the prediction accuracy of the NARX model. At the
same time, structured models are characterised by good
long-range prediction accuracy. Of course, it is possible to
calculate predictions from a structured model for a shorter
horizon than used during training.

5.3. MPC of the polymerisation reactor. The funda-
mental model (43)–(48) is used as the real process during

simulations of MPC algorithms. The model is solved us-
ing the Runge-Kutta RK45 method. The horizons of MPC
are N = 5 or N = 10, Nu = 3, and the weighting coeffi-
cients are μp = 1, λp = 0.2. (As far as choosing parame-
ters of MPC, there are many tuning criteria in the literature
(Clarke and Mohtadi, 1989; Scattolini and Bittanti, 1990);
this issue is not considered here.) The manipulated vari-
able is constrained, Fmin

I = 0.003, Fmax
I = 0.06.

Because of a highly nonlinear nature of the poly-
merisation reactor, the MPC algorithm based on a linear
model is unable to control the process efficiently as shown
in Fig. 6 and discussed in (Ławryńczuk, 2007a; Tatjew-
ski, 2007). As the reference trajectory (NAMW ref ), six
set-point changes are considered. The algorithm works
satisfactorily for the smallest set-point change, but for big-
ger ones the system becomes unstable. This is so because
dynamic and steady-state properties of the process are
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Fig. 7. Simulation results: the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line) based on the
same structured neural model, top: the whole simulation, bottom: enlarged fragments.

nonlinear. Hence, it is justified to use nonlinear models in
MPC. The second order linear model used in this simula-
tion is not underparameterised (i.e., τ = nA = nB = 2),
and the role of this experiment is to justify the necessity
of using nonlinear models of the discussed polymerisation
process in MPC.

In the following part of the article, both classes of
neural models (i.e., NARX and structured models) under
consideration are underparameterised (i.e., τ = nB = 2,
nA = 1). To emphasise the accuracy and computational
efficiency of the MPC-NPL algorithm based on the struc-
tured model, four MPC algorithms are compared:

(a) suboptimal MPC-NPL algorithm with on-line
quadratic programming based on the NARX neural
model,

(b) MPC algorithm with on-line Nonlinear Optimisation
(MPC-NO) based on the NARX neural model,

(c) suboptimal MPC-NPL algorithm based on the struc-
tured neural model,

(d) MPC-NO algorithm based on the structured neural
model.
In the MPC-NO algorithm, Sequential Quadratic

Programming (SQP) (Bazaraa et al., 1993) is used.
It is interesting to evaluate MPC based on the clas-

sical NARX neural model whose long-range prediction

accuracy is poor in comparison with structured models
(Fig. 4, Tables 4 and 5). Simulation results are shown
in Fig. 5. Although the NARX model is trained as a one-
step ahead predictor, it is used recurrently and the result-
ing MPC algorithms work unsatisfactorily. Both nonlinear
MPC-NPL and MPC-NO algorithms give similar transient
responses; very low control accuracy results from the in-
accurate long-range prediction.

Simulation results of the MPC-NPL algorithm and
the MPC-NO algorithm based on the same structured neu-
ral model (trained for N = 10) are depicted in Fig. 7.
Both nonlinear algorithms are stable. Moreover, for all
six set point changes considered the closed-loop perfor-
mance obtained in the suboptimal MPC-NPL algorithm
with quadratic programming is similar to that obtained
in the computationally demanding MPC-NO approach, in
which a nonlinear optimisation problem has to be solved
on-line at each sampling instant.

Simulation results of both algorithms based on the
structured neural model with the prediction horizon short-
ened to N = 5 are shown in Fig. 8. The shorter prediction
horizon results in slightly bigger overshoot in comparison
with the nominal case, in which N = 10. The shorten-
ing of the horizon can be considered when one wants to
reduce the complexity of the model or the computational
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Fig. 8. Simulation results: the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line) based on the
same structured neural model with the prediction horizon shortened to N = 5.

1 20 40 60 80 100 120

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

k

F
I

1 20 40 60 80 100 120

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

x 10
4

k

N
A

M
W NAMWref 

Fig. 9. Simulation results: the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line) based on the
same structured neural model in presence of unmeasured disturbances.
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Fig. 10. Simulation results: the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line) based on the
same structured neural model in presence of step changes in the flow rate F of the monomer.
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burden. On the other hand, excessive shortening may re-
sult in instability (Maciejowski, 2002; Tatjewski, 2007).

Finally, the efficiency of both MPC algorithms based
on the structured model is evaluated in the presence of
disturbances, which are unavoidable in practice. Simu-
lation results in the presence of unmeasured disturbances
are shown in Fig. 9. Simulation results in the presence of
step changes in the flow rate F of the monomer are shown
in Fig. 10.

6. Conclusions

The presented MPC-NPL algorithm with structured neu-
ral network models has the following advantages: relia-
bility, computational efficiency and the closed-loop accu-
racy. The algorithm uses on-line only the numerically re-
liable quadratic programming procedure, so the necessity
of repeating full nonlinear optimisation at each sampling
instant is avoided. Although suboptimal, in practice the
algorithm gives closed-loop control performance similar
to that obtained in MPC with nonlinear optimisation.

The structure of the model and its identification
should be chosen with its further application in MPC algo-
rithms in mind. MPC algorithms are very model based and
likely to offer good control performance provided that pre-
dictions calculated from the model are accurate enough.
The very specific role of the model in MPC cannot be ig-
nored, but it is sometimes overlooked, as was emphasised
in (Rossiter, 2003).

The prediction error propagation problem is one of
the most important issues in nonlinear MPC. Although
models used in MPC have to be able to make good pre-
dictions of future behaviour of the process over the whole
prediction horizon, neural models trained by means of the
rudimentary backpropagation algorithm are in fact one-
step ahead predictors. When such models are used in
MPC, the prediction error is inevitably propagated. This is
so because of noise, model inaccuracies and underparam-
eterisation. In particular, underparameterisation is poten-
tially a very frequent source of prediction inaccuracies as
was demonstrated in the example polymerisation reactor
studied in this paper. Usually, the order of models used
in MPC is significantly lower than the order of the real
process, or even the proper model order is unknown.

The structured neural model described in the paper
predicts future values of the output without taking into ac-
count previous predictions calculated within the predic-
tion horizon. It is not used recursively and the prediction
error is not propagated. Structured models have much bet-
ter long-range prediction accuracy in comparison with the
corresponding classical NARX models. Conceptually, a
modelling idea presented in this paper can be regarded
as a modification of the linear multi-model approach (Liu
et al., 1999; Rossiter and Kouvaritakis, 2001) designed
to effectively deal with nonlinear processes. Instead of

having a set of separate models, i.e., one model for each
sampling instant within the prediction horizon, only one
structured neural model is used. The structured model is
easily trained by means of the classical backpropagation
algorithm, and it is not necessary to use recurrent neural
network training, which is much more complicated. In
comparison with the corresponding classical NARX neu-
ral models, structured models have more input nodes so it
is very important to prune these models. In this study, the
OBD pruning algorithm is used, which significantly re-
duces the number of weights and improves generalisation
abilities.
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